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Abstract 

Current inkjet printing systems are based on a 
RISC+ASIC architecture for image processing and printer 
control. Time critical control function such as print masking 
is implemented on an ASIC and computationally intensive 
tasks such as image processing and motion control are 
executed on a RISC processor. This paper considers the 
development of a DSP based media handling and cartridge 
motion control system for an inkjet printer, in which a single 
high performance DSP is desired to execute the printer 
control as well as image processing tasks and print with the 
novel inkjet printing approach of Dynamic Print Mode 
Control (DPMC). A motion control architecture is 
implemented to maximize the use of DSP processing power 
and system memory while taking into account the latencies 
of motion controllers in printing a swath. The architecture 
utilizes various real-time services of DSP/BIOS to 
effectively manage DSP and printer engine while increasing 
printer throughput and it can be easily extended to include 
image processing activities on the DSP. Experimental results 
show the efficacy of the proposed motion control 
architecture and the control scheme for cartridge motion 
control. 

Introduction 

In the fastest growing embedded computing market, Digital 
Signal Processors (DSP) have made their presence felt in a 
range of applications from power hungry, hardware 
intensive devices like printers, scanners and networking 
switches to power efficient, extremely lightweight handheld 
devices such as cell phones, internet audio players, cameras, 
video games. A DSP is a special-purpose microcontroller, 
whose architecture and instruction sets have been optimized 
specifically for signal processing algorithms [1,2]. Since 
their inception in early 1980s, DSPs have gone through a lot 

of architectural modifications to suit the changing market 
demands for better price-performance ratio with the main 
focus on boosting efficiency and performance in signal 
processing applications. Also, DSP architects have begun to 
experiment with the new architectures such as Harvard, 
VLIW architecture from the earlier highly specialized, 
compiler unfriendly architecture to the general-purpose 
processor designs [2], so that DSPs will be better compiler 
targets, code compatible with their predecessors. 
 Current inkjet printing systems are based on a 
RISC+ASIC structure for image processing and printer 
control. Time critical control functions such as open-loop 
media [3] or cartridge motion control [4] print masking [5] 
are implemented on an ASIC and computationally intensive 
tasks such as image processing and closed loop printer 
engine control are executed on a RISC processor [6]. This 
structure offloads some of the computational burden on the 
main processor. Also, hardware implementation of time 
critical and repetitive functions reduces firmware size, 
keeping the manufacturing and development costs to a 
minimum. However, this structure also has a long turn 
around time and it is less flexible to late cycle modification 
due to firmware revisions.  

High performance DSPs coupled with code-efficient 
compilers and guaranteed real-time execution through real-
time operating systems lead to the possibility of executing 
imaging, printer engine control as well as time critical 
functions on a single DSP. Hence with DSP implementation 
of the whole inkjet system, design modifications can be 
implemented as a firmware revision, which considerably 
reduces development time. It also gives the flexibility to 
explore novel printing approaches, which are hereto been 
impossible to implement with the ASIC implementation.  
For example, in the case of nozzle failures, an active 
feedback from inkjet cartridge allows changing print mask 
and low-level control function dynamically. An aging printer 
is also characterized by parameter variations. Closed loop 



 

 

system monitoring and control with the DSP implementation 
results in a robust platform. 

 This paper considers the development of an inkjet 
system, where a single high performance DSP is desired to 
perform printer control as well as image processing tasks 
and print with the novel inkjet printing approach of Dynamic 
Print Mode Control (DPMC). With the capability of 
dynamically changing media and cartridge motion control 
parameters, a motion-control architecture for the inkjet 
system is implemented which can programmatically print 
either uni-directionally or bi-directionally or combination of 
both depending upon the specifications of image processing 
output. The architecture utilizes various real-time services of 
the real-time operating system DSP/BIOS to effectively 
manage DSP processing power, system memory and printer 
engine while increasing printer throughput and it can be 
easily extended to include image processing activities on the 
DSP. Experimental results show the efficacy of the proposed 
motion control architecture. 

Dynamic Print Mode Control 

Typical commercially available inkjet printers print with a 
variety of user-selectable print modes such as “draft”, 
“normal”, “high” and “maximum”. These print modes 
control following media, cartridge and image processing 
attributes: number of passes, print direction, print-head 
(cartridge) speed, print mask and halftoning technique. Print 
quality of various page contents such as continuous tone 
image, graphics, line art and text is directly affected by the 
specific print mode chosen. Table 1 and 2 show the 
measured values of some of these attributes for the black 
and color cartridge from an off-the-shelf printer. 

