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Clustering Dynamic PET Images
on the Projection Domain

Mustafa E. Kamasak and Bulent Bayraktar

Abstract—Segmentation of dynamic PET images is an impor-
tant preprocessing step for kinetic parameter estimation. A single
time activity curve (TAC) is extracted for each segmented region.
This TAC is then used to estimate the kinetic parameters of the
segmented region. Current methods perform this task in two inde-
pendent steps; first dynamic positron emission tomography (PET)
images are reconstructed from the projection data using conven-
tional tomographic reconstruction methods, then the TAC of the
pixels are clustered into a predetermined number of clusters. In
this paper, we propose to cluster the regions of dynamic PET im-
ages directly on the projection data and simultaneously estimate
the TAC of each cluster. This method does not require an inter-
mediate step of tomographic reconstruction for each time frame.
Therefore, the dimensionality of the estimation problem is reduced.
The proposed method is compared with image-domain clustering
methods based on weighted least squares (WLS) and expectation
maximization with Gaussian mixtures methods (GMM-EM). Iter-
ative coordinate descent (ICD) is used to reconstruct the emission
images required by these methods. Simulation results show that the
proposed method can substantially decrease the number of mis-
labeled pixels and reduce the root mean squared error (RMSE) of
the cluster TACs.

Index Terms—Clustering, dynamic PET, kinetic models, projec-
tion domain, regularization.

I. INTRODUCTION

POSITRON emission tomography (PET) images generally
have low signal-to-noise ratio (SNR) and the time activity

curve (TAC) extracted from a single pixel may be very noisy. To
improve the SNR, the TACs obtained from the physiologically
similar pixels are averaged, and a single TAC is obtained for
each group of pixels. Therefore, clustering physiologically sim-
ilar pixels is an important preprocessing step. However, this is
not a trivial task because of the low SNR and the partial volume
effect of the PET images. In many PET studies clustering is per-
formed manually by an operator. Manual clustering is an oper-
ator dependent and time consuming process. For improved re-
producibility and faster clustering various automatic clustering
algorithms are developed.

Ashburner et al. [1] proposed a modified mixture model al-
gorithm. This algorithm computes the likelihood of each pixel
TAC being in a cluster and iteratively maximizes this likelihood.
Wong et al. [2] proposed a distance based clustering algorithm.
Weighted distance between the pixel TACs within each cluster is
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minimized. This algorithm is further described in Section III.A.
Chen et al. [3] used an expectation maximization (EM) based
clustering algorithm with Markov random field (MRF) models.
Brankov et al. [4] proposed a new distance metric between the
pixel TACs and iteratively minimizes this distance within the
pixel TACs of each cluster. Guo et al. [5], [6] proposed a hierar-
chical linkage based algorithm for clustering pixels. Automatic
clustering can also be integrated into kinetic parameter estima-
tion algorithms [7]. In some studies, segmentation is used to es-
timate the plasma input function from the PET images without
arterial sampling [8], [9].

These clustering algorithms generally use pixel TACs as their
feature vectors, which require reconstructed dynamic PET im-
ages. Sinogram data acquired with PET scanners are recon-
structed using conventional tomographic reconstruction algo-
rithms and TACs are extracted from these reconstructed images.
In this paper, we propose a new algorithm which clusters the
pixels on the projection domain. Therefore, it does not require
tomographic reconstruction of dynamic PET images. A max-
imum a priori (MAP) based estimation framework is used for
clustering pixels and computation of the cluster TACs. A sim-
ilar algorithm was used by Frese et al. for discrete tomographic
reconstruction of PET images [10]. We extended this algorithm
for the unsupervised clustering of dynamic PET pixels directly
on the projection domain.

This paper is organized as follows; Section II introduces the
proposed method that clusters dynamic PET images directly on
the projection domain. Section III briefly describes the conven-
tional image-domain clustering algorithms. The simulation re-
sults are given in Section IV.

