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vii



viii



FOREWORD

First and foremost, I would like to express my gratitude to my advisor Assoc. Prof.
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A COMPRESSED SENSING BASED APPROACH ON
DISCRETE ALGEBRAIC RECONSTRUCTION TECHNIQUE

SUMMARY

Image reconstruction from incomplete projections has a crucial meaning in
tomographic imaging field, due to some restrictions and requirements. Although the
analytical methods, such as filtered backprojections (FBP), are preferable because of
their low computational cost; they are not good at reconstructing satisfying images in
case of limited number of projections and limited view. On the other hand, iterative
methods (e.g. algebraic reconstruction technique (ART), norm optimization) makes
the reconstruction from incomplete projection data possible. The ART (as well as its
variations) models the reconstruction problem as a system of linear equations where
the discretization points (i.e. pixels) of the image are variables and the equations
represent the projections. For these algebraic reconstruction methods (abbreviated
ARM), there is no unique solution due to the under-determined characteristic of the
system, when the incomplete projection data is the case. Many iterative methods take
some constraints into consideration and some of those methods suggest to exploit prior
knowledge, if exists, in order to find the best approximation to the exact solution.
The field of discrete tomography (DT) assumes that the variables have a range (and
sometimes domain) of a finite and discrete set, whose element count is few and known
a priori; and it aims to find a good quality solution even if the projection samples
are highly reduced. Compressed sensing (CS) based methods, in the other respect,
aims to find the sparsest solution by assuming the image is sparse in a known domain.
Both approaches are used to be able to recover images from the projection data which
doesn’t satisfy the Nyquist-Shannon criterion.

Discrete algebraic reconstruction technique (DART), which is a technique used in DT
field and lies at the core of this study, accomplishes the goal stated above by combining
a continuous ARM and a discretization scheme, in an iterative manner. In this study,
the DART algorithm is investigated and it is combined with an initial total variation
minimization (TvMin) technique, which is used to solve CS problems, to ensure a
better initial guess. Also, the algorithm is extended with a segmentation procedure in
which the threshold value, which simultaneously minimize both the projection error
and the total variation (TV), is selected from a finite set of candidates, obtained using a
histogram based thresholding scheme. Furthermore, the algorithm is extended with
a gray level estimation procedure, which serves as an automatic determination of
the gray levels to be used in the discretization step. A formulation is presented in
order to approximate the exact gray levels and it is shown that the gray levels can
almost be computed, even though they are not known in advance. All implementations
are done using MATLAB environment. The proposed algorithm is compared to the
DART and the FBP algorithms by the simulation experiments which are done under the
conditions of limited number of projections, limited view and noisy projections, and
the computational results are presented visually, either via the reconstructed images or
the graphics.
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AYRIK CEBİRSEL GERİÇATMA TEKNİĞİ İÇİN
SIKIŞTIRILMIŞ ALGILAMA ESASLI BİR YAKLAŞIM

ÖZET

Bilgisayarlı tomografide, x-ışınları ile taranan nesnenin iki boyutlu kesit görüntüsünün
bir boyutlu izdüşüm veri kümesinden geri çatımı problemi, analitik yöntemlerle veya
yinelemeli olarak çözülebilmektedir. Geleneksel filtreli ters izdüşüm tekniği (FBP)
başta olmak üzere, bu amaçla kullanılan analitik yöntemler, merkezi kesit teoremine
dayanmaktadır. Bu yöntemler hesaplama karmaşıklığının düşük olmasından dolayı
tercih edilir olsalar da, Nyquist-Shannon kıstasını karşılayamayacak kadar sınırlı
sayıda veya sınırlı açısal aralık ile toplanan izdüşümlerden kaliteli görüntüler elde
etme konusunda başarısızdırlar. Ancak tomografik görüntülemede, bir görüntünün
eksik izdüşüm verisinden eksiksize yakın bir şekilde geri çatımı, çeşitli kısıt ve
gereksinimlerden dolayı kritik öneme sahiptir. Bu nedenle, cebirsel geriçatma ve norm
optimizasyonu gibi yinelemeli yöntemler, çeşitli varsayımlar kullanıldığı takdirde
eksik veri ile geri çatımı olanaklı kıldığı için, tercih edilmektedir.

