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ABSTRACT

Segmentation of dynamic PET images is an important preprocessing step for kinetic parameter estimation. A
single time activity curve (TAC) is extracted for each segmented region. This TAC is then used to estimate
the kinetic parameters of the segmented region. Current methods perform this task in two independent steps;
first dynamic positron emission tomography (PET) images are reconstructed from the projection data using
conventional tomographic reconstruction methods, then the time activity curves (TAC) of the pixels are clustered
into a predetermined number of clusters. In this paper, we propose to cluster the regions of dynamic PET images
directly on the projection data and simultaneously estimate the TAC of each cluster. This method does not
require an intermediate step of tomographic reconstruction for each time frame. Therefore the dimensionality
of the estimation problem is reduced. We compare the proposed method with weighted least squares (WLS)
and expectation maximization with Gaussian mixtures methods (GMM-EM). Filtered backprojection is used
to reconstruct the emission images required by these methods. Our simulation results show that the proposed
method can substantially decrease the number of mislabeled pixels and reduce the root mean squared error
(RMSE) of the cluster TACs.
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1. INTRODUCTION

Positron emission tomography (PET) images generally have low signal to noise ratio (SNR) and time activity
curve (TAC) extracted from a single pixel may be very noisy. To improve the SNR, the TACs obtained from
the physiologically similar pixels are averaged and a single TAC is obtained for each group of pixels. Therefore
clustering physiologically similar pixels is an important preprocessing step. However this is not a trivial task
because of the low SNR and the partial volume effect of the PET images. In many PET studies clustering is
performed manually by an operator. Manual clustering is an operator dependent and time consuming process.
For improved reproducibility and faster clustering various automatic clustering algorithms are developed.

Ashburner et al.1 proposed a modified mixture model algorithm. This algorithm computes the likelihood of
each pixel TAC being in a cluster and iteratively maximizes this likelihood. Wong et al.2 proposed a distance
based clustering algorithm. Weighted distance between the pixel TACs within each cluster is minimized. This
algorithm is further described in section 3.1. Chen et al.3 used an expectation maximization (EM) based clus-
tering algorithm with Markov random field (MRF) models. Brankov et al.4 proposed a new distance metric
between the pixel TACs and iteratively minimizes this distance within the pixel TACs of each cluster. Guo et
al.5, 6 proposed a hierarchical linkage based algorithm for clustering pixels. Automatic clustering can also be
integrated into kinetic parameters estimation algorithms.7 In some studies, segmentation is used to estimate
the plasma input function from the PET images without arterial sampling.8, 9

These clustering algorithms generally use pixel TACs as their feature vectors. Therefore these algorithms
require reconstructed dynamic PET images. Sinogram data acquired with PET scanners are reconstructed using
conventional tomographic reconstruction algorithms and TACs are extracted from these reconstructed images.
In this paper, we propose a new algorithm which clusters the pixels in the projection domain. Therefore it does
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not require tomographic reconstruction of dynamic PET images. A maximum a priori (MAP) based estimation
framework is used for clustering pixels and for computing the TAC of each cluster. A similar algorithm was used
by Frese et al. for discrete tomographic reconstruction of PET images.10 We extended this algorithm for the
unsupervised clustering of dynamic PET pixels directly in the projection domain.

This paper is organized as follows; Section 2 introduces the proposed method that clusters dynamic PET
images directly on the projection domain. Section 3 briefly describes the conventional image domain clustering
algorithms. The simulation results are given in section 4.

2. UNSUPERVISED CLUSTERING ON PROJECTION DOMAIN

This section describes the unsupervised clustering algorithm on the projection domain. First we will introduce
some notation and then give some brief information about the scanner model and describe our MAP framework
for clustering.

Assume that, the data is collected at K time frames, and there are L clusters in the image. Each cluster
has an associated time activity curve, and a set of pixels that belongs to this cluster. For cluster l, let µl =
[µl0, · · · , µl(K−1)] denote the time activity curve that represents the cluster, and let Cl denote the set of pixels
that belongs to this cluster. Let µ denote L×K matrix formed as µ = [µ0, µ1, · · · , µL−1]T where superscript T
denotes the matrix transpose. Let C denote the label image, ie. C = {C0, · · · , CL−1} .

Given the sinogram measurements, denoted by Y , the MAP estimates of µ and C are

(µ, C)← arg max p(µ, C|Y ) , (1)

where p(·) denotes the probability.

In the following sections we are going to formulate p(µ, C|Y ) and then we are going to describe how to estimate
(µ, C) iteratively and efficiently.

