Computation of Variance in Compartment Model Parameter Estimates from Dynamic PET Data

> Mustafa E. Kamasak ¹ Istanbul Technical University, Faculty of Computer and Informatics

> > ISBI 2012

¹This work is funded by Scientific and Technological Council of Turkey (TUBITAK) by grant 109E229.

Dynamic PET and Compartment Models

1 tissue compartment model

$$C_P \xrightarrow{k_1} C_{T1}$$

$$\frac{d}{dt}C_{T1}(t) = k_1 C_P(t) - k_2 C_{T1}(t) .$$
 (1)

2 tissue compartment model

$$C_P \xrightarrow{k_1} C_{T1} \xrightarrow{k_3} C_{T2}$$

$$\frac{d}{dt}C_{T1}(t) = k_1 C_P(t) - (k_2 + k_3)C_{T1}(t) + k_4 C_{T2}(t)$$
(2)
$$\frac{d}{dt}C_{T2}(t) = k_3 C_{T1}(t) - k_4 C_{T2}(t) .$$
(3)

Kinetic Parameter Estimation

Activity measured from PET

$$C_{total}(t) = f_{v}C_{P}(t) + (1 - f_{v})\left\{\sum_{i=1}^{N}C_{Ti}(t)\right\}S_{A}e^{-\lambda t}$$
. (4)

- f_{v} fraction of plasma within the tissue, S_{A} - initial specific activity of the tracer λ - decay constant for the radioactive isotope.
- Nonlinear least squares is used to estimate kinetic parameters

$$\hat{\theta} = \arg\min_{\substack{\theta \ge 0}} \|\mathbf{x} - f(\theta, \mathbf{t})\|_{W}^{2}$$
(5)

$$\theta = [k_1, k_2, \cdots, k_p] \ (\theta \in \mathbb{R}^p)$$
 - kinetic parameters
 $f(\theta, t)$ - forward model
 $\mathbf{x} = [x_1, x_2, \cdots, x_K]$ - TAC measurements $(x_k = C_{total}(t_k))$.

Computation of Variance in Kinetic Parameter Estimates

Assume an implicit estimator

$$\hat{\theta} = h(x) . \tag{6}$$

 First order Taylor expansion is used for the implicit function (h(.)) around correct TAC values:

$$\hat{\theta} = h(x) \approx h(x^t) + \nabla h(x^t)(x - x^t)$$
(7)

 x^{t} - correct TAC values $\nabla h(x^{t})$ - value of function derivative at x^{t} .

Expected value of both sides

$$b_{\theta} \approx \nabla h(x^t) b_x \tag{8}$$

 b_x - bias in the TAC

 b_{θ} - bias in the kinetic parameter estimates.

Computation of Variance in Kinetic Parameter Estimates

 Covariance of the kinetic parameter estimates (Cov_x) can be computed as:

$$Cov_{\theta} \approx \nabla h(x^{t}) Cov_{x} \nabla h(x^{t})^{T}$$
. (9)

where denotes the covariance matrix of the measured TAC.

• Derivative of Implicit Function $(\nabla h(.))$

$$\nabla h(x^t) = (S^T W S)^{-1} S^T W^T , \qquad (10)$$

where S is the sensitivity matrix defined as:

$$S \triangleq \left[\frac{\partial f(\theta^t, t)}{\partial k_1}, \frac{\partial f(\theta^t, t)}{\partial k_2}, \cdots, \frac{\partial f(\theta^t, t)}{\partial k_P}\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Validation Experiments

- Variance obtained from Monte Carlo simulations are compared to the analytically computed values
- Comkat software library (version 3.2) is used
- Kinetic parameters used in the 1T and 2T compartment models

	1-T model	2-T model
k_1	0.1020	0.1020
k_2	0.1300	0.1300
k ₃	-	0.0620
k_4	-	0.0068

- Total 110 min. of data is divided into 28 time frames: 4 × 0.5 min., 4 × 2 min., and 20 × 5 min.
- Gaussian noise is added to correct TAC. $\sigma = [\sigma_1, \sigma_2, \cdots, \sigma_K]$: $\sigma_k = \beta \sqrt{x_k / \Delta t_k}$, σ_k - standard deviation of noise β - noise level

Validation Experiments

- Monte Carlo simulations are performed at 15 different noise levels from β = 0.1 up to β = 1.5 by increments of 0.1.
- The noise level can be divided into three regions:
 - low-level noise (β < 0.5): region-of-interest (ROI) analysis where TACs of pixels within a uniform tissue are averaged
 - ▶ medium-level noise (0.5 ≤ β < 1.1): pixel-level TAC is used to estimate the kinetic parameters
 - ► high-level noise (1.1 ≤ β): low (dose) concentration of tracer is used

 For each noise level, 1000 realizations of independent and identically distributed (iid) Gaussian noise are added to the correct TAC.

Performance metrics

 Ratio of standard deviation to true kinetic parameter for Monte Carlo simulations

$$\xi_{k_p}^{MC} = \frac{\sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (k_p^{(i)} - \overline{k_p})^2}}{k_p^t} , \qquad (11)$$

 $\overline{k_p}$ - average value for kinetic parameter k_p estimated from all noise realizations

- The ratio of standard deviation to true kinetic parameters is computed for each noise realization ξ⁽ⁱ⁾_{k_p} = σ⁽ⁱ⁾_{k_p}/k^t_p,
 σ⁽ⁱ⁾_{k_p} standard deviation of kinetic parameter p for noise realization i.
- ► Mean and standard deviation of ξ_{k_p} are compared to $\xi_{k_p}^{MC}$ at different noise levels.

Covariance for 1T Compartment Model

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Covariance for 2T Compartment Model

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Covariance for 2T Compartment Model

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Conclusions

- Difference between Monte Carlo variance and analytical variance increases with the level of noise.
- Standard deviation of analytical variance increases with noise-level.
- Difference between Monte Carlo and analytical variance is higher for 2T compartment model compared to 1T compartment model.
- Difference between Monte Carlo and analytical variance is less than 1.5% for 1-tissue (1T) compartment model and less than 15% for 2-tissue (2T) compartment model at all noise levels.
- Standard deviation of analytical variance is less than 1% for 1T compartment model and less than 10% for 2T compartment model at all noise levels.
- Proposed framework for the variance in the kinetic parameter estimations can be used for 1-T and 2-T compartment models even in the existence of high noise.