Given a print mode, all the abovementioned attributes 
get statically defined. Hence, we can observe the tradeoff 
between print quality and printing speed in selecting the 
print mode. Computationally simple print modes like “draft” 
and “normal” modes result in higher printing speed, but 
reduce the quality of continuous tone images and graphics 
while computationally expensive modes like “high” and 
“maximum” modes increase print quality but reduce print 
speeds. Also, much of the computational power is wasted in 
printing line art, text in high quality modes, for which low 
quality “draft” or “normal” mode printing is sufficient. 

Dynamic print mode control (DPMC) helps to optimize 
this tradeoff between the print quality and print speed. In 
DPMC, the page is first segmented into different regions 
containing continuous tone image, graphics, line art and text. 
Then, aforementioned printing attributes are selected 
dynamically for each of these regions. For example, for page 
regions containing images and graphics, parameters 
pertaining to “high” or “maximum” modes can be selected, 
while line art and text can be printed with parameters of 
“draft” or “normal” modes. This method of printing results 
in a much better tradeoff between print quality and print 
speed rather than using a single print mode for the entire 
page. 

 

       Print mode 
Attributes 

Draft 
Mode 

Normal 
Mode 

High 
Mode 

Max. 
Mode 

No. of passes 
(nozzle height) 

1 
64 nz. 

2 
32 nz. 

4 
16 nz. 

8 
8 nz. 

Printing 
Direction 

bi-dir 
ctional 

bi-dir 
ctional 

uni-dir 
ctional 

uni-dir 
ctional 

Cartridge 
speed (ips) 40 40 30 30 

Table 1: Measurements of print attributes for the color 
cartridge (Nozzle height is 192 nozzles, 64 nozzles each 
for cyan, magenta and yellow) 

 
      Print Mode 
Attributes 

Draft 
Mode 

Normal 
Mode 

High 
Mode 

Maxi. 
Mode 

No. of passes 
(nozzle height) 

1 
208 nz. 

2 
104 nz. 

4 
52 nz. 

8 
26 nz. 

Printing 
Direction 

bi-dir 
ctional 

bi-dir 
ctional 

uni-dir 
ctional 

uni-dir 
ctional 

Cartridge 
speed (ips) 30 20 20 20 

Table 2: Measurements of print attributes for the black 
cartridge (Nozzle height is 208 nozzles) 

 

Experimental Inkjet Printer System 

The experimental inkjet printer system described herein 
uses Lexmark Z-52 printer engine and TIger 2.0 RIP 
reference system containing TMS320C6211 DSP from 
Texas Instruments’ C6x roadmap. C6211 DSP is based upon 
VelociTI – modified VLIW − architecture where 8 
instructions can be executed in parallel at a clock speed of 
150 MHz resulting in the MIPS rating of 1200. It consists of 
direct mapped 2-level 64 KB cache and it supports pre-
emptive multitasking real-time operating system DSP/BIOS 
to facilitate real-time execution. 

There are four main components of the experimental 
inkjet system: inkjet cartridges, media handling mechanism, 
cartridge transport mechanism (carriage) and DSP interface 
to the abovementioned components. Media handling 
mechanism and cartridge transport mechanism – from 
Lexmark Z52 inkjet printer – constitute the printer engine. 
Engine interface connects printer engine with the C6211 
DSP motherboard, while pen driver interface and video 
interface connects the inkjet cartridges with C6211 DSP 
motherboard. 

A 7.5o two-phase bipolar stepper motor actuates the 
media handling mechanism in an open loop to carry out 
pick, advance and eject sequences. One half step (3.75o 
rotation of stepper motor) corresponds to media 
advancement of 1/600 inch, which is equal to the vertical 
separation between two successive nozzles in black and 
color inkjet cartridge. Therefore, as print modes change 
from draft mode to maximum mode, media advancement 
decreases progressively by a factor of two for either black or 



 

 

color cartridge. Stepper motor runs at a sampling frequency 
of 5 kHz in hardware interrupt service routine (ISR), 
mapped to the external interrupt EXT_INT7 of the DSP. 
On-chip Timer 1 is the hardware source for the interrupt 
EXT_INT7. 

Cartridge transport mechanism helps black and color 
inkjet cartridges disperse ink droplets on the media in a 
direction orthogonal to the media movement. A DC motor 
controls to and fro movement of carriage on the printer rail, 
while position of carriage on the rail is sensed through a 
linear incremental encoder having a resolution of 1/600 
inch/count after quadrature decoding. Carriage motion 
control loop runs at a sampling frequency of 5 kHz in 
hardware interrupt service routine (ISR), mapped to the 
external interrupt EXT_INT6 of the DSP. Period register in 
Engine interface interrupts the DSP on EXT_INT6 at the set 
sample rate. 

