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Abstract

Our goal in this paper is the estimation of kinetic model parameters for each voxel corresponding to a
dense 3D PET image. Typically, the activity images are first reconstructed from PET sinogram frames at each
measurement time, and then the kinetic parameters are estimated by fitting a model to the reconstructed time-
activity response of each voxel. However, this “indirect” approach to kinetic parameter estimation tends to
reduce signal-to-noise ratio (SNR) because of the requirement that the sinogram data be divided into individual
time frames.

In 1985, Carson and Lange proposed [1], but did not implement, a method based on the expectation-
maximization (EM) algorithm for direct parametric reconstruction. The approach is “direct” because it estimates
the optimal kinetic parameters directly from the sinogram data, without an intermediate reconstruction step.
However, direct voxel-wise parametric reconstruction remained a challenge due to the unsolved complexities
of inversion and spatial regularization.

In this work, we demonstrate and evaluate a new and efficient method for direct voxel-wise reconstruction of
kinetic parameter images using all frames of the PET data. The direct parametric image reconstruction is formu-
lated in a Bayesian framework, and uses the parametric iterative coordinate descent (PICD) algorithm to solve
the resulting optimization problem [2]. The PICD algorithm is computationally efficient and is implemented with
spatial regularization in the domain of the physiologically relevant parameters. Our experimental simulations
of a rat head imaged in a working small animal scanner indicate that direct parametric reconstruction can
substantially reduce estimation error in kinetic parameters, as compared to indirect methods, without appreciably
increasing computation.
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I. INTRODUCTION

Positron Emission Tomography (PET) is a powerful molecular imaging technique with the sensitivity to detect

picomolar quantities of a labelled tracer with reasonable (seconds to minutes) temporal resolution. Through

the application of kinetic models, the dynamic PET data can be transformed into physiological parameters that

indicate the functional state of the imaged tissue. Ideally, one would like to reconstruct parametric images from

PET data (i.e., images which specify the estimated kinetic parameters for each voxel in the imaged volume.)

Such parametric images could serve many uses. For example, they may be particularly desirable when testing

a new tracer whose sites of action are not completely known. In the brain, parametric images might be useful

in identifying new brain circuits or discovering unsuspected connectivity between disparate brain regions. As

new tracers continue to be developed with greater specific to nonspecific binding ratios, the impetus grows for

looking at their uptake in all regions of the brain, rather than in a few pre-selected regions of interest.

This paper introduces a novel algorithm for directly reconstructing parametric images from PET sinogram

data. We demonstrate that this method can generate parametric images with superior quality; and, perhaps

surprisingly, we also show that it has computational requirements that are similar to a two-step approach of

iterative reconstruction followed by kinetic parameter estimation.

Kinetic compartmental models are often used to describe the movement of a tracer between different

physically or chemically distinct states or compartments [3], [4], [5]. The exchange of tracer between these

compartments can be modeled by a system of first order ordinary differential equations (ODEs) whose co-

efficients are the kinetic parameters. The resulting kinetic models have been validated as producing reliable

quantitative indices of various clinically and scientifically important physiological processes [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16].

In some cases, a single set of kinetic parameters can describe the tracer behavior in a homogeneous region

of tissue such as the myocardium or perhaps the entire striatum in brain images. If the region of interest can

be delineated using some form of segmentation, then the PET activity can be averaged over the region at

each time frame and a single set of kinetic parameters can be estimated by fitting a single kinetic model to

the time sequence of average activities. This case is illustrated in Fig. 1. The PET data are first reconstructed

into K time frames, then a region of interest (ROI) is segmented from each frame, and a single set of kinetic

parameters is fit to the regional-average time sequence. These ROI-based methods may be further classified into

linear methods and nonlinear methods. Linear techniques [17], [18], [19], [20], [21], [22] transform the data,
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Fig. 1. ROI-based kinetic parameter estimation methods.

so that the parameters of interest can be estimated by linear regression methods, while nonlinear techniques

[4], [5] generally estimate the kinetic parameters by iteratively minimizing a properly weighted distance metric

between the reconstructed time-activity curves and the model output.

Recently, there has been increasing interest in the formation of parametric images which model the kinetic

behavior of each voxel individually. This approach is more appropriate when the volume cannot be effectively

segmented into homogeneous regions that would be modeled with a single kinetic parameter set. Existing

approaches to the creation of parametric images can be roughly categorized as “indirect”, “semi-direct”, and

(our new method) “direct” [23] reconstruction.

Indirect methods work by first reconstructing the PET emission images for each of the K measurement times,

and then estimating the kinetic parameters at each voxel. The primary difficulty of the indirect approach is

that the low signal-to-noise ratio of the time-activity curve (TAC) for each voxel makes accurate estimation of

parameters difficult. To improve estimation accuracy, O’Sullivan et al. [24] applied ridge regression techniques

to regularize the parameters using prior knowledge of their means and variances derived from the analysis of

a reasonably large patient group. Huang et al. [25] applied a spatial smoothing step between the iterations

of a nonlinear estimation process at each voxel. Later, Zhou et al. [26],[27] developed a two-stage algorithm

whereby the kinetic parameters were estimated first using standard nonlinear techniques. In a second step

the initial results were smoothed spatially and used to constrain the final estimates. (This method is further

discussed in section IV-B.) Kimura et al. [28] and Zhou et al. [29] have developed algorithms that cluster the

images before estimation and regularize the data within the clusters.

Semi-direct algorithms, as they are sometimes named, attempt to improve signal-to-noise by constraining the

possible choices of time-courses for each voxel via signal sub-spaces or splines. Kao et al. [30] and Narayanan

et al. [31] used principal component analysis (PCA) to decorrelate the sinograms in time. Similarly, Wernick

et al. [32] applied PCA decomposition of PET data followed by reconstruction of tracer concentrations in the
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principal-component space. Nichol et al. [33], and Reutter et al. [34], [35] proposed reconstruction methods

that use a b-spline specification of the time-activity curves. Kinetic parameters must then be estimated from the

b-spline representation. It is important to note that spline-based methods have certain computational advantages

when processing list mode data. However, the two-step process of first computing spline coefficients and then

kinetic parameters still results in a loss of optimality, particularly if the number of spline coefficients is much

larger than the number of kinetic parameters.

