

Design and Implementation of a DSP based
Inkjet Printer Motion Control System for

Dynamic Print Mode Control
A.V. Deshpandea, M. Kamasakb, K.L. Thoonb

G.T.-C. Chiua, C. Boumanb, J. Allebachb
a School of Mechanical Engineering,

b School of Electrical and Computer Engineering,
Purdue University, West Lafayette, Indiana

S. Fedigan, D. Schafer, C. Cole
Texas Instruments, Dallas, Texas

Abstract

Current inkjet printing systems are based on a
RISC+ASIC architecture for image processing and printer
control. Time critical control function such as print masking
is implemented on an ASIC and computationally intensive
tasks such as image processing and motion control are
executed on a RISC processor. This paper considers the
development of a DSP based media handling and cartridge
motion control system for an inkjet printer, in which a single
high performance DSP is desired to execute the printer
control as well as image processing tasks and print with the
novel inkjet printing approach of Dynamic Print Mode
Control (DPMC). A motion control architecture is
implemented to maximize the use of DSP processing power
and system memory while taking into account the latencies
of motion controllers in printing a swath. The architecture
utilizes various real-time services of DSP/BIOS to
effectively manage DSP and printer engine while increasing
printer throughput and it can be easily extended to include
image processing activities on the DSP. Experimental results
show the efficacy of the proposed motion control
architecture and the control scheme for cartridge motion
control.

Introduction

In the fastest growing embedded computing market, Digital
Signal Processors (DSP) have made their presence felt in a
range of applications from power hungry, hardware
intensive devices like printers, scanners and networking
switches to power efficient, extremely lightweight handheld
devices such as cell phones, internet audio players, cameras,
video games. A DSP is a special-purpose microcontroller,
whose architecture and instruction sets have been optimized
specifically for signal processing algorithms [1,2]. Since
their inception in early 1980s, DSPs have gone through a lot

of architectural modifications to suit the changing market
demands for better price-performance ratio with the main
focus on boosting efficiency and performance in signal
processing applications. Also, DSP architects have begun to
experiment with the new architectures such as Harvard,
VLIW architecture from the earlier highly specialized,
compiler unfriendly architecture to the general-purpose
processor designs [2], so that DSPs will be better compiler
targets, code compatible with their predecessors.
 Current inkjet printing systems are based on a
RISC+ASIC structure for image processing and printer
control. Time critical control functions such as open-loop
media [3] or cartridge motion control [4] print masking [5]
are implemented on an ASIC and computationally intensive
tasks such as image processing and closed loop printer
engine control are executed on a RISC processor [6]. This
structure offloads some of the computational burden on the
main processor. Also, hardware implementation of time
critical and repetitive functions reduces firmware size,
keeping the manufacturing and development costs to a
minimum. However, this structure also has a long turn
around time and it is less flexible to late cycle modification
due to firmware revisions.

High performance DSPs coupled with code-efficient
compilers and guaranteed real-time execution through real-
time operating systems lead to the possibility of executing
imaging, printer engine control as well as time critical
functions on a single DSP. Hence with DSP implementation
of the whole inkjet system, design modifications can be
implemented as a firmware revision, which considerably
reduces development time. It also gives the flexibility to
explore novel printing approaches, which are hereto been
impossible to implement with the ASIC implementation.
For example, in the case of nozzle failures, an active
feedback from inkjet cartridge allows changing print mask
and low-level control function dynamically. An aging printer
is also characterized by parameter variations. Closed loop

system monitoring and control with the DSP implementation
results in a robust platform.

 This paper considers the development of an inkjet
system, where a single high performance DSP is desired to
perform printer control as well as image processing tasks
and print with the novel inkjet printing approach of Dynamic
Print Mode Control (DPMC). With the capability of
dynamically changing media and cartridge motion control
parameters, a motion-control architecture for the inkjet
system is implemented which can programmatically print
either uni-directionally or bi-directionally or combination of
both depending upon the specifications of image processing
output. The architecture utilizes various real-time services of
the real-time operating system DSP/BIOS to effectively
manage DSP processing power, system memory and printer
engine while increasing printer throughput and it can be
easily extended to include image processing activities on the
DSP. Experimental results show the efficacy of the proposed
motion control architecture.