Pen driver interface generates programmable nozzle 
firing address signals and data signals along with some 
control signals for each cartridge. Video interface module in 
TIger2.0 system is used to transfer the nozzle-mapped data 
from system SDRAM to the inkjet cartridge. Video interface 
converts the generic unpacked nozzle-mapped data into 
printer engine specific data bus signals, when sending it to 
the cartridges. Detailed experimental inkjet printer system 
description can be found in [7]. 

Carriage Motion Control System 

 

 

Figure 1: Schematic block diagram of carriage motion controller 

 
Carriage transport mechanism is affected by a variety of 

disturbances such as stiction, coulomb friction, sensor noise 
and ignored dynamics of the belt transmitting the torque 
from the DC motor to the carriage. A computationally 
simple disturbance observer was designed to compensate for 
these disturbances and combined with a two-degree-of-
freedom (TDOF) controller as shown in figure 1. In the 
TDOF controller structure, a feedback controller (PD 
controller) was designed by pole placement approach to 
guarantee adequate stability and dynamic lag of the closed 
loop system was compensated with a ZPET based feed-
forward controller. To prevent the amplification of high 
frequency components near the nyquist frequency due to 
high frequency gains of ZPET controller, a zero phase low 
pass (ZPLP) filter was convolved with the ZPET controller. 

To minimize the computation time, controller was 
implemented in fixed-point, which entailed its 
reconfiguration to lessen the quantization noise in the 
system. Carriage motion controller design details and 
carriage position trajectory planning for DPMC can be 
found in [7]. 

Motion Control Architecture 
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Figure 2: Motion control architecture for Lexmark Z-52 printer 

 
The main objective in the motion control architecture is 

to maximize the use of CPU processing power and system 
memory while taking into account the latencies of motion 
controllers in printing a swath. Also, in the high-end inkjet 
and multi-function devices, the DSP performs 
computationally intensive tasks such as PDL conversion, 
raster image processing in addition to the printer engine 
control. Since, the DSP/BIOS kernel is based upon 
foreground/background scheduling [8], a motion control 
framework can be designed where the DSP can execute 
other soft real-time tasks such as image processing for next 
swath, PDL conversion in the background when the printer 
engine is printing the current swath in foreground. An 
architecture such as the one in the figure 2 helps to realize 
such a goal. 
 
Hardware ISRs: In the multi-rate inkjet system, cartridge 
motion controller periodically runs at 1 kHz from Engine 
interface period register and stepper motor controller at 5 
kHz from C6211 DSP timer 1. If these control loops cannot 
meet these sampling time requirements, stability of carriage 
motion will be compromised which will directly affect print 
quality and also, paper advancement will not be accurate. 
Hence, these control loops are executed in hardware ISR 
triggered by the respective timers and the processing in 
hardware ISR is kept to a minimum to help meeting hard 
real-time deadlines.  
 
Motion Control Task: Computations such as carriage 
position trajectory generation for the next swath from 



 

 

imaging output (page structure), calculating paper 
advancement for next swath have less critical deadlines and 
can be deferred in favor of the hardware ISRs. Therefore, 
these computations are carried out in the background motion 
control task. In order to print a given swath, motion control 
task first reads the swath information from the downloaded 
page structure, then generates carriage position trajectory (in 
accordance with the principle of DPMC) from the swath 
information and calculates the media advancement necessary 
for printing the swath. Subsequently to instruct the carriage 
to print the corresponding swath, the task puts the required 
position trajectory information and swath information in the 
form of a job in the carriage_pipe and the required media 
advancement information as a job in the stepper_pipe for the 
stepper motor.  
 
Data Pipes: The advantage of putting the necessary motion 
control information in a data pipe rather than directly 
transferring to the respective ISR is that the motion control 
task can go ahead to process the next swath and to put the 
jobs for the corresponding swath while the carriage ISR is 
printing the current swath and hence, DSP processing power 
is better utilized while increasing the overall printer 
throughput. Since data pipe objects in DSP/BIOS are 
flexible in terms of the contents of the buffers (or frames) 
being filled up, if the motion control information has an 
array of data (e.g. position trajectory), only array pointers 
are transferred avoiding copy of contents. Also, when the 
data pipe buffers are being read or written, only pointers are 
passed to the reader or writer. Hence, there is no restriction 
on the size and contents of the buffers and transfer time 
between writer and reader is constant, a must for a real-time 
system. 
 Since, the data flow from the task to the respective ISRs 
is non-continuous, dependent upon the processing time of 
the task, a data synchronization and notification mechanism 
is needed, which avoids the polling by the reader (to receive 
the data) or writer (to put the data in pipe). DSP/BIOS 
utilizes data notification functions [8] to synchronize the 
writer (motion control task) and reader (hardware ISRs) with 
the underlying data pipes. Once the pipe frame is filled up 
by the writer or read by the reader, these notification 
functions (notifyReader or notifyWriter respectively) are 
triggered to notify the counterpart that a frame is available 
or free. In the inkjet system, DSP processing time will be 
optimally utilized if the hardware ISRs are enabled and run 
only, when needed by the background task. In this setting, 
inadvertent context switching is avoided by posting a 
software interrupt from the notifyReader function (i.e. from 
the writer side), once the task puts the frame in the data pipe. 
 