Ideally, one would like to estimate directly the space-domain kinetic parameters from the measured sinogram

data. In fact, Carson and Lange [1] proposed direct estimation of kinetic parameters from PET data in 1985. In

that paper, the authors outlined a general framework for a direct reconstruction algorithm based on expectation-

maximization (EM) [36] iterations. Unfortunately, the Carson and Lange direct parametric reconstruction

algorithm has never, to our knowledge, been fully implemented for nonlinear estimation of a dense set of voxels.

Limber et al. [37] proposed an algorithm for direct parametric reconstruction using maximum likelihood (ML)

estimation of kinetic parameters from PET data, but only demonstrated the algorithm for an 8×8 array of voxels.

A number of authors have implemented direct nonlinear parameter estimation methods that were designed for

segmented ROI’s [38], [39], [40], [41], [42], [43] rather than a dense set of voxels. In an alternative approach,

Meikle et al. [44] first pre-computed the time-activity curves for a range of possible nonlinear parameters and

then directly reconstructed the linear weights for each of the nonlinear “basis” curves. Similarly, Matthews et

al. [45] obtained pre-defined time-curves from other patients’ reconstructions and used the EM algorithm to

compute the weights of each curve.

In this paper, we present an algorithm for direct nonlinear estimation of space-domain kinetic parameters in

a dense volume of voxels. Our novel parametric reconstruction algorithm, which we call parametric iterative

coordinate descent (PICD) [2], is in the spirit of Carson and Lange’s method. However, PICD is a completely

specified and implemented algorithm (See Appendix VIII) which we show to be computationally efficient with

robust convergence properties. In fact, the computation required for parametric reconstruction using PICD is

comparable to that required for more conventional maximum a posteriori (MAP) reconstruction of an image

sequence from PET sinogram data. In other words, it is our claim that direct parametric reconstruction can

have comparable computational requirements to indirect methods (recall that indirect methods require an initial

reconstruction of all the data). The key to computational efficiency of the PICD method is the use of state

variables and nested optimization to decouple the nonlinearities of the forward tomographic model, the nonlinear
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kinetic model, and the Bayesian prior model. Notably, PICD is designed to compute the MAP estimate of the

kinetic parameters using a prior distribution defined on any well-behaved transformation of the parameter space.

This allows the regularization to be applied to the parameters that are deemed to be physiologically important.

Simulation results, presented below, indicate that the PICD-generated parametric reconstructions have lower

mean squared error and better visual quality than the best indirect methods.

Section II reviews the 2-tissue compartment model and the set of ODE’s that govern a tracer’s kinetics.

Section III introduces the PICD algorithm for direct parametric reconstruction and gives a detailed description

of its implementation. Section IV first reviews some existing methods for image domain parameter estimation,

and then suggests a useful method for regularization of pixel-wise approaches. Section V compares the

computational complexity of the proposed methods. Section VI presents simulation results. Discussion and

Conclusion follow the results.

II. 2-TISSUE COMPARTMENT MODEL

In this paper, we used a 2-tissue compartment model to describe the kinetic processes that are represented

by the signal from each voxel of a reconstructed image. This model is commonly used to describe the uptake

and retention of an analog of glucose, 2-deoxy-2-[18F]fluoro-D-glucose (FDG). The model can also be properly

applied to receptor ligand studies provide that there is no non-specific binding and that the tracer has been

prepared at sufficiently high specific activity. Figure 2 illustrates the model: CP is the molar concentration of

tracer in the plasma, CF is the molar concentration of unbound tracer, and CB is the molar concentration of

metabolized or bound tracer. The model depends on the kinetic parameters, k1, k2, k3, and k4, which specify

the tracer exchange rates between compartments in units of inverse minutes. The parameters k1, k2, and k4

are first order rate constants, and k3 is an apparent first order rate constant describing a process (metabolism

or receptor-binding) that proceeds in proportion to the concentration of the labelled tracer only, as long as the

number of sites available for binding do not become rate-limiting.

In addition to the above-stated parameters, there are two compound parameter groups that have ready

physiological interpretations and practical application, particularly for receptor-ligand imaging: binding potential

(BP ), and total volume of distribution (V D). BP is proportional to the number of receptors and V D represents

the steady state distribution of tracer between the plasma and tissue. BP and V D can be expressed in terms
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of the aforementioned kinetic parameters,

BP =
k3

k4
(1)

V D =
k1

k2

(
1 +

k3

k4

)
. (2)

In applying the model in Fig. 2 to all voxels, we assume that the delivery of tracer is the same to all regions

being imaged. In other words, the value of CP is not a function of voxel position. However, the values of

the kinetic parameters will be allowed to vary for each voxel location, s. Using these assumptions, the time

variation of the concentrations for a single voxel are governed by the following ordinary differential equations

(ODE).

dCF (s, t)
dt

= k1sCP (t)− (k2s + k3s)CF (s, t) + k4sCB(s, t) (3)

dCB(s, t)
dt

= k3sCF (s, t)− k4sCB(s, t) . (4)

In this work, CP (t) is assumed known. In practice, it can be measured directly from arterial plasma samples

during the imaging procedure [5], or it may be estimated from imaged volumes that consist primarily of blood

[46], [47], [48], [49], [50]. The solution to the ODE’s in (3,4) is given by

CF (s, t) =
{

k1s

α2 − α1
[(k4s − α1)e−α1t + (α2 − k4s)e−α2t]u(t)

}
∗ CP (t) (5)

CB(s, t) =
{

k1sk3s

α2 − α1
[e−α1t − e−α2t]u(t)

}
∗ CP (t) (6)

where ∗ indicates continuous-time convolution, and

α1, α2 =
(k2s + k3s + k4s)∓

√
(k2s + k3s + k4s)2 − 4k2sk4s

2
. (7)

where α1 and α2 are real valued constants that result from the subtraction and addition of terms in (7)

respectively.