II. UNSUPERVISED CLUSTERING ON PROJECTION DOMAIN

This section describes the unsupervised clustering algorithm
on the projection domain. We introduce some notation, give
some brief information on the scanner model, and then describe
our MAP framework.

Assume that the data is collected at time frames, and there
are clusters in the image. Each cluster has an associated TAC
and a set of pixels that belongs to this cluster. For cluster ,
let denote the TAC of the cluster, and
let denote the set of pixels that belongs to this cluster. Let

denote matrix formed as
where superscript T denotes the matrix transpose. Let denote
the label image, ie. . Given the sinogram
measurements, denoted by , the MAP estimates of and
are

(1)

where denotes the probability.
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In the following sections we formulate and then
we describe how to estimate iteratively and efficiently.

A. Scanner Model

Let denote the sinogram measurement for projection
and time frame , and let be the

matrix of independently distributed Poisson random variables
that form the sinogram measurements. Furthermore, let be
the forward projection matrix, with elements . denotes
the probability of an emission from pixel being detected by the

th detector pair. Then, the expected number of counts for each
measurement at a given time, is given by

(2)

For simplicity of notation let’s define

(3)

(4)

and

... (5)

Then (2) can be compactly expressed in the matrix notation as

(6)

Using this notation we can show that the probability density
function for the measured sinogram is [11]

(7)

where is the th column of . The log likelihood of the
sinogram matrix is then given by

(8)

B. Estimation Framework

A cost function can be formed by negating the log likelihood
given in (8) and adding a regularization function, .

(9)

The regularization function penalizes the local label changes
and therefore it controls the spatial continuity of pixel labels.
This type of regularizaton function was used by Besag [12] for
image clustering.

The regularization function can be obtained from an assumed
prior distribution of the label image. In this work, we model
the label image as a Markov random field (MRF) with Gibbs
distribution. The likelihood of a particular label image, is then

(10)

where is the normalization constant, is the set of all spa-
tially neighboring pixel pairs in is the coefficient linking
pixels and is a constant that controls the spatial smooth-
ness of the label image, and denotes the Kronecker delta
function.

In this paper, is formed by 8-point spatial neighborhood.
We choose the negative logarithm of (10) as our regularization
function, i.e.,

(11)

Note that with this regularization function, high values of
the regularization parameter, , will correspond to spatially
smoother label images. We can similarly add another regu-
larization function for the temporal smoothness of the cluster
TACs.

C. Clustering With Iterative Coordinate Descent Clustering
(CICD)

There is no closed form expression for the minimization of
the cost function given in (9). Therefore, we used an iterative
minimization technique that we named clustering with iterative
coordinate descent (CICD). It is a modified version of iterative
coordinate descent (ICD) algorithm used in conventional PET
image reconstruction [11].

A CICD iteration has two steps; first the cluster TACs are
fixed and pixel labels are sequentially updated to minimize the
cost function. When all pixel labels are updated, the cluster
TACs are updated to minimize the cost function. Therefore, with
each CICD iteration, the cost function given in (9) monotoni-
cally decreases.

1) Pixel Label Update: Assume that we know all cluster
TACs and we fix them during the update of pixel labels. Let
denote the current label of pixel , and we want to change it to
be in this iteration so that the change in the cost function is
minimized. If we change the label of pixel from to , the
change in the cost function is

(12)

The evaluation of cost function requires re-computation of
log likelihood, which leads to prohibitive computational com-
plexity. Instead of computing the whole log likelihood, we com-
pute the change in the log likelihood.