Software ISRs: Software interrupts are instantiated in 
software (not associated with any physical device) and are 
less time-critical than the hardware interrupts. As shown in 
the figure 2 to synchronize motion control task and hardware 
ISRs, config_carriage software interrupt is posted when a 
carriage_pipe frame buffer is filled with a job for carriage 
and config_stepper software interrupt is triggered once, a 

stepper_pipe frame buffer is written to by the motion control 
task. Once posted, the software interrupt copies data from 
the pipe frame to a global structure, to_carriage for the 
carriage mechanism and to_paper for the media handling 
mechanism. Also, since copying data to global structures is 
infrequent, posting a software interrupt for copying 
operation is more efficient than copying the data in hardware 
ISR itself.  
 Another software interrupt, free_data is used to free the 
memory used temporarily for storing the nozzle-mapped 
data for the current swath after printing, corresponding 
carriage position trajectory and scan start and scan stop 
information (in to_carriage structure). It is important to free 
the memory in a software ISR than in the carriage hardware 
ISR because memory allocation and freeing are non-
deterministic [8], since DSP/BIOS maintains a linked list of 
free memory blocks and allocation or freeing up of memory 
requires traversing this linked list. If done in the carriage 
ISR, carriage motion will be severely affected. 
 
Semaphores: Completion of important events such as (a) 
carriage has traversed the entire command position 
trajectory (b) stepper motor has put the media at the required 
swath start position and (c) memory used for printing the 
current swath is freed, is indicated with the counting 
semaphores carriage_sem, stepper_sem and memory_sem 
respectively. Semaphores are inter-task synchronization and 
communication primitives and they are needed to 
synchronize the motion control task with hardware ISRs, 
since the task might have to suspend its execution until some 
events are completed. For example, if there is insufficient 
system memory available for further processing or no frame 
in either data pipe is available for writing the motion control 
information. Posting a semaphore releases the task, waiting 
for the corresponding semaphore to be posted. 
 
Data Communication: Carriage hardware ISR reads 
to_carriage structure to execute carriage position trajectory 
and print the corresponding swath, while carriage is motion. 
to_carriage structure contains the pointer to carriage 
command position trajectory located in the heap section, its 
length and the direction of printing. The swath information 
consists of number of scans to be printed and start and stop 
position of each scan in the swath being printed. This 
information is used to configure pen driver interface 
registers on-the-fly for printing each scan when carriage is in 
motion. Motion control task knows about the status of 
carriage through from_carriage structure, which carriage 
ISR writes to. Actual carriage position, corresponding 
command carriage position, current index in command 
position trajectory, present carriage state along with the 
number of scans printed in the current swath are indicated in 
from_carriage structure.  

Similarly, stepper hardware ISR reads to_paper 
structure parameters for media advancement needed to print 
a swath.  to_paper structure consists of pointer to the step 
table or excitation pattern for each phase of the stepper 
motor and its length, pointer to the time table used to 



 

 

generate precise stepping velocity profile and its length. 
Number of times to repeat the given time table to advance 
the media and command paper state is also included in the 
to_paper structure. Stepper hardware ISR reflects its 
execution state by writing to from_paper structure. Present 
step table and time table index, the number of time table 
repeat counts remaining, present paper state and number of 
half steps moved on the page are stored in the from_paper 
structure. 
 

Synchronization between carriage and stepper 
motor: Synchronization between carriage and stepper motor 
is necessary when media is still being advanced at the 
moment carriage is ready to print the swath. In all other 
cases, where stepper motor is performing paper pick or eject 
sequence and carriage is being retracted to properly position 
it before printing the next swath or when it is being docked 
to establish its home position initially, carriage ISR and 
stepper ISR can run independently. Config_carriage 
software ISR at the time of filling to_carriage structure 
checks if carriage is commanded to print a swath and media 
is already positioned to print it. If media is not properly 
aligned, config_carriage requests stepper hardware ISR to 
enable the carriage hardware ISR, otherwise carriage ISR is 
enabled to process current job in to_carriage structure. 
Similarly, to increase the printer throughput, carriage 
hardware ISR posts stepper software ISR config_stepper as 
soon as carriage starts decelerating at the end of swath. 