In order to further simplify the equations, we re-parameterize the kinetic parameters using the transformations

given in Table I, and we use the parameter vector ϕs = [as, bs, cs, ds]t to denote this parameter vector for voxel

s.
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Forward Transforms Inverse Transforms

as = k1s
2∆

(k2s − k3s − k4s + ∆) k1s = as + bs

bs = k1s
2∆

(−k2s + k3s + k4s + ∆) k2s = ascs+bsds
as+bs

cs = 1
2
(k2s + k3s + k4s + ∆) k3s = asbs(cs−ds)2

(as+bs)(ascs+bsds)

ds = 1
2
(k2s + k3s + k4s − ∆) k4s = csds(as+bs)

ascs+bsds

∆ = |
√

(k2s + k3s + k4s)2 − 4k2sk4s|
TABLE I

FORWARD AND INVERSE TRANSFORMATIONS FROM STANDARD KINETIC PARAMETERS [k1s, k2s, k3s, k4s] FOR THE VOXEL s TO

NEW PARAMETERS [as, bs, cs, ds].

The total activity (e.g., in nCi/ml) for voxel s at time t is denoted by

f(ϕs, t) , (1− VB) [CF (s, t) + CB(s, t)]SAe−λt + VBCWB(t)

= (1− VB)
[
(ase

−cst + bse
−dst)u(t) ∗ CP (t)

]
SAe−λt + VBCWB(t) (8)

where SA is the initial specific activity of the tracer (nCi/pmol), λ is the decay rate of the isotope (min−1), VB

is the volume fraction of the voxel that contains blood, and CWB is the tracer concentration in whole blood

(i.e., plasma plus blood cells plus other particulate matter). We can simplify the expression for f(ϕs, t) by

defining the following functions

α(cs, t) ,
{
CP (t) ∗

[
e−cstu(t)

]}
(1− VB)SAe−λt (9)

β(ds, t) ,
{

CP (t) ∗
[
e−dstu(t)

]}
(1− VB)SAe−λt (10)

γ(t) , VBCWB(t) (11)

With these definitions, f(ϕs, t) can be written as

f(ϕs, t) = [as, bs]
[

α(cs, t)
β(ds, t)

]
+ γ(t) . (12)

We next define some vector and matrix notation that will be useful in discretization of the problem. Let

t0, · · · , tK−1 be the K discrete times at which the tissue is imaged. Then we may construct the vectors

α(cs) , [α(cs, t0), α(cs, t1), · · · , α(cs, tK−1)] (13)

β(ds) , [β(ds, t0), β(ds, t1), · · · , β(ds, tK−1)] (14)

γ , [γ(t0), γ(t1), · · · , γ(tK−1)] . (15)
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Fig. 3. Model used for direct parametric reconstruction of images.

Using this notation, the activity at each time for voxel s is given by the 1×K row vector

f(ϕs) = [f(ϕs, t0), f(ϕs, t1), · · · , f(ϕs, tK−1)] (16)

= [as, bs]
[

α(cs)
β(ds)

]
+ γ . (17)

Let the N voxels be indexed by the values s = 0, 1, · · · , N − 1, and let ϕ = [ϕ0, ϕ1, · · · , ϕN−1] denote the

4×N matrix of parameters at all voxels. With this, we define the N ×K function

F (ϕ) =




f(ϕ0)
...

f(ϕN−1)




which maps the parametric image, ϕ, to the activity of each voxel at each time. Finally, let F (ϕ, tk) denote

the kth column of F (ϕ), so F (ϕ, tk) contains the activity for each voxel at time tk.

III. PARAMETRIC RECONSTRUCTION FROM SINOGRAM DATA

In this section, we describe our method for directly reconstructing the parametric image, ϕ, from sinogram

data. We will do this by first formulating a conventional scanner model under the assumption that the sinogram

measurements are Poisson random variables. We will then use the kinetic model of Section II as the input

to the scanner model as shown in Fig. 3. Once the complete forward model is formulated, we will present

an iterative algorithm for computing the maximum a posteriori (MAP) estimate of the parametric image ϕ̂

from the sinogram data. Once ϕ̂ is computed, the activity images can be computed at any time t simply by

evaluating F (ϕ, t) using the kinetic model equations of (8).

A. Scanner Model

Let Ymk denote the sinogram measurement for projection 0 ≤ m < M and time frame 0 ≤ k < K, and

let Y be the M × K matrix of independent and identically distributed (i.i.d.) Poisson random variables that

form the sinogram measurements. Furthermore, let A be the forward projection matrix, with elements Ams
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(counts-ml/nCi), and let µ be the rate of accidental coincidences. Then the expected number of counts for each

measurement at a given time, tk is given by

E[Ymk|F (ϕ, tk)] =
N−1∑

s=0

Amsf(ϕs, tk) + µ . (18)

This relationship can be compactly expressed using matrix notation as

E[Y |F (ϕ)] = AF (ϕ) + µ . (19)

It is easily shown that under these assumptions the probability density for the sinogram matrix is given by [51]

p(Y |ϕ) =
K−1∏

k=0

M−1∏

m=0

(Am∗F (ϕ, tk) + µ)Ymke−(Am∗F (ϕ,tk)+µ)

Ymk!
(20)

where Am∗ is the mth row of the system matrix, A. The log likelihood of the sinogram matrix is then given

by

LL(Y |ϕ) =
K−1∑

k=0

M−1∑

m=0

Ymk log(Am∗F (ϕ, tk) + µ)− (Am∗F (ϕ, tk) + µ)− log(Ymk!) . (21)

This is a very general formulation. For specific scanners, the form of the system matrix A may vary considerably,

and accurate determination of the matrix A can be critical to obtaining accurate tomographic reconstructions

[52], [53].

B. MAP Estimation Framework

We will use MAP estimation to reconstruct the parametric image. For this purpose, a cost function is formed

by negating the log likelihood given in (21) and adding a stabilizing function.

C(Y |ϕ) = −LL(Y |ϕ) + S(ϕ) (22)

The MAP reconstruction, ϕ̂, will be the parametric image that minimizes this cost function.

ϕ̂ = arg min
ϕ

C(Y |ϕ) (23)

The stabilizing function can be obtained from an assumed prior probability distribution for the parametric

image. In this work, we model the distribution of the parametric image as a Markov random field (MRF) with

a Gibbs distribution of the form

p(ϕ) =
1
z

exp{−
∑

{s,r}∈N

gs−r‖T (ϕs)− T (ϕr)‖qW } (24)
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where z is the normalization constant, N is the set of all neighboring voxel pairs in ϕ, gs−r is the coefficient

linking voxels s and r, q is a constant parameter that controls the smoothness of the edges in the parametric

image, T (·) is a transform function, and W is the diagonal weighting matrix.