(13)

Using the changes in the regularization function that only de-
pend on the current pixel, the change in the cost function can be
written as

(14)
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where denotes the set of pixels that are neighbors of pixel .
Then the label of each pixel is updated as

(15)

This minimization is performed by simply searching through
all possible values of . For efficient implementation,

can be stored in the memory. Whenever a pixel
label is updated can also be updated as follows

(16)

2) Cluster Tac Update: Once all the pixel labels are updated,
we can update the cluster TACs. The cluster TACs are also up-
dated as follows to minimize the cost function given in (9):

(17)

where

(18)

(19)

The value of can be locally approximated with
a second-order Taylor series as

(20)

where and are the
first and the second derivative of the log likelihood function with
respect to . The first and second derivatives at time frame
are

(21)

(22)

Using these derivative values given in (21), (22) cluster TACs
can be computed simply as

(23)

III. IMAGE-DOMAIN CLUSTERING ALGORITHMS

Image domain clustering algorithms use TACs extracted
from emission images. The emission images are reconstructed
using conventional PET reconstruction algorithms. Let be
the reconstructed emission rate for pixel at time frame , and

be the reconstructed time response of
pixel .

A. Weighted Least Squares Clustering (WLS)

This algorithm minimizes the weighted square distance be-
tween the pixel TACs and the cluster TACs, ie.

(24)

where is a weight matrix, and denotes . In this
work we used a diagonal weighting matrix formed as

where is the duration of th time frame.
This algorithm also iteratively updates the pixel labels and

cluster TACs. Each iteration consists of two steps. In the first
step, labels of pixels are sequentially updated. The label of a
pixel is updated as follows:

(25)

After all pixel labels are updated, the cluster TACs are updated
as follows to decrease the weighted distance given in (24).

(26)

where denotes the number of pixels that are labeled as .
Each WLS iteration monotonically decreases the cost function,
and iterations are repeated until the stopping (convergence) cri-
teria is reached.

B. Gaussian Mixture Model With Expectation Maximization
(GMM-EM)

It can be assumed that the pixel TACs are Gaussian distributed
around the cluster TACs. Similar to other clustering methods
pixel labels and cluster TACs can be updated iteratively.

Let denote the covariance matrix of cluster , and denote
the probability of cluster . The posterior probability of a pixel
being in cluster , given its time response is

(27)

If the TACs and covariance matrices of the clusters are known,
we can assign pixel labels to maximize the posterior, ie.

(28)

Once the labels are assigned the cluster TACs and covariance
matrices can be updated using the EM algorithm [13].

C. Initialization of Clustering Algorithms

All clustering algorithms described above require initial
cluster TACs, pixel labels, or both. It is possible to initialize
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Fig. 1. Single-slice rat phantom. Regions of the rat phantom were derived from
a segmented MR image. Different fill patterns indicate kinetically distinct tissue
regions. Striatum is a region containing specific receptors for the tracer. Nonspe-
cific-gray matter is tissue containing no specific binding sites for tracer but com-
parable blood flow parameters to striatal area; cortex is modeled as containing
low concentration of binding sites; white matter in our dynamic phantom con-
tains no specific binding sites and low flow;non-brain, which comprises much
of the slice has fast influx and efflux of tracer. Solid white areas in figure repre-
sent a mixture of background regions that do not contain any activity over time.
The small white areas dorsal to (above) the striatum are ventricles that contain
cerebral spinal fluid and no tracer. White areas surrounding brain correspond to
skull which does not take up appreciable amounts of tracer.

these algorithms with randomly chosen initial labels and cluster
TACs. However, arbitrary initial labels and cluster TACs may
cause these algorithms to get stuck to local minima.

It is possible to initialize these algorithms with user selected
clusters. A pixel from each cluster can be manually selected and
their corresponding TACs can be used to initialize these algo-
rithms. During this manual initialization, the number of clusters
can be chosen by the user based on the prior anatomical knowl-
edge or inspection of late-time frame reconstructions.

In the simulations described in Section IV.A, we initialized
the algorithms by manually selected pixels and their TACs.

It is also possible to choose the number of clusters automati-
cally by using information criteria such as Akaike Information
Criteria (AIC) [14] or Schwarz Criteria (SC) [15], which can be
incorporated to the cost function [2].