2.1. Scanner Model
Let Ymk denote the sinogram measurement for projection 0 ≤ m < M and time frame 0 ≤ k < K, and let Y be
the M×K matrix of independently distributed Poisson random variables that form the sinogram measurements.
Furthermore, let A be the forward projection matrix, with elements Ams. Then the expected number of counts
for each measurement at a given time, tk is given by

E[Ymk|µ, C] =
L−1∑
l=0

∑
s∈Cl

Amsµl . (2)

For simplicity of notation let’s define
Qml(C) �

∑
s∈Cl

Ams ,

Qm(C) � [Qm0, · · · , Qm(L−1)] ,

and

Q(C) �




Q0

...
QM−1




Then equation (2) can be compactly expressed in the matrix notation as

E[Y |µ, C] = Q(C)µ .

Using these notation we can show that the probability density function for the measured sinogram is11

p(Y |µ, C) =
K−1∏
k=0

M−1∏
m=0

(Qm(C)µ∗k)Ymke−(Qm(C)µ∗k)

Ymk!
(3)



where µ∗k is the kth column of µ. The log likelihood of the sinogram matrix is then given by

LL(Y |µ, C) =
K−1∑
k=0

M−1∑
m=0

Ymk log(Qm(C)µ∗k)− (Qm(C)µ∗k)− log(Ymk!) . (4)

2.2. Estimation Framework
A cost function can be formed by negating the log likelihood given in equation (4) and adding a stabilizing
function, S(C).

C(Y |µ, C) = −LL(Y |µ, C) + S(C) (5)

The stabilizing function penalizes the local label changes and therefore it controls the spatial continuity of pixel
labels. This type of stabilizing function was used by Besag12 for image clustering.

The stabilizing function can be obtained from an assumed prior distribution of the label image. In this work,
we model the label image as a Markov random field (MRF) with a Gibbs distribution. The likelihood of a
particular label image, C is then

p(C) =
1
Z

exp


−β

∑
s,r∈N

gs−r(1− δ(cs, cr))


 , (6)

where Z is the normalization constant, N is the set of all spatially neighboring pixel pairs in C, gs−r is the
coefficient linking pixels s and r, β is a constant that controls the spatial smoothness of the label image, and
δ(·, ·) denotes the Kronicker delta function.

In this paper, N is formed by 8-point spatial neighborhood. We choose the negative logarithm of (6) as our
stabilizing function, ie.

S(C) = β
∑

s,r∈N
gs−r(1− δ(cs, cr)) . (7)

Note that with this stabilizing function, high values of β will correspond to spatially smoother label images.

We can similarly add another stabilizing function for the temporal smoothness of the cluster TACs.

2.3. Clustering with Iterative Coordinate Descent Clustering (CICD)
There is no closed form expression for the minimization of the cost function given in (5). Therefore we used
an iterative minimization technique that we named clustering with iterative coordinate descent (CICD). It is a
modified version of iterative coordinate descent (ICD) algorithm which is commonly used in conventional PET
image reconstruction.11

A CICD iteration has two steps; first the cluster TACs are fixed and pixel labels are sequentially updated to
minimize the cost function. When all pixel labels are updated, the cluster TACs are updated to minimize the
cost function. Therefore with each CICD iteration, the cost function given in (5) monotonically decreases.

2.3.1. Pixel Label Update

Assume that we know all cluster TACs and we fix them during the update of pixel labels. Let cs denote the
current label of pixel s, and we want to change it to be c̃s in this iteration so that the change in the cost function
is minimized. If we change the label of pixel s from cs to c̃s, the change in the cost function is

∆C(Y |cs, c̃s) � C(Y |cs)− C(Y |c̃s) .

The evaluation of cost function requires re-computation of log likelihood, which leads to prohibitive compu-
tational complexity. Instead of computing the whole log likelihood, we can only compute the change in the log
likelihood.

∆LL(Y |cs, c̃s) � LL(Y |c̃s)− LL(Y |cs)

=
K−1∑
k=0

M−1∑
m=0

{
Ams(µc̃sk − µcsk)− Ymklog

(
Ams(µc̃sk − µcsk) +

L−1∑
l=0

Qmlµlk

)}
(8)



Using the changes in the stabilizing function that only depend on the current pixel, the change in the cost
function can be written as

∆C(Y |cs, c̃s) = ∆LL(Y |cs, c̃s) + β
∑
r∈∂s

gs−r(1− δ(c̃s, cr)) , (9)

where ∂s denotes the set of pixels that are neighbors of pixel s. Then the label of each pixel is updated as

c̃s ← arg min ∆C(Y |cs, c̃s) (10)

For efficient implementation, {Qml}L−1
l=0 can be stored in the memory. Whenever a pixel label is updated

{Qml}L−1
l=0 are also be updated as follows

Qmcs
← Qmcs

−Ams

Qmc̃s
← Qmc̃s

+ Ams for m = 0 · · ·M − 1 .