Dynamic Print Mode Control

Typical commercially available inkjet printers print with a
variety of user-selectable print modes such as “draft”,
“normal”, “high” and “maximum”. These print modes
control following media, cartridge and image processing
attributes: number of passes, print direction, print-head
(cartridge) speed, print mask and halftoning technique. Print
quality of various page contents such as continuous tone
image, graphics, line art and text is directly affected by the
specific print mode chosen. Table 1 and 2 show the
measured values of some of these attributes for the black
and color cartridge from an off-the-shelf printer.

Given a print mode, all the abovementioned attributes
get statically defined. Hence, we can observe the tradeoff
between print quality and printing speed in selecting the
print mode. Computationally simple print modes like “draft”
and “normal” modes result in higher printing speed, but
reduce the quality of continuous tone images and graphics
while computationally expensive modes like “high” and
“maximum” modes increase print quality but reduce print
speeds. Also, much of the computational power is wasted in
printing line art, text in high quality modes, for which low
quality “draft” or “normal” mode printing is sufficient.

Dynamic print mode control (DPMC) helps to optimize
this tradeoff between the print quality and print speed. In
DPMC, the page is first segmented into different regions
containing continuous tone image, graphics, line art and text.
Then, aforementioned printing attributes are selected
dynamically for each of these regions. For example, for page
regions containing images and graphics, parameters
pertaining to “high” or “maximum” modes can be selected,
while line art and text can be printed with parameters of
“draft” or “normal” modes. This method of printing results
in a much better tradeoff between print quality and print
speed rather than using a single print mode for the entire
page.

 Print mode
Attributes

Draft
Mode

Normal
Mode

High
Mode

Max.
Mode

No. of passes
(nozzle height)

1
64 nz.

2
32 nz.

4
16 nz.

8
8 nz.

Printing
Direction

bi-dir
ctional

bi-dir
ctional

uni-dir
ctional

uni-dir
ctional

Cartridge
speed (ips) 40 40 30 30

Table 1: Measurements of print attributes for the color
cartridge (Nozzle height is 192 nozzles, 64 nozzles each
for cyan, magenta and yellow)

 Print Mode
Attributes

Draft
Mode

Normal
Mode

High
Mode

Maxi.
Mode

No. of passes
(nozzle height)

1
208 nz.

2
104 nz.

4
52 nz.

8
26 nz.

Printing
Direction

bi-dir
ctional

bi-dir
ctional

uni-dir
ctional

uni-dir
ctional

Cartridge
speed (ips) 30 20 20 20

Table 2: Measurements of print attributes for the black
cartridge (Nozzle height is 208 nozzles)

Experimental Inkjet Printer System

The experimental inkjet printer system described herein
uses Lexmark Z-52 printer engine and TIger 2.0 RIP
reference system containing TMS320C6211 DSP from
Texas Instruments’ C6x roadmap. C6211 DSP is based upon
VelociTI – modified VLIW − architecture where 8
instructions can be executed in parallel at a clock speed of
150 MHz resulting in the MIPS rating of 1200. It consists of
direct mapped 2-level 64 KB cache and it supports pre-
emptive multitasking real-time operating system DSP/BIOS
to facilitate real-time execution.

There are four main components of the experimental
inkjet system: inkjet cartridges, media handling mechanism,
cartridge transport mechanism (carriage) and DSP interface
to the abovementioned components. Media handling
mechanism and cartridge transport mechanism – from
Lexmark Z52 inkjet printer – constitute the printer engine.
Engine interface connects printer engine with the C6211
DSP motherboard, while pen driver interface and video
interface connects the inkjet cartridges with C6211 DSP
motherboard.

A 7.5o two-phase bipolar stepper motor actuates the
media handling mechanism in an open loop to carry out
pick, advance and eject sequences. One half step (3.75o
rotation of stepper motor) corresponds to media
advancement of 1/600 inch, which is equal to the vertical
separation between two successive nozzles in black and
color inkjet cartridge. Therefore, as print modes change
from draft mode to maximum mode, media advancement
decreases progressively by a factor of two for either black or

color cartridge. Stepper motor runs at a sampling frequency
of 5 kHz in hardware interrupt service routine (ISR),
mapped to the external interrupt EXT_INT7 of the DSP.
On-chip Timer 1 is the hardware source for the interrupt
EXT_INT7.