IV. SIMULATIONS

A. Phantom Design

Simulation experiments are based on a phantom of a rat’s
head. The phantom and kinetic parameters for the regions in
this phantom are taken from Kamasak et al. [16]. Fig. 1 shows
a schematic representation of the phantom and its regions. The
phantom has six regions including the background. The regional
TACs are shown in Fig. 2. For further details about the phantom
see Kamasak et al. [16]. Time frames of emission images are
generated using the phantom and the 2-tissue compartment
model equations. The plasma function, , is generated
using the second model in Wong et al. [17]. The blood contri-
bution to the PET activity is assumed to be zero, and the tracer
is assumed to be raclopride labeled with , which has a
decay constant of min . Total scan time is 60 min,
divided into 18 time frames with 4 0.5 min, 4 2 min,
and 10 5 min. The phantom resolution is 128 128 with
each pixel having dimensions of (1.2 mm) . The data is not
decay-corrected.

Fig. 2. Simulated time-activity curves for 5 distinct tissue regions in rat brain
phantom.

The rat phantom image at each time frame is forward pro-
jected into sinograms using a Poisson model for the detected
counts. Each sinogram consists of 180 angles and 200 radial
bins per angle. A triangular point spread function with a 4 mm
base width is used in forward projections.

The image-domain clustering algorithms of Section III re-
quire that the emission images be reconstructed for each time
frame. We used ICD image reconstruction with a quadratic prior
and a regularization parameter for each time frame. The regu-
larization parameters were chosen to minimize the total mean
square error of the reconstructed emission image frames.

Both the CICD and image-domain clustering algorithms
are stopped when none of the pixels change label during an
iteration.

B. Performance Evaluation

Clustering algorithms are evaluated based on their perfor-
mance of labeling pixels and estimating the cluster TACs. Two
seperate performance measures are used: Misclassification per-
centage and RMSE of the cluster TACs.

Misclassification percentage, given in (29), is used to evaluate
the labeling performance of the clustering algorithms. Misclas-
sification percentage is computed as

%

(29)
In (29), denotes the label of pixel assigned by the
proposed clustering algorithm, and denotes the correct
label of pixel .

The RMSE, given in (30), is used to evaluate the accuracy
of the cluster TACs estimated by the clustering algorithms. The
RMSE of the TAC estimations is computed as

(30)

In (30), denotes the TAC for cluster estimated by the
proposed clustering algorithm, and is the correct TAC
for cluster .
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Fig. 3. Pixel labels assigned by the clustering algorithms. (a) Original.
(b) ICD +WLS. (c) ICD +GMM � EM. (d) CICD.

TABLE I
PERCENTAGE OF MISLABELED PIXELS FOR THE CLUSTERING ALGORITHMS

V. SIMULATION RESULTS

The pixel labels assigned by the image-domain algorithms
and the proposed method, CICD, are shown in Fig. 3. The im-
ages are clustered into six regions that are shown in Fig. 1. For
these simulations, the regularization parameter, , is set to five.
This parameter is chosen empirically to minimize the misclassi-
fication percentage. The effects of the regularization parameter
on clustering results are explained in Section V.A.

Visually it can be seen that CICD algorithm results have less
mislabeled pixels than image-domain clustering methods. The
percentage of mislabeled pixels for these algorithms are com-
puted using (29) and given in Table I. From this table, it can be
seen that the proposed clustering algorithm has the lowest mis-
labeled pixel percentage.

The cluster TACs estimated by the clustering algorithms are
shown in Fig. 4. The root mean squared error for the cluster
TACs are computed using (30) and listed in Table II. This table
shows that for all regions except the white matter, the proposed
algorithm have produced the lowest root mean squared error
(RMSE) between the estimated cluster TACs and the actual
cluster TACs.