In this paper, we will assume q = 2 and that N is formed with voxel pairs using an 8-point neighborhood

system. In this case, the probability density function corresponds to a Gaussian Markov random field, and we

choose the negative logarithm of this function as our stabilizing function.

S(ϕ) =
∑

{s,r}∈N

gs−r‖T (ϕs)− T (ϕr)‖2W . (25)

By choosing an appropriate transform function, T (·), the regularization can be done in the space of the

physiologically relevant parameters.

C. Parametric Image Reconstruction using PICD

The MAP reconstruction described in equation (23) is computed efficiently by an algorithm which we

call parametric iterative coordinate descent (PICD). This algorithm is similar to the ICD algorithm used in

conventional PET image reconstruction [51], but it is adapted to account for the nonlinear parameters of

the compartmental model. PICD sequentially updates the parameters of each voxel thereby monotonically

decreasing the cost function given in Equation (23). When F (ϕ) is a nonlinear function, the PICD algorithm

reduces computation by decoupling the dependencies between the compartment model nonlinearities and the

forward tomography model.

In order to compute a PICD voxel update, we must compute

ϕs ← arg min
ϕs

C(Y |ϕs) . (26)

To do this efficiently, we use the second order Taylor expansion of the change in the cost function.

Suppose we are updating the parameters of voxel s from ϕs = [as, bs, cs, ds]t to ϕ̃s = [ãs, b̃s, c̃s, d̃s]t, and

that we represent the change in the time response function of voxel s by the 1×K vector function

∆f(ϕ̃s, ϕs) = f(ϕ̃s)− f(ϕs) .

We next define a simplified cost functional

∆C(ϕ̃s, ϕs) = −LL(Y |ϕ̃s) + LL(Y |ϕs) +
∑

r∈∂s

gs−r‖T (ϕ̃s)− T (ϕr)‖2W .
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Notice that since ∆C(ϕ̃s, ϕs) is equal to the change in the cost functional C(Y |ϕ̃s) within a constant, so it

may be used to compute the voxel update of (26). The value of ∆C(ϕ̃s, ϕs) can then be locally approximated

with a second order Taylor series as

∆C(ϕ̃s, ϕs) ≈ ∆f(ϕ̃s, ϕs)θ1 +
1
2
‖∆f(ϕ̃s, ϕs)‖2θ2

+
∑

r∈∂s

gs−r‖T (ϕ̃s)− T (ϕr)‖2W

where ∂s denotes the set of voxels that are 8-neighbors of voxel s, θ1 is a K × 1 vector, θ2 is a K × K

diagonal matrix, and ‖x‖2θ2
= xtθ2x. Here the values of θ1 and θ2 consist of the first and second derivatives

respectively of the log likelihood function evaluated at each time frame. These derivatives at time frame k

can be iteratively updated using the equations of the conventional iterative coordinate descent (ICD) algorithm

[51], given in (27) and (28).

[θ1]k ←
M−1∑

m=0

Ams

(
1− Ymk

Am∗F (ϕ, tk) + µ

)
(27)

[θ2]k,k ←
M−1∑

m=0

Ymk

(
Ams

Am∗F (ϕ, tk) + µ

)2

(28)

Using the notation defined in (13), (14), and (15), the PICD update then be expressed as

ϕ̃s ← arg min
ϕ̃s

{
∆f(ϕ̃s, ϕs)θ1 +

1
2
‖∆f(ϕ̃s, ϕs)‖2θ2

+
∑

r∈∂s

gs−r‖T (ϕ̃s)− T (ϕr)‖2W

}
(29)

where

∆f(ϕ̃s, ϕs) =
[
ãs, b̃s

] [
α(c̃s)
β(d̃s)

]
− [as, bs]

[
α(cs)
β(ds)

]
. (30)

We have found that the PICD update is best implemented using two-stage nested optimization.

(cs, ds)← arg min
c̃s≥d̃s≥0

{
arg min

ãs,b̃s≥0

{
∆C([ãs, b̃s, c̃s, d̃s], ϕs)

}}
. (31)

This nested optimization strategy is very important in reducing computation and assuring robust convergence.

The inner optimization over ãs and b̃s must be performed many times since this result is required for each

update of outer optimization over c̃s and d̃s. Fortunately, optimization over ãs and b̃s can be done very efficiently

with a simple steepest descent algorithm because this optimization does not require updating of θ1, θ2, α(c̃s),

or β(d̃s). Optimization with respect to (c̃s, d̃s) is done using iterative 1-D golden section search along the c̃s

and c̃s + d̃s directions. This method assures the convergence is to a local minimum that meets the Kuhn-Tucker

conditions [54]. Appendix VIII contains pseudocode that specify details of the algorithm.
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D. Multiresolution Initialization

It is well known that for the tomographic problem the ICD reconstruction algorithm tends to have slow

convergence at low spatial frequencies [55]. Normally, this problem is solved by initializing the ICD iterations

with a FBP reconstruction. In this case, most of the residual error is only at high frequencies, so the ICD

iterations converge quickly. However, for parametric reconstruction there is no simple direct reconstruction

algorithm, such as FBP, to use as an initialization for the PICD iterations.

To solve this problem, we use a multi-resolution reconstruction scheme, which first computes coarse resolution

reconstructions and then and proceeds to finer scales. The coarsest resolution reconstruction is initialized with

a single set of parameters obtained by weighted least square curve fitting to the average emission rate of

each time frame. Importantly, the average activity of each time frame can be calculated directly from the

sinogram data with little computation. Coarser resolution reconstructions are then initialized by interpolating

the parametric reconstruction of the previous finer resolution. This recursive process reduces computation

because the computationally inexpensive reconstructions at coarse levels provide a good initialization for finer

resolution reconstructions.

IV. IMAGE DOMAIN PARAMETER ESTIMATION METHODS

For purposes of comparison, we will also consider image domain methods which estimate parameters at

each voxel from reconstructed images at each time. Each of these methods requires that the sinogram at each

time frame be reconstructed using conventional reconstruction methods. For these methods, let xs(tk) denote

the reconstructed activity of voxel s at time frame k collected at time tk, and let

xs = [xs(t0), xs(t1), · · · , xs(tK−1)]

denote the activity of voxel s at all time frames.