Cartridge transport mechanism helps black and color
inkjet cartridges disperse ink droplets on the media in a
direction orthogonal to the media movement. A DC motor
controls to and fro movement of carriage on the printer rail,
while position of carriage on the rail is sensed through a
linear incremental encoder having a resolution of 1/600
inch/count after quadrature decoding. Carriage motion
control loop runs at a sampling frequency of 5 kHz in
hardware interrupt service routine (ISR), mapped to the
external interrupt EXT_INT6 of the DSP. Period register in
Engine interface interrupts the DSP on EXT_INT6 at the set
sample rate.

Pen driver interface generates programmable nozzle
firing address signals and data signals along with some
control signals for each cartridge. Video interface module in
TIger2.0 system is used to transfer the nozzle-mapped data
from system SDRAM to the inkjet cartridge. Video interface
converts the generic unpacked nozzle-mapped data into
printer engine specific data bus signals, when sending it to
the cartridges. Detailed experimental inkjet printer system
description can be found in [7].

Carriage Motion Control System

Figure 1: Schematic block diagram of carriage motion controller

Carriage transport mechanism is affected by a variety of

disturbances such as stiction, coulomb friction, sensor noise
and ignored dynamics of the belt transmitting the torque
from the DC motor to the carriage. A computationally
simple disturbance observer was designed to compensate for
these disturbances and combined with a two-degree-of-
freedom (TDOF) controller as shown in figure 1. In the
TDOF controller structure, a feedback controller (PD
controller) was designed by pole placement approach to
guarantee adequate stability and dynamic lag of the closed
loop system was compensated with a ZPET based feed-
forward controller. To prevent the amplification of high
frequency components near the nyquist frequency due to
high frequency gains of ZPET controller, a zero phase low
pass (ZPLP) filter was convolved with the ZPET controller.

To minimize the computation time, controller was
implemented in fixed-point, which entailed its
reconfiguration to lessen the quantization noise in the
system. Carriage motion controller design details and
carriage position trajectory planning for DPMC can be
found in [7].

Motion Control Architecture

M
ot

io
n

C
on

tro
l t

as
k

(m
ai

n
pr

in
te

r t
as

k)
M

ot
io

n
C

on
tro

l t
as

k
(m

ai
n

pr
in

te
r t

as
k)

memory_sem

stepper_pipe

carriage_pipe

config_stepper

config_carriage to_carriage

to_paper

Stepper ISR run
at 5 kHz from DSP

Timer 1

free_data
Carriage ISR run
at 1 kHz from EIC

Timer

from_carriage

carriage_sem

from_paper

stepper_semM
ot

io
n

C
on

tro
l t

as
k

(m
ai

n
pr

in
te

r t
as

k)
M

ot
io

n
C

on
tro

l t
as

k
(m

ai
n

pr
in

te
r t

as
k)

memory_sem

stepper_pipe

carriage_pipe

config_stepper

config_carriage to_carriage

to_paperconfig_stepper

config_carriage to_carriage

to_paper

Stepper ISR run
at 5 kHz from DSP

Timer 1

Stepper ISR run
at 5 kHz from DSP

Timer 1

free_datafree_data
Carriage ISR run
at 1 kHz from EIC

Timer

Carriage ISR run
at 1 kHz from EIC

Timer

from_carriage

carriage_sem

from_paper

stepper_sem

Figure 2: Motion control architecture for Lexmark Z-52 printer

The main objective in the motion control architecture is

to maximize the use of CPU processing power and system
memory while taking into account the latencies of motion
controllers in printing a swath. Also, in the high-end inkjet
and multi-function devices, the DSP performs
computationally intensive tasks such as PDL conversion,
raster image processing in addition to the printer engine
control. Since, the DSP/BIOS kernel is based upon
foreground/background scheduling [8], a motion control
framework can be designed where the DSP can execute
other soft real-time tasks such as image processing for next
swath, PDL conversion in the background when the printer
engine is printing the current swath in foreground. An
architecture such as the one in the figure 2 helps to realize
such a goal.

Hardware ISRs: In the multi-rate inkjet system, cartridge
motion controller periodically runs at 1 kHz from Engine
interface period register and stepper motor controller at 5
kHz from C6211 DSP timer 1. If these control loops cannot
meet these sampling time requirements, stability of carriage
motion will be compromised which will directly affect print
quality and also, paper advancement will not be accurate.
Hence, these control loops are executed in hardware ISR
triggered by the respective timers and the processing in
hardware ISR is kept to a minimum to help meeting hard
real-time deadlines.