Experimental Results 

Table 3: Swath parameters used for testing carriage 
motion controller 
 

Figure 3 and 4 show the experimental and simulated 
carriage position and velocity profiles for fixed-point 
implementation of carriage motion controller in figure 1. 
Representative swath parameters used for experiments are 
given in table 3, where cartridge speeds for black printing 
(table 2) are used for each scan. Carriage accelerates to an 
intermediate velocity of 28 ips before decelerating back to 
20 ips printing velocity for scan 2, thus performing 
horizontal white-space skipping. After printing scan 2, 
carriage accelerates to 30 ips printing velocity for scan 3 
within an approach distance of 0.5 inch in accordance with 
the principles of DPMC. In inkjet printing, phase plot of 
carriage velocity vs. carriage position (figure 4) is especially 
more relevant and important as carriage is required to reach 
a certain command velocity at a given scan start position. As 
evident, carriage speed and position requirements for given 

swath parameters are very well met for the proposed 
carriage motion controller (figure 1). 
 
 

 

 

 

 

 

 

 

 

Figure 3: Comparison between experimental and simulated 
carriage position (inch) and velocity (inch/sec) for swath 
parameters in table 3 

 

 

 

 

 

 

 

 

 

 
Figure 4: Experimental and simulated carriage velocity (inch/sec) 
vs. position (inch) for swath parameters in table 3  

 
Figure 5 and 6 show the carriage DC motor current 

profile and stepper motor current profile in one of the phases 
for printing a test pattern at 300 dpi in uni-directional and 
bi-directional print modes respectively. The advantages of 
implementing motion control architecture in figure 2 are 
immediately apparent from the figures. Paper advancement 
for the next swath starts immediately after printing of current 
swath. This can be done only if motion control task can 
simultaneously process the next swath in the background 
and keep the paper advancement and carriage trajectory 
information ready in stepper_pipe and carriage pipe 

Scan 
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respectively when the carriage ISR finishes printing current 
swath in the foreground. Also due to this motion control 
framework, there is no time gap between carriage DC motor 
current for printing and retracting (in uni-directional print 
mode) or printing the next swath (bi-directional print mode), 
which helps to increase printer throughput.  
 

print final deceleration carriage retract print final deceleration

paper advance paper advance

print final deceleration carriage retract print final deceleration

paper advance paper advance

 

Figure 5: Carriage DC motor current and stepper motor current 
in phase A for printing a test pattern in uni-directional print mode 
at 300 dpi 
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paper advance

print final 
deceleration

paper advance

print final deceleration

paper advance

print final 
deceleration
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Figure 6: Carriage DC motor current and stepper motor current 
in phase A for printing a test pattern in bi-directional print mode 
at 300 dpi 

 
Table 4 details the overall motion control system 

performance for printing a test page in uni-directional (row 
1) and bi-directional print mode (row 2). Average execution 
time for carriage hardware ISR is 165 µsec and 40 µsec for 
stepper hardware ISR, well within their real-time deadline 
requirements. Motion control task’s average computation 
time per swath depends upon the test page specifications. 
For bi-directional printing, carriage-retract may or may not 
be required and hence, corresponding computation time per 
swath is less in bi-directional printing. 
 

Table 4: Motion control architecture performance for 
printing a test page at 600 dpi in uni-directional and bi-
directional print mode 

Conclusion 

In this paper, a motion control architecture for DPMC is 
proposed and implemented on TMS320C6211 DSP using 
Lexmark Z-52 printer engine and DSP/BIOS real-time 
operating system. The architecture utilizes various real-time 
services of DSP/BIOS to effectively manage DSP 
processing power, system memory and printer engine while 
increasing printer throughput and it can be easily extended 
to include image processing activities on the DSP. 
Experimental results show the efficacy of the proposed 
motion control architecture and the control scheme for 
cartridge motion control. 
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Print 
Time 
(sec) 

Interrupt, 
Task 

No. of 
Interrupts 

Total DSP 
Clock 
Counts 

Avg. 
Time 
(µsec) 

Carriage 79215 2.13588×109 179.75 
Stepper 37239 2.13429×108 38.21 

75 

MC Task 64 2.00502×108 20885.61 
Carriage 46277 1.28309×109 184.84 
Stepper 38500 2.20753×108 38.23 

52 

MC Task 64 1.35721×108 14137.62 
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