A. Pixel-wise Weighted Least Square (PWLS) Method

The pixel-wise weighted least square method estimates the parameters of each voxel by iteratively minimizing

the weighted square error between the reconstructed time response of the voxel and the model output.

The parameters of voxel s are estimated as

ϕ̂s = arg min
ϕs

‖xs − f(ϕs)‖2Ws
(32)
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where Ws is the K × K diagonal weighting matrix for voxel s. The weight of each time frame is chosen

to be inversely proportional to the variance of the voxel activity in that time frame. This variance can be

approximated by the activity estimate of this voxel, normalized by the duration of the time frame. In this case,

Ws is a diagonal matrix with diagonal elements give by

[Ws]k,k =
∆tk

max{xMIN , xs(tk)}
(33)

where ∆tk is the duration of time frame k, and xMIN controls the maximum allowable value for the weights.

The parameters are estimated using the same nested optimization strategy as specified in equation (31). In

fact, this algorithm differs from the parametric reconstruction in only two respects. First, the data derivatives

of equations (27) and (28) are replaced by

θ1 = −2Ws(xs − f(ϕs)) (34)

θ2 = 2Ws ; (35)

and second, the stabilizing functional S(ϕ) is set to 0.

B. Pixel-wise Weighted Least Square Method with Spatial Regularization

The spatial variation of the PWLS parameter estimates can be reduced by adding a stabilizing function to

equation (32). The resulting estimate is given by

ϕ̂ = arg min
ϕ

N−1∑

s=0

‖xs − f(ϕs)‖2Ws
+ S(ϕ) (36)

where S(·) is the spatial stabilizing functional [25], [24].

In the first method, which we call the pixel-wise least square regularized (PWLSR) method, the stabilizing

function has the form specified in equation (25). This is the same stabilizing function as was used for direct

parametric reconstruction.

For the second method, which we call the PWLSZ method, we implemented the stabilizing functional

described in [25]. This method smooths the PWLS estimate and uses it in the stabilizing function. Let H(·)

be a smoothing operator and ϕP be the PWLS parameter estimate. The constrained parametric image is then

given by

ϕC = H(ϕP ) .

Next, a weight is calculated for each voxel. For voxel s the corresponding weight is

ws =
‖xs − f(ϕP )‖2Ws

(ϕP
s − ϕC

s )2
.
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Using the constraint images and weights, the stabilizing function is given by

S(ϕ) =
N−1∑

s=0

ws(ϕs − ϕC
s )2 . (37)

Notice that the stabilizing function of (37) penalizes the difference between the parameters and a smoothed

version of the parameters. Alternatively, the more traditional stabilizing function of (25) penalizes the spatial

derivatives of the parameters.

For both of these methods the solution to (36) is computed using the nested optimization strategy specified

in (31) and the data derivatives specified in (34) and (35).

C. Linear (Logan) Method

Kinetic parameter groups can sometimes be easily estimated by properly transforming the data. The Logan

plot is a popular integral transform of the model given in equations (3), (4), and (8). This transformation can

be expressed as follows.
[∫ tk

0 xs(t)dt

xs(tk)

]
=

k1s

k2s

(
1 +

k3s

k4s

) [∫ tk

0 CP (t)dt

xs(tk)

]
+ const . (38)

When the transformed variables (quantities in square brackets above) are plotted against each other, the resulting

line has a slope equal to the compound parameter V Ds.

To calculate BPs the brain is segmented into a target region and a reference region. The target region consists

of voxels within the brain that contain receptors for the tracer; and the reference region consists of the voxels

that do not contain receptors for the tracer (i.e. k3 = 0). Let, T be the set of voxel indices from target region,

and R be the set of voxel indices from reference region.

For a voxel r ∈ R (from reference region), the distribution volume is

V Dr =
k1r

k2r
, r ∈ R .

For each voxel s ∈ T (from target region), the distribution volume ratio (DV Rs) is

DV Rs =
V Ds

1
|R|

∑
r∈R V Dr

(39)

= 1 +
k3s

k4s
,

where |R| denotes the number of voxels in the region R. Hence, the binding potential for the target region

can be calculated as BPs = DV Rs − 1.

The assumptions that are used in the derivation of equations (38) and (40) are as follows:
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Algorithm Function Per Iteration Complexity

PICD Direct parametric reconstruction KN(LcdLab + KcLcd + M0)
PWLS Parameter estimation from reconstruc-

tion
KN(LcdLab + KcLcd)

PWLSR/PWLSZ Regularized parameter estimation from
reconstruction

KN(LcdLab + KcLcd)

ICD MAP image reconstruction KN(M0)

TABLE II

COMPUTATIONAL COMPLEXITY FOR A SINGLE FULL ITERATION OF PICD, PWLS, PWLSR, AND ICD. NOTATION: N = NUMBER

OF VOXELS; M0 = IS AVERAGE NUMBER OF PROJECTIONS PER VOXEL; K = IS THE NUMBER OF TIME FRAMES; Kc = NUMBER OF

TIME POINTS IN THE TIME-CONVOLUTION KERNEL; Lab = NUMBER ITERATIONS REQUIRED FOR EACH UPDATE OF (ã, b̃); Lcd =

NUMBER ITERATIONS REQUIRED FOR EACH UPDATE OF (c̃, d̃). EXPRESSIONS DO NOT INCLUDE THE COMPUTATIONAL COST OF

REGULARIZATION.

• k1/k2 ratio is constant for every voxel in the brain (i.e., both target and reference regions)

• The tracer has high specific activity (so binding can be described as an apparent first order process)

• Blood volume fraction, VB , is zero inside the target and the reference

• k3 = 0 for all the voxels in the reference region

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In order to better understand the computational requirements of parametric reconstruction, we derive expres-

sions for the computational complexity of a number of parameter estimation algorithms.

First consider the PICD algorithm. For each voxel update, the data derivatives, θ1 and θ2, are computed

once. The complexity of this computation is O(KM0), where K is the number of time frames, and M0 is the

average number of nonzero projections per voxel. Assume the nested search described in equation (31) requires

Lcd evaluations of nonlinear parameters c̃s and d̃s. Furthermore, assume that each update of c̃s or d̃s requires

Lab evaluations of linear parameters ãs and b̃s.