Motion Control Task: Computations such as carriage
position trajectory generation for the next swath from

imaging output (page structure), calculating paper
advancement for next swath have less critical deadlines and
can be deferred in favor of the hardware ISRs. Therefore,
these computations are carried out in the background motion
control task. In order to print a given swath, motion control
task first reads the swath information from the downloaded
page structure, then generates carriage position trajectory (in
accordance with the principle of DPMC) from the swath
information and calculates the media advancement necessary
for printing the swath. Subsequently to instruct the carriage
to print the corresponding swath, the task puts the required
position trajectory information and swath information in the
form of a job in the carriage_pipe and the required media
advancement information as a job in the stepper_pipe for the
stepper motor.

Data Pipes: The advantage of putting the necessary motion
control information in a data pipe rather than directly
transferring to the respective ISR is that the motion control
task can go ahead to process the next swath and to put the
jobs for the corresponding swath while the carriage ISR is
printing the current swath and hence, DSP processing power
is better utilized while increasing the overall printer
throughput. Since data pipe objects in DSP/BIOS are
flexible in terms of the contents of the buffers (or frames)
being filled up, if the motion control information has an
array of data (e.g. position trajectory), only array pointers
are transferred avoiding copy of contents. Also, when the
data pipe buffers are being read or written, only pointers are
passed to the reader or writer. Hence, there is no restriction
on the size and contents of the buffers and transfer time
between writer and reader is constant, a must for a real-time
system.
 Since, the data flow from the task to the respective ISRs
is non-continuous, dependent upon the processing time of
the task, a data synchronization and notification mechanism
is needed, which avoids the polling by the reader (to receive
the data) or writer (to put the data in pipe). DSP/BIOS
utilizes data notification functions [8] to synchronize the
writer (motion control task) and reader (hardware ISRs) with
the underlying data pipes. Once the pipe frame is filled up
by the writer or read by the reader, these notification
functions (notifyReader or notifyWriter respectively) are
triggered to notify the counterpart that a frame is available
or free. In the inkjet system, DSP processing time will be
optimally utilized if the hardware ISRs are enabled and run
only, when needed by the background task. In this setting,
inadvertent context switching is avoided by posting a
software interrupt from the notifyReader function (i.e. from
the writer side), once the task puts the frame in the data pipe.

Software ISRs: Software interrupts are instantiated in
software (not associated with any physical device) and are
less time-critical than the hardware interrupts. As shown in
the figure 2 to synchronize motion control task and hardware
ISRs, config_carriage software interrupt is posted when a
carriage_pipe frame buffer is filled with a job for carriage
and config_stepper software interrupt is triggered once, a

stepper_pipe frame buffer is written to by the motion control
task. Once posted, the software interrupt copies data from
the pipe frame to a global structure, to_carriage for the
carriage mechanism and to_paper for the media handling
mechanism. Also, since copying data to global structures is
infrequent, posting a software interrupt for copying
operation is more efficient than copying the data in hardware
ISR itself.
 Another software interrupt, free_data is used to free the
memory used temporarily for storing the nozzle-mapped
data for the current swath after printing, corresponding
carriage position trajectory and scan start and scan stop
information (in to_carriage structure). It is important to free
the memory in a software ISR than in the carriage hardware
ISR because memory allocation and freeing are non-
deterministic [8], since DSP/BIOS maintains a linked list of
free memory blocks and allocation or freeing up of memory
requires traversing this linked list. If done in the carriage
ISR, carriage motion will be severely affected.

Semaphores: Completion of important events such as (a)
carriage has traversed the entire command position
trajectory (b) stepper motor has put the media at the required
swath start position and (c) memory used for printing the
current swath is freed, is indicated with the counting
semaphores carriage_sem, stepper_sem and memory_sem
respectively. Semaphores are inter-task synchronization and
communication primitives and they are needed to
synchronize the motion control task with hardware ISRs,
since the task might have to suspend its execution until some
events are completed. For example, if there is insufficient
system memory available for further processing or no frame
in either data pipe is available for writing the motion control
information. Posting a semaphore releases the task, waiting
for the corresponding semaphore to be posted.