Cebirsel yöntemler, geriçatma problemini, değişkenlerin görüntünün ayrık bileşenleri
(çoğunlukla pikseller) olduğu ve elde edilen izdüşümlerin denklemler ile ifade
edildiği bir lineer denklem sistemi olarak formüle eder ve bu sistemin çözümüne
yinelemeli olarak yakınsamaya çalışır. Bu sistemde her bir denklem bir izdüşüm
ölçümünün, ilgili ışının taradığı piksellerin ağırlıklı toplamı olduğunu (buna doğru
integrali de denmektedir) ifade eder. Bahsedilen lineer denklem sistemi için izdüşüm
verisinin eksik olması durumunda, sistem kararsız özelliktedir ve tek bir çözümden
bahsedilemez. Bu önerme uygulamada, bir izdüşüm veri kümesinin birden fazla
imgeye ait olabileceği gerçeğine karşılık düşer. Bu tip kararsız sistemler için
çözüm getiren Kaczmarz metodu, her iterasyonda mevcut kestirimi hiperdüzlemlere
iz düşürerek güncellemeyi önermektedir. Cebirsel geriçatma tekniği (ART), eşzamanlı
yinelemeli geriçatma tekniği (SIRT) ve eşzamanlı cebirsel geriçatma tekniği (SART)
gibi cebirsel geriçatma algoritmaları, Kaczmarz metoduna dayanmaktadır. Toplanan
izdüşüm verisi miktarı oldukça kısıtlı olduğunda bile kaliteli görüntüler elde edebilmek
için, yinelemeli teknikler, önsel bilgi ve varsayımlardan faydalanarak yeniden
geliştirilmektedir. Buna, bu çalışmanın da temelini oluşturan, ayrık tomografi
(DT) alanı ve sıkıştırılmış algılama (CS) teoremine dayanan yöntemler örnek olarak
gösterilebilir. Ayrık tomografi, görüntü bileşenlerinin sonlu ve ayrık bir değer
kümesinden (ve hatta kimi durumlarda tanım kümesinden) geldiği varsayımı ile,
ve taranan nesnenin az sayıda farklı yoğunluk derecelerinden oluştuğu önşartını
koyarak, gereken izdüşüm verisini bir hayli azaltmayı amaçlamaktadır. Diğer
taraftan, sıkıştırılmış algılama (CS) teoremini temel alan yöntemler ise, bir görüntünün
kendisinin veya bilinen bir dönüşüm alanındaki temsilinin seyrek olduğu varsayımı ile,
en seyrek çözümü bulmayı hedeflemektedir.

Yukarıda bahsedilen amaçlarla geliştirilmiş ve ayrık tomografi alanında kullanılmakta
olan ayrık cebirsel geriçatma tekniği (DART), birbirini izleyen; cebirsel geriçatma,
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geriçatma görüntüsünü ayrıklaştırma ve değişken azaltma aşamalarından oluşan bir
algoritmaya sahiptir. Bu algoritmada her bir iterasyon için, ART, SART veya SIRT
kullanılarak bir geriçatma görüntüsü hesaplanır ve sonrasında bu görüntü üzerinde,
Otsu eşikleme algoritmasına göre histogram üzerinden elde edilen eşik değerler ve
gerçek görüntüdeki gri seviyelere dair önsel bilgi parametreleri ile segmentasyon
uygulanır. Burada, eşik değer belirleme amaçlı kullanılan Otsu yöntemi yerine, mevcut
izdüşüm verisinden faydalanarak izdüşüm hatasını enküçültecek eşik değerlerini
seçmeye yönelik bir yaklaşım da önerilmiştir. DART algoritması aynı zamanda
her iterasyonda, sistemi daha az kararsız hale getirmek adına, segmentasyon sonrası
yanlış değerlere atanmış olma ihtimali daha yüksek olan sınır bölgelerin dışındaki tüm
pikselleri sabitler ve geriçatma işlemine sabitlenmeyen pikseller ile devam eder.