Each evaluation with respect to c̃s or d̃s requires a convolution with the plasma input function and Lab

evaluations with respect to ãs and b̃s. The convolution has requires O(KcK) operations, and the evaluation

with respect to ãs and b̃s requires O(K) operations; so the total complexity of a voxel update is given by

O(KM0 + Lcd(KcK + LabK)), and the total complexity of PICD per full iteration for an N voxel image is

given by O(KN(LcdLab + KcLcd + M0)). The complexity of PWLS, PWLSR, and ICD are then derived by

removing the terms corresponding to operations that are not performed.

VI. SIMULATIONS

The following section compares the accuracy and computational burden of direct parametric reconstruction

and image domain estimation methods.
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striatum
nonspecific−gray matter

cortex
white matter

nonbrain

Fig. 4. Regions of the rat phantom derived from a segmented MR Image. Colors indicate kinetically distinct tissue regions. Red:
nonspecific-gray matter tissue containing no specific binding sites for tracer but comparable blood flow values (k1, k2) to striatal area;
Blue: non-brain; Green: striatum, containing high concentration of binding sites for tracer; Yellow: cortex, containing low concentration
of binding sites; Black: White matter, contains no specific binding sites and low flow. White areas represent a mixture of background
regions that do not contain any activity over time. The small white areas dorsal to (above) the striatum are ventricles that contain
cerebral spinal fluid and no tracer. White areas surrounding brain correspond to skull which does not take up appreciable amounts of
tracer.

Region k1 k2 k3 k4 a b c d
min−1 min−1 min−1 min−1 min−1 min−1 min−1 min−1

Background 0 0 0 0 0 0 0 0
CSF 0 0 0 0 0 0 0 0
Nonbrain .1836 .8968 0 0 .1836 0 .8968 0
Nonspecific-gray matter .0918 .4484 0 0 .0918 0 .4484 0
Striatum .0918 .4484 1.2408 .1363 .02164 .07016 1.7914 .0312
Cortex .0918 .4484 .141 .1363 .0607 .0311 .628 .09725
White matter .02295 .4484 0 0 .02295 0 .4484 0

TABLE III

KINETIC PARAMETERS USED IN THE SIMULATIONS FOR DISTINCT TISSUE REGIONS OF THE RAT HEAD.

A. Phantom Design

Our simulation experiments are based on a phantom of a rat’s head. Figure 4 shows a schematic representation

of the rat phantom and its constituent regions. The phantom has 7 regions including the background. These

regions were obtained by segmenting an MRI scan of a rat through automated and manual techniques [56].

The regions and their corresponding parameters [57] are given in Table III, and their time activity curves are

shown in Fig. 5. Time frames of emission images are generated using these parameter images and the 2-tissue

compartment model equations, and the plasma function, CP (t), is generated using equation (2) from reference

[50]. In order to achieve sufficient accuracy, the convolution is implemented with Kc = 691 sample points.

The blood contribution to the PET activity is assumed to be zero, and the tracer is assumed to be raclopride

with 11C, which has a decay constant of λ = 0.034 min−1. Total scan time is 60 min., divided into 18 time

frames with 4×0.5 min, 4×2 min, and 10×5 min. The phantom had a resolution of 128×128 with each voxel

having dimensions of (1.2 mm)3.

The rat phantom image at each time frame is forward projected into a sinogram using a Poisson model for
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Fig. 5. Time-activity curves for 5 distinct tissue regions in rat brain phantom.

the detected counts with a background (accidental coincidence) level of 0.001nCi/ml. Each sinogram consists

of 180 angles and 200 radial bins per angle. This results in a value of M0 ' 934. A triangular point spread

function with a 4 mm base width is used in forward projections. The blood function, Cp(t) is scaled so that

the total number of counts in all sinogram frames is approximately 10 million.

B. Algorithm Implementation

Direct reconstructions were computed using the PICD algorithm with three levels of multiresolution opti-

mization corresponding to resolutions of 32×32, 64×64 and 128×128. The reconstructions used Lcd ' 35

and Lab = 15. In most cases, regularization was applied directly to the k1, k2, k3, and k4 parameters; so the

stabilizing functional had the form

S(k1, k2, k3, k4) =
4∑

i=1

1
2σ2

ki

∑

{s,r}∈N

gs−r|ki,s − ki,r|2 . (40)

where the function gs−r is inversely proportional to the distance between the voxels s and r and normalized

to sum to 1, and the constants σ2
ki

control the regularization for each of the four parameters. The maximum

likelihood (ML) estimate of σ2
ki

was computed for each parameter from the original parametric image using

the formula [58]

σ̂2
ki

=
1
|N |

∑

{s,r}∈N

gs−r|ki,s − ki,r|2 . (41)
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In the original formula, |N | is the number of voxels in the image; however some parameter images have very

few nonzero voxels, so we choose |N | to be the number of nonzero voxels in the image. These ML parameters

are then linearly scaled all together to find a set of regularization parameters that minimize the RMSE of the

estimated kinetic parameters. Some results use regularization in the k1, k2, BP , and V D parameters. In this

case, scaling parameters are selected similarly using the appropriate parameter values.

The image domain parameter estimation methods of section IV require that the image be reconstructed for

each time frame. For this purpose, we used MAP image reconstruction with a quadratic prior (40) and a single

fixed regularization parameter for all frame times. This single fixed parameter was chosen to minimize the total

mean square error of the reconstructed emission image frames. The weighting matrix required for the PWLS,

PWLSZ, and PWLSR algorithms was computed using (33) with xMIN = 0.05nCi/ml.

In order to compute the PWLSZ reconstruction as described in section IV-B, we smoothed the result of

PWLS reconstruction with a 3 × 3 equal weight filter to calculate the constraints and weights. The weights

were then scaled to minimize the MSE of the parameter estimates.

The PWLSR method was computed using a prior model on the k1, k2, k3, and k4 parameters in a manner

similar to that used for parametric reconstruction. As with parametric reconstruction, the σ2
ki

constants were

first selected using the ML estimation method described above, and then scaled to yield the minimum RMSE

estimates of the parameters.

For the linear (Logan) method, the cortex and striatum regions are selected as target regions, and the

nonspecific-gray matter was used as the reference region. Since these regions were selected precisely from

simulated data, all assumptions of this method are perfectly satisfied.