Data Communication: Carriage hardware ISR reads
to_carriage structure to execute carriage position trajectory
and print the corresponding swath, while carriage is motion.
to_carriage structure contains the pointer to carriage
command position trajectory located in the heap section, its
length and the direction of printing. The swath information
consists of number of scans to be printed and start and stop
position of each scan in the swath being printed. This
information is used to configure pen driver interface
registers on-the-fly for printing each scan when carriage is in
motion. Motion control task knows about the status of
carriage through from_carriage structure, which carriage
ISR writes to. Actual carriage position, corresponding
command carriage position, current index in command
position trajectory, present carriage state along with the
number of scans printed in the current swath are indicated in
from_carriage structure.

Similarly, stepper hardware ISR reads to_paper
structure parameters for media advancement needed to print
a swath. to_paper structure consists of pointer to the step
table or excitation pattern for each phase of the stepper
motor and its length, pointer to the time table used to

generate precise stepping velocity profile and its length.
Number of times to repeat the given time table to advance
the media and command paper state is also included in the
to_paper structure. Stepper hardware ISR reflects its
execution state by writing to from_paper structure. Present
step table and time table index, the number of time table
repeat counts remaining, present paper state and number of
half steps moved on the page are stored in the from_paper
structure.

Synchronization between carriage and stepper
motor: Synchronization between carriage and stepper motor
is necessary when media is still being advanced at the
moment carriage is ready to print the swath. In all other
cases, where stepper motor is performing paper pick or eject
sequence and carriage is being retracted to properly position
it before printing the next swath or when it is being docked
to establish its home position initially, carriage ISR and
stepper ISR can run independently. Config_carriage
software ISR at the time of filling to_carriage structure
checks if carriage is commanded to print a swath and media
is already positioned to print it. If media is not properly
aligned, config_carriage requests stepper hardware ISR to
enable the carriage hardware ISR, otherwise carriage ISR is
enabled to process current job in to_carriage structure.
Similarly, to increase the printer throughput, carriage
hardware ISR posts stepper software ISR config_stepper as
soon as carriage starts decelerating at the end of swath.

Experimental Results

Table 3: Swath parameters used for testing carriage
motion controller

Figure 3 and 4 show the experimental and simulated
carriage position and velocity profiles for fixed-point
implementation of carriage motion controller in figure 1.
Representative swath parameters used for experiments are
given in table 3, where cartridge speeds for black printing
(table 2) are used for each scan. Carriage accelerates to an
intermediate velocity of 28 ips before decelerating back to
20 ips printing velocity for scan 2, thus performing
horizontal white-space skipping. After printing scan 2,
carriage accelerates to 30 ips printing velocity for scan 3
within an approach distance of 0.5 inch in accordance with
the principles of DPMC. In inkjet printing, phase plot of
carriage velocity vs. carriage position (figure 4) is especially
more relevant and important as carriage is required to reach
a certain command velocity at a given scan start position. As
evident, carriage speed and position requirements for given

swath parameters are very well met for the proposed
carriage motion controller (figure 1).

Figure 3: Comparison between experimental and simulated
carriage position (inch) and velocity (inch/sec) for swath
parameters in table 3

Figure 4: Experimental and simulated carriage velocity (inch/sec)
vs. position (inch) for swath parameters in table 3

Figure 5 and 6 show the carriage DC motor current

profile and stepper motor current profile in one of the phases
for printing a test pattern at 300 dpi in uni-directional and
bi-directional print modes respectively. The advantages of
implementing motion control architecture in figure 2 are
immediately apparent from the figures. Paper advancement
for the next swath starts immediately after printing of current
swath. This can be done only if motion control task can
simultaneously process the next swath in the background
and keep the paper advancement and carriage trajectory
information ready in stepper_pipe and carriage pipe

Scan
No.