Typical computation time for a CICD iteration is approxi-
mately 2.5 min. Image-domain algorithms take a few seconds
(2–5 sec) per iteration. Computation times are given for a

Pentium-V machine running Linux OS with 3 GHz pro-
cessor and 1 GB memory. The convergence of the CICD
algorithm (ie. until no change in the pixel labels) requires
20–25 iterations depending on the regularization parameter.
With , the CICD algorithm converges after 22 iter-
ations. For image-domain algorithms, convergence takes 30
iterations for algorithm and 32 iterations for

algorithm.
The success of the proposed CICD algorithm is due to the re-

duction in the number of estimated parameters. CICD algorithm
assigns labels and estimates time points for cluster
TACs. However, for image-domain clustering algorithms, the
estimation of additional emission rates for reconstructed
emission images is required.

A. Effects of Regularization Parameter

The regularization parameter, , adjusts the spatial smooth-
ness of the label image. High regularization parameter increases
the contribution of the image model to the cost function given
in (9). Therefore, label images that deviate from the assumed
image model are rejected with a high regularization parameter.
On the other hand, low regularization parameter deemphasizes
the image model and assigns the labels depending more on the
acquired data. This allows the output label images to deviate
from the image model. The regularization parameter should be
chosen depending on the SNR of the data. As the SNR de-
creases, higher regularization parameter should be chosen to
make the results less sensitive to the noise.

Using (11), we selected an image model that penalizes rapid
label changes in a local pixel neighborhood. With this image
model, CICD algorithm with high regularization parameter re-
sults in spatially smoother label images.

In Fig. 5, the results of the CICD algorithm with different
regularization parameters are shown. From this figure, it can
be seen that the label images obtained with low regularization
parameters ( and ) have rapid label changes which
is not very likely in practice. As the regularization parameter
increases, the label images become smoother. However, results
with high regularization parameter have classification
problems especially inside the brain region.

Fig. 6 shows the misclassification percentage in the results
of the CICD algorithm with different regularization parameters.
From this figure, we can conclude that the lowest misclassifica-
tion percentage is obtained with .

Table III similarly shows the RMSE in the TAC results of
the CICD algorithm with different regularization parameters.
The TACs have high RMSE with low regularization parameters.
Higher regularization parameters give comparable RMSE in the
cluster TACs.

VI. CONCLUSION

We propose a new clustering algorithm that we call clustering
with iterative coordinate descent (CICD). CICD clusters the dy-
namic PET images directly on the projection domain, and it does
not require the intermediate step of emission reconstruction. The
results of CICD algorithm are substantially better than the con-
ventional image-domain clustering algorithms. It produces less
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Fig. 4. Cluster TACs estimated by the clustering algorithms for each region in the rat head. (a) Background. (b) Nonbrain. (c) Nonspecific-gray matter. (d) Striatum.
(e) Cortex. (f) White matter.

mislabeled pixels and estimates cluster TACs with lower RMSE
than the image-domain clustering algorithms.

The proposed method has certain limitations. For example,
in image-domain clustering methods it is possible to co-reg-
ister the reconstructed images before the clustering. However,
external measurement devices can allow us to record motion

during the data acquisition and correct the data in an automated
fashion [18].

More tests on real dynamic PET data are required for further
analysis of this algorithm’s merit. More flexible regularization
strategies can also be integrated into this algorithm which may
result in better clustering.
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Fig. 5. Pixel labels assigned by the CICD algorithm with different regularization parameters. (a) � = 1. (b) � = 3. (c) � = 5. (d) � = 8. (e) � = 12. (f) � = 20.

TABLE II
RMSE OF THE CLUSTER TACS FOR EACH REGION IN THE RAT’S HEAD

Fig. 6. Misclassification percentage of CICD algorithm with different regular-
ization parameters.

TABLE III
RMSE OF THE CLUSTER TACS FOR EACH REGION IN THE RAT’S HEAD

WITH DIFFERENT REGULARIZATION PARAMETERS
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