C. Results

Figure 6 shows the reconstructions of the kinetic parameters. The first row contains the original parametric

images. The remaining rows are respectively the reconstructions of PWLS, PWLSZ, PWLSR, PICD recon-

struction regularized on k1, k2, k3, and k4, and PICD reconstruction regularized on k1, k2, BP , and V D.1 In

addition, the normalized RMSE of parameters k1, k2, k3, and k4 estimated by these algorithms are listed in

Fig. 7. The RMSE of k1 is calculated over the whole image. The RMSE of parameters k2 and k3 are calculated

over the support of k1, and the RMSE of k4 is calculated over the support of k3.2

1A very small amount of regularization was also used for k3 and k4 (i.e. σ2
k3 = 1min−2 σ2

k4 = 0.1min−2) to suppress impulsive
noise in these reconstructions.

2When k1 is zero, then k2 and k3 are not defined. Similarly, when k3 is zero, k4 is not defined.
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Fig. 6. Parametric images of k1, k2, k3 and k4 estimated by the algorithms; (a) original (b) PWLS (c) PWLSZ (d) PWLSR (e) PICD
reconstruction (new method) regularized on k1, k2, k3, and k4 (f) PICD reconstruction (new method) regularized on k1, k2, BP , and
V D.

For the nonlinear parameters k3 and k4, the PWLS and PWLSZ methods both produced reconstructions

which are very noisy, and this is reflected in the RMSE calculations. The PWLSR method with the GMRF

prior produces lower RMSE reconstructions with more visually acceptable results for k3 and k4; however some

details in these nonlinear parameters are lost. The parametric reconstruction regularized on k1, k2, k3, and k4

produces higher SNR reconstructions than any of the image domain methods, and the reconstructed images

are visually similar to the original phantom. However, the parametric reconstructions with regularization on
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Fig. 7. Normalized RMSE for the reconstructed parametric images. PICD1 denotes the PICD reconstruction regularized on k1, k2, k3,
and k4. PICD2 denotes the PICD reconstruction regularized on k1, k2, BP , and V D. Notice that PICD2 produces the lowest RMSE.

k1, k2, BP , and V D yield the best quality results judging from both the visual quality and the computed RMSE.

For the comparison of parameters BP and V D, spatial regularization is applied on k1, k2, BP , and V D.

In this case, the scaling of the four regularization constants are chosen to minimize the RMSE of the BP and

V D estimates alone. The results are shown in Fig. 8 and the normalized RMSE of the estimates of all methods

are given in Fig. 9. The RMSE of BP is estimated over the support of k3, and the RMSE of V D is estimated

over the support of k1. Again, parametric image reconstruction produces the lowest RMSE estimation for both

BP and V D.

Once the parametric image is reconstructed, the forward ODE’s can be solved for any particular time to

reconstruct the corresponding emission image. Fig. 10 compares these reconstructions to the conventional

reconstructions computed using FBP and MAP reconstruction for time frames 5, 10, and 15. The FBP recon-

structions use a Hamming filter with cutoff at the Nyquist frequency. The RMSE of these reconstructions for

each frame and for total RMSE of all frames are given in Fig. 11.

Finally, the convergence speed as a function of CPU time for all algorithms is given in Fig. 12. The time

needed to reconstruct emission images required by image domain methods is included in this figure. As can

be seen from this figure, the convergence speed of direct parametric reconstruction is comparable to the pixel-

wise methods. Table IV lists the CPU time required for a single iteration of each method. Notice that direct

parametric reconstruction using PICD does not require substantially more computation per iteration than the

image domain methods, and the image domain methods require that the images first be reconstructed. This
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Fig. 8. Parametric images of BP and V D estimated by the algorithms; a) original (b) PWLS (c)PWLSZ (d) PWLSR (e) Logan (f)
PICD reconstruction (new method).

Method time for 1 iteration (sec.)

PWLS 474
PWLSZ 487
PWLSR 526
Parametric 594

TABLE IV

CPU TIME FOR A SINGLE ITERATION.

result is consistent with the complexity listed in Table II since in this example, (KcLcd = 24, 185) >> (M0 =

934) >> (LcdLab = 525); so the computational complexity of the time convolution required for kinetic

parameter estimation dominates the computations required for the tomographic reconstruction.

VII. DISCUSSION

In section VI-C, we demonstrated that the kinetic parameters estimated by the direct parametric image

reconstruction (ie. the “direct”) have lower overall error as compared to those estimated in the image domain
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Fig. 9. Normalized RMSE for the reconstructed BP and V D. PICD reconstruction uses regularization on k1, k2, BP , and V D.
Notice that PICD reconstruction gives the lowest RMSE results.

(i.e., the “indirect”). The improvement in the visual quality and the error of the kinetic parameter estimation

may be due to the following factors:

• All the available data are used simultaneously.

• Kinetic parameters are estimated directly from PET sinogram data (for which we have a very good error

model).

• Nonlinear estimation methods are used (so there is no need to linearize the model and introduce unwanted

inaccuracy).

• Spatial regularization is done in the kinetic parameter domain (because neighboring voxels probably have

similar function)

In contrast, the various image domain methods (described in Section IV) depend on the quality of the

tomographic reconstructions of time-activity curves. Filtered backprojection (FBP) is still commonly used to

reconstruct the dynamic PET data; unfortunately, it cannot produce the quality and the resolution achieved by

the iterative reconstruction techniques. On the other hand, for the iterative methods (e.g., EM, ordered subset

EM [59], or MAP [51]) to achieve their full resolution, they require that optimal reconstruction parameters

be set for each reconstruction (i.e., every time frame and slice). In a typical dynamic data set, there might 50

slices and 20 time frames per slice. That is, 1000 images need to be reconstructed. Selection of the optimal

reconstruction parameters for each separate image becomes impractical. Direct parametric reconstruction re-

duces the dimensionality of the estimation problem from the number of time frames to the number of kinetic
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Fig. 10. Activity images (a) original phantom (b) FBP reconstruction (c) MAP (d) PICD reconstruction (new method) for frames 5,
10, and 15.

parameters in the compartment model. In our simulations, the dimensionality of the estimation problem was

reduced by a factor of 4.5 (from 18 time frames to 4 parameters) by the direct method.

When using an image domain approach, spatial regularization can reduce the high spatial variance in the

parametric images. We have found that spatial regularization based on a Gaussian Markov model produces less

estimation error for all kinetic parameters except BP , compared with a smoothing filter-based constraint.