Scan start
position (inch)

Scan stop
position (inch)

Velocity
(ips)

1 0.75 1.75 20
2 2.50 4.50 20
3 5.00 7.00 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

Sample Time(sec)

se
rv

o
po

si
tio

n(
in

ch
)

Carriage Position Vs. Time

Command carriage position
Observed carriage position
Carriage position from simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

5

10

15

20

25

30

35

Sample Time(sec)

se
rv

o
ve

lo
ci

ty
(in

ch
/s

ec
)

Carriage Velocity Vs. Time

Command carriage velocity
Observed carriage velocity
Carriage velocity from simulation

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

Carriage Position(inch)

C
ar

ria
ge

 V
el

oc
ity

(in
ch

/s
ec

)

Carriage velocity Vs. Position

Command carriage position & velocity
Observed carriage position & velocity
Carriage position & velocity from simulation

respectively when the carriage ISR finishes printing current
swath in the foreground. Also due to this motion control
framework, there is no time gap between carriage DC motor
current for printing and retracting (in uni-directional print
mode) or printing the next swath (bi-directional print mode),
which helps to increase printer throughput.

print final deceleration carriage retract print final deceleration

paper advance paper advance

print final deceleration carriage retract print final deceleration

paper advance paper advance

Figure 5: Carriage DC motor current and stepper motor current
in phase A for printing a test pattern in uni-directional print mode
at 300 dpi

print final deceleration

paper advance

print final
deceleration

paper advance

print final deceleration

paper advance

print final
deceleration

paper advance

Figure 6: Carriage DC motor current and stepper motor current
in phase A for printing a test pattern in bi-directional print mode
at 300 dpi

Table 4 details the overall motion control system

performance for printing a test page in uni-directional (row
1) and bi-directional print mode (row 2). Average execution
time for carriage hardware ISR is 165 µsec and 40 µsec for
stepper hardware ISR, well within their real-time deadline
requirements. Motion control task’s average computation
time per swath depends upon the test page specifications.
For bi-directional printing, carriage-retract may or may not
be required and hence, corresponding computation time per
swath is less in bi-directional printing.

Table 4: Motion control architecture performance for
printing a test page at 600 dpi in uni-directional and bi-
directional print mode

Conclusion

In this paper, a motion control architecture for DPMC is
proposed and implemented on TMS320C6211 DSP using
Lexmark Z-52 printer engine and DSP/BIOS real-time
operating system. The architecture utilizes various real-time
services of DSP/BIOS to effectively manage DSP
processing power, system memory and printer engine while
increasing printer throughput and it can be easily extended
to include image processing activities on the DSP.
Experimental results show the efficacy of the proposed
motion control architecture and the control scheme for
cartridge motion control.

References

1. M.K. Masten and I. Panahi, Control Eng. Practice, Vol.
5, No. 4 (1997), pg. 449-458

2. J.L. Hennessy et.al., Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers,
San Francisco, CA USA, 2001

3. T.J. Radermacher and R.D. Mayo, Programmable
Stepper Motor Controller and Method therefore, U.S.
Patent: 6,124,696 (2000)

4. S.H. Lee, Technique for Controlling the Position of a
Driving Motor and a Printhead, U.S. Patent: 6,000,869
(1999)

5. N. Nicoloff Jr., Mixed-Density Print Masking in a
Mixed-swath-height Printer, U.S. Patent: 6,017,113
(2000)

6. S. Akula et.al., Advantages of DSPs for Ink Imaging
Systems, TI World-wide RIP white paper, Dallas, TX
USA, 2000

7. A.V. Deshpande, DSP Based Inkjet Printer System for
Dynamic Print Mode Control, M.S. Thesis, Purdue
University, 2001

8. DSP/BIOS Workshop – A Real-time Software
Designer’s Workshop, DSP/BIOS – Notes 2.0, Texas
Instruments Inc. (2000)

Print
Time
(sec)

Interrupt,
Task

No. of
Interrupts

Total DSP
Clock
Counts

Avg.
Time
(µsec)

Carriage 79215 2.13588×109 179.75
Stepper 37239 2.13429×108 38.21

75

MC Task 64 2.00502×108 20885.61
Carriage 46277 1.28309×109 184.84
Stepper 38500 2.20753×108 38.23

52

MC Task 64 1.35721×108 14137.62

	Introduction
	Dynamic Print Mode Control
	Table 1: Measurements of print attributes for the color cartridge (Nozzle height is 192 nozzles, 64 nozzles each for cyan, magenta and yellow)
	Table 2: Measurements of print attributes for the black cartridge (Nozzle height is 208 nozzles)

	Experimental Inkjet Printer System
	Carriage Motion Control System
	Motion Control Architecture
	Experimental Results
	Table 3: Swath parameters used for testing carriage motion controller
	Table 4: Motion control architecture performance for printing a test page at 600 dpi in uni-directional and bi-directional print mode

	Conclusion
	References