2.3.2. Cluster TAC update

Once all the pixel labels are updated, we can update the cluster TACs. For this purpose we compute the first
and second derivative of the log likelihood function at each time point. The first and second derivatives of log
likelihood with respect to µl at time frame k are

θ1k ←
M−1∑
m=0

{
Qml

(
1− Ymk∑L−1

l=0 Qmlµlk

)}
(11)

θ2kk ←
M−1∑
m=0

Ymk

(
Qml∑L−1

l=0 Qmlµlk

)2

(12)

Let θ1 � [θ10, · · · , θ1(K−1)]T and θ2 � diag{θ2kk}K−1
k=0 Then µl can be updated as

µ̃l ← arg min
{

θT
1 (µ̃l − µl) +

1
2
(µ̃l − µl)T θ2(µ̃l − µl)

}
(13)

There is a closed form expression for µ̃l, ie. µ̃l = µl − θ−1
2 θ1.

3. IMAGE DOMAIN CLUSTERING ALGORITHMS

Image domain clustering algorithms use TACs extracted from emission images. The emission images are recon-
structed using conventional PET reconstruction algorithms. Let xsk be the reconstructed emission rate for pixel
s at time frame k, and xs = [xs0, · · · , xs(K−1)] be the reconstructed time response of pixel s.

3.1. Weighted Least Squares Clustering (WLS)

This algorithm minimizes the weighted square distance between the pixel TACs and the cluster TACs, ie.

(µ, C)← arg min
µ,C

L−1∑
l=0

∑
s∈Cl

‖xs − µl‖2W , (14)

where W is a weight matrix, and ‖x‖2W denotes xT Wx. In this work we used a diagonal weighting matrix formed
as W = diag{∆tk}K−1

k=0 where ∆tk is the duration of kth time frame.

This algorithm also iteratively updates the pixel labels and cluster TACs. Each iteration consists of two
steps. In the first step, labels of pixels are sequentially updated. The label of a pixel is updated as follows

c̃s ← arg min
l
‖xs − µl‖2W (15)



After all pixel labels are updated, the cluster TACs are updated as follows to decrease the weighted distance
given in (14).

µl =
1
|Cl|

∑
s∈Cl

xs , (16)

where |Cl| denotes the number of pixels that are labeled as l. Each CICD iteration monotonically decreases the
cost function, and iterations are repeated until the stopping (convergence) criteria is reached.

3.2. Gaussian Mixture Model with Expectation Maximization (GMM-EM)

It can be assumed that the pixel TACs are Gaussian distributed around the cluster TACs. Similar to other
clustering methods pixel labels and cluster TACs can be updated iteratively.

Let Rl denote the covariance matrix of cluster l, and πl denote the probability of cluster l. The posterior
probability of a pixel being in cluster l, given its time response is

p(cs = l|xs, µl) =
πl

(2π)K/2
|Rl|−1/2 exp

{
−1

2
(xs − µl)T R−1

l (xs − µl)
}

(17)

If the TACs and covariance matrices of the clusters are known, we can assign pixel labels to maximize the
posterior, ie.

cs ← arg min
l

{
1
2
(xs − µl)T R−1

l (xs − µl) +
1
2

log |Rl| − log(πl)
}

(18)

Once the labels are assigned the cluster TACs and covariance matrices can be updated using the EM algo-
rithm.13

3.3. Initialization Clustering Algorithms

All clustering algorithms described above require initial cluster TACs, pixel labels, or both. It is possible to
initialize these algorithms with randomly chosen initial labels and cluster TACs. To avoid local minima in these
iterative algorithms, these algorithms should be executed multiple times with different initial points. The set of
initial points that results in the lowest final cost should be used.

It is also possible to start them with user selected seed points. The best candidate from each cluster can be
manually selected and their corresponding TACs can be used to initialize these algorithms.

4. RESULTS

4.1. Simulations

Our simulation experiments are based on a phantom of a rat’s head. The phantom and kinetic parameters for
the regions in this phantom are taken from Kamasak et al.14 Figure 1 shows a schematic representation of
the phantom and its regions. The phantom has 7 regions including the background. The regions and their
corresponding parameters are given in Table 1, and their TACs are shown in Fig. 2. For further details about
the phantom see Kamasak et al.14 Time frames of emission images are generated using these parameter images
and the 2-tissue compartment model equations, and the plasma function, CP (t), is generated using the second
model in Wong et al.15 The blood contribution to the PET activity is assumed to be zero, and the tracer is
assumed to be raclopride with 11C, which has a decay constant of λ = 0.034 min−1. Total scan time is 60 min.,
divided into 18 time frames with 4×0.5 min, 4×2 min, and 10×5 min. The phantom resolution is 128×128 with
each pixel having dimensions of (1.2 mm)2.