The linear (Logan plot) method described in section IV-C is a very fast estimation technique. However, this

method can only estimate some of the (compound) kinetic parameters. In receptor-ligand imaging, it provides
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Fig. 12. Convergence curves for the estimation algorithms. Notice that the parametric reconstruction method with multiresolution
initialization converges much faster than fixed resolution parametric reconstruction, and it is comparable in speed to the image-domain
methods.

no means for estimating k1, k2, k3, or k4, individually. Furthermore, to derive BP from distribution volume

ratio, there must exist a reference region in the brain devoid of receptors (k3 = 0). For some tracers (e.g.,

muscarinic or nicotinic ligands), there is no readily apparent reference region and so the value of the Logan

method is compromised. Even when an appropriate reference region exists in theory (e.g., for dopaminergic

ligands) the validity of the parameter estimates in the rest of the tissue can be biased by the placement of (or

spillover of activity into) the reference ROI. In our simulations, we use the precise target (striatum and cortex)
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and reference (nonspecific-gray matter) regions for this method which are selected from the original image.

Another drawback to linearizations of the model is that they achieve some of their computational simplicity

by unmet model assumptions (e.g., that the blood volume fraction in the reference and target tissues is zero

over all time.) These simplifications have been shown to introduce biases that are aggravated with decreasing

SNR [60], [61], [62]. Another common assumption that is implicit in the use of Logan-plot methods is that the

k1/k2 ratio everywhere in the brain is constant (although we satisfy this constraint in our simulated data, the

direct estimation method does not require it.) This ratio can, of course, be regularized spatially in the direct

method. Local regularization, however, is not nearly as rigid a requirement as expecting k1/k2 to be constant

everywhere.

Although direct parameter estimation from the PET sinograms has been proposed previously as the EMPIRA

algorithm [1], this or equivalent methods have not been fully implemented. This is likely due to the compu-

tational complexity of the M-step which was not fully specified, and the slow convergence of conventional

EM iterations. With the development of computationally efficient and rapidly converging methods such as have

been demonstrated in this paper, direct reconstruction to parametric images should become widely applied to

dynamic PET data for which a kinetic model has been already established. It should be mentioned that there

is nothing to prevent us from incorporating more complicated kinetic models into the PICD algorithm. Even

though the solution to these models cannot be expressed in closed form, the power of our method, to decouple

the (numerical) solution of the model from the other steps in the optimization procedure, is preserved.

VIII. CONCLUSIONS

In this paper, we introduce a method for the direct reconstruction of kinetic parameters at each voxel from

dynamic PET sinogram data. Our algorithm, which we call parametric iterative coordinate decent (PICD),

decouples the nonlinearities between the tomographic model, the kinetic model, and the regularized parameters.

It also allows one to regularize with respect any desired parametrization, even if the parameters that are

selected are nonlinearly related to the projections or the kinetic model parameters. Using an anatomically and

physiologically realistic small animal phantom, we demonstrated that our method can reduce the mean squared

error in model parameter estimates; and we show that for our example, it does not require substantially more

computation than more conventional methods for computing dense parameter estimates in the image domain.
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APPENDIX A - PSEUDOCODE

ϕ← ParametricReconstruct(sinograms){
for each iteration {

for each voxel s {
[θ1,θ2] ← ComputeDerivatives(sinograms,ϕs)
ϕ̃s ← ϕs

[α, β]← ConvolveWithPlasma(cs, ds, [t0, · · · , tK−1], λ, VB , CP )
c̃s ← arg min

c̃s

{
CostFunction([ãs, b̃s, c̃s, d̃s], ϕs, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W )

}

[α̃, β̃]← ConvolveWithPlasma(c̃s, d̃s, [t0, · · · , tK−1], λ, VB , CP )
[ãs, b̃s]← EstimateAandB (ϕ̃s, ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W )

l← arg min
l

{
CostFunction([ãs, b̃s, c̃s + l, d̃s + l], ϕs, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W )

}

c̃s ← c̃s + l; d̃s ← d̃s + l
[α̃, β̃]← ConvolveWithPlasma(c̃s, d̃s, [t0, · · · , tK−1], λ, VB , CP )
[ãs, b̃s]← EstimateAandB(ϕ̃s, ϕs, α̃, β̃, α(cs), β(ds), θ1, θ2, {ϕr : r ∈ ∂s}, W )

ϕs ← ϕ̃s

}
}
}

cost ← CostFunction(ϕ̃s, ϕ, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W ) {
[α̃, β̃]← ConvolveWithPlasma(c̃s, d̃s, [t0, · · · , tK−1], λ, VB , CP )
[ãs, b̃s]← EstimateAandB(ϕ̃s, ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W )
cost← DeltaCost(ϕ̃s, ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W )
}

[ã, b̃]← EstimateAandB(ϕ̃s, ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W ){
for Lab/3 iterations {

∆C ← DeltaCost([ã, b̃, c̃s, d̃s], ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W )}
dC
da ←

−1
ε {DeltaCost([ã + ε, b̃, c̃s, d̃s], ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W ) - ∆C}

dC
db ←

−1
ε {DeltaCost([ã, b̃ + ε, c̃s, d̃s], ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W ) - ∆C}

if ã = 0 and dC
da < 0 then dC

da ← 0

if b̃ = 0 and dC
db < 0 then dC

db ← 0

if
{
|dC

da |+ |
dC
db |

}
> 0 then {

(
dC
da , dC

db

)
← ( dC

da , dC
db )√

dC
da

2
+ dC

db
2

ζ ← arg min
ζ∈[0,1]

DeltaCost([ã + ζ
dC

da
, b̃ + ζ

dC

db
, c̃s, d̃s], ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W )

ã← ã + ζ dC
da ; b̃← b̃ + ζ dC

db

}
}
}

∆C ← DeltaCost(ϕ̃s, ϕs, α̃, β̃, α, β, θ1, θ2, {ϕr : r ∈ ∂s}, W ) {
∆f ← ãsα̃ + b̃sβ̃ − asα− bsβ
∆C ← ∆fθ1 + 1

2‖∆f‖2θ2
+

∑
r∈∂s gs−r‖T (ϕ̃s)− T (ϕr)‖2W

}
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