The rat phantom image at each time frame is forward projected into sinograms using a Poisson model for
the detected counts. Each sinogram consists of 180 angles and 200 radial bins per angle.

The emission images required by image domain clustering algorithms are generated using filtered backpro-
jection algorithm (FBP). The initial cluster TACs are chosen manually. Same initial points are used for all
clustering algorithms.



nonbrain

nonspecific−gray matter

striatum

cortex

white matter

Figure 1. Single-slice rat phantom. Regions of the rat phantom were derived from a segmented MR image. Different
fill patterns indicate kinetically distinct tissue regions. Striatum is a region containing specific receptors for the tracer.
Nonspecific-gray matter is tissue containing no specific binding sites for tracer but comparable blood flow parameters
(k1, k2) to striatal area; cortex is modeled as containing low concentration of binding sites; white matter in our dynamic
phantom contains no specific binding sites and low flow;non-brain, which comprises much of the slice has fast influx and
efflux of tracer. Solid white areas in figure represent a mixture of background regions that do not contain any activity
over time. The small white areas dorsal to (above) the striatum are ventricles that contain cerebral spinal fluid and no
tracer. White areas surrounding brain correspond to skull which does not take up appreciable amounts of tracer.

Region k1 k2 k3 k4 a b c d
min−1 min−1 min−1 min−1 min−1 min−1 min−1 min−1

Background 0 0 0 0 0 0 0 0
CSF 0 0 0 0 0 0 0 0
Nonbrain .1836 .8968 0 0 .1836 0 .8968 0
Nonspecific-gray matter .0918 .4484 0 0 .0918 0 .4484 0
Striatum .0918 .4484 1.2408 .1363 .02164 .07016 1.7914 .0312
Cortex .0918 .4484 .141 .1363 .0607 .0311 .628 .09725
White matter .02295 .4484 0 0 .02295 0 .4484 0

Table 1. Kinetic parameters used in the simulations for distinct tissue regions of the rat head.
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Figure 2. Time-activity curves for 5 distinct tissue regions in rat brain phantom.



(a) Original (b) FBP+WLS

(c) FBP+GMM-EM (e) CICD

Figure 3. Pixel labels assigned by the clustering algorithms.

4.1.1. Simulation Results

The pixel labels assigned by the image domain algorithms and the proposed method, CICD, are shown in figure
3. Visually it can be seen that CICD algorithm results have less mislabeled pixels than image domain clustering
methods. The percentage of mislabeled pixels for these algorithms are given in table 2. From this table, it can
be seen that the proposed clustering algorithm has the lowest mislabeled pixel percentage.

The cluster TACs estimated by the clustering algorithms are shown in figure 4. The root mean squared error
for the cluster TACs are given in table 3. This table shows that for all the regions except the white matter, the
proposed algorithm have produced the lowest RMSE between the estimated cluster TACs and the actual cluster
TACs.

The success of the proposed CICD algorithm is due to the reduction in the number of estimated parameters.
CICD algorithm assigns N labels and estimates L×K time points for cluster TACs. In addition to these, image
domain clustering algorithms require the estimation of N ×K emission rates for reconstructed emission images.

5. CONCLUSION

We proposed a new clustering algorithm that we call clustering with iterative coordinate descent (CICD). CICD
clusters the dynamic PET images directly on the projection domain and it does not require the reconstruction
of emission images. The results of CICD algorithm are substantially better than the conventional image domain
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Figure 4. Cluster TACs estimated by the clustering algorithms for each region in the rat head.



method misclassification (%)
FBP + WLS 6.951904
FBP + GMM 9.136963

CICD 0.439453

Table 2. Percentage of mislabeled pixels for the clustering algorithms.

region WLS GMM-EM CICD
background 0.017 0.022 0.000
nonbrain 0.013 0.007 0.0004
nonspecific-gray matter 0.088 0.092 0.0063
striatum 0.207 0.239 0.0219
cortex 0.059 0.088 0.0110
white matter 0.059 0.019 0.216

Table 3. RMSE of the cluster TACs for each region in the rat’s head.

clustering algorithms. It produces less mislabeled pixels and estimates cluster TACs with lower RMSE than the
image domain clustering algorithms.

Therefore the proposed CICD algorithm is quite promising for the region of interest analysis before the kinetic
parameter estimation. We believe that more accurate estimates for the kinetic parameters can be obtained using
this algorithm.

However more tests on real dynamic PET data are required for further analysis of this algorithm. More
flexible regularization strategies can also be integrated into this algorithm which may result in better clustering.
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