Sıkıştırılmış algılama teoremini temel alan yöntemler ise seyrek olduğu bilinen
sinyaller için, en seyrek çözümü bulmak adına sinyalin `1 normunu (`0 −
minimizasyonu ve `1−minimizasyonu özdeşliğine dayanarak) enküçültmeye çalışır.
Çoğu bilgisayarlı tomografi görüntüsünde olduğu gibi sinyalin kendisinin seyrek
olmaması durumunda ise, sinyali seyrekleştiren dönüşümlerden faydalanılır ve bu
sefer, sinyalin dönüştürüldüğü uzaydaki temsili için `1 −minimizasyonu uygulanır.
Sinyalin seyrek temsilini frekans uzayında aramak için kullanılan dalgacık (Wavelet),
Fourier gibi dönüşümler dışında, seyrekleştirmeyi imge uzayında gerçekleştiren
dönüşümler de kullanılmaktadır. Toplam değişintinin minimizasyonu tekniği (TvMin),
ikinci tipte bir dönüşüm olan ayrık gradyan dönüşümünden faydalanır. Ayrık
gradyanın `1 normuna toplam değişinti (TV) denilmektedir ve amaç, bu toplam
değişinti miktarını, izdüşüm hatasını da sıfıra yakın bir eşiğin altında tutacak şekilde
enküçültmektir. En bilinen hali ile toplam değişinti minimizasyonu problemi, izdüşüm
hatasını kısıt olarak kullanmak yerine, toplam değişinti terimi ile birlikte amaç
fonksiyonuna dahil ederek formüle edilmektedir. TvMin tekniği, görüntünün yüksek
frekanslı bileşenlerini koruyabilme özelliğinden dolayı, görüntü geriçatma ve gürültü
giderme amacıyla, sıklıkla tercih edilmektedir.

Bu çalışmada DART algoritmasını TvMin tekniğinden de faydalanarak geliştirmek
amaçlanmış ve bu doğrultuda DART üzerinde bazı değişiklikler öneren bir algoritma
sunulmuştur. Öncelikle, daha iyi bir ilk kestirim elde edebilmek amacıyla,
DART’ta kullanılan cebirsel geriçatma yönteminin, sadece ilk kullanım için TvMin
ile değiştirilmesi önerilmiştir. Bu sayede, tez kapsamında sunulmuş olan deney
sonuçlarından da görülebileceği üzere, segmentasyona daha uygun bir görüntü elde
edilebilmektedir. Ayrıca, önerilen algoritma, DART algoritmasının sürekli görüntüyü
ayrıklaştırma amacıyla kullandığı segmentasyon yöntemi üzerinde durmakta ve
bunun yerine kullanılabilecek iki aşamalı bir eşik değeri seçme prosedürü ileri
sürmektedir. Histograma ve izdüşüm hatasına dayalı iki yaklaşımı birleştiren bu
prosedürün ilk aşamasında, iki kademeli çok düzeyli Otsu (TSMO) algoritması
kullanılarak, histogramdaki vadi sayısı kadar aday eşikleme değeri hesaplanmakta;
ikinci aşamasında ise bu adaylar arasından, izdüşüm hatası ile birlikte toplam
değişintiyi enküçülten eşik değeri seçilmektedir. Böylece hem geri çatılan görüntü
hem de izdüşüm ölçümleri ile tutarlı eşik değerleri seçilebilmekte, gerçek görüntüye
daha yakın sonuçlar hesaplanabilmektedir. Çalışma kapsamında ele alınan son nokta
ise, ayrıklaştırmada kullanılacak olan gri seviyelerin önceden bilinmemesi veya yanlış
bilinmesi halinde, algoritma tarafından tahmin edilebilmesi hususudur. Bu amaçla
kullanılabilecek bir formülasyon sunulmuş ve gri seviyelerin, gerçek değerlerine
oldukça yakın bir şekilde hesaplanabildiği, ilgili deney sonuçları ile gösterilmiştir.
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Deneylerde her biri iki gri seviyeden oluşan, beş farklı sentetik görüntü (fantom)
kullanılmıştır. Önerilen algoritma, her bir fantom için, DART ve FBP algoritmaları
ile sınırlı sayıda izdüşüm, sınırlı açısal aralık ve gürültülü veri gibi koşullar simüle
edilerek karşılaştırılmıştır. Ek olarak, bu üç algoritmanın uzaysal çözünürlüğü, farklı
frekanslara karşılık düşen test örüntüleri kullanılarak sınanmıştır. Uygulamaların
tamamı MATLAB ortamında gerçeklenmiş olup, deneyleri sonuçları, grafikler ve elde
edilen geriçatma görüntüleri kullanılarak sunulmuştur.
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1. INTRODUCTION

The following document is organized into six chapters. Chapter 1 serves as an

introduction to the succeeding chapters. It presents a background first, next exemplifies

some studies from the literature and finally introduces the hypothesis. Chapter

2 describes the principles of the tomographic reconstruction problem and merely

examines the analytic and algebraic reconstruction methods. Chapter 3 narrows the

reconstruction problem, introduced in the previous chapter, down to a reconstruction

from small number of projections problem and presents discrete tomography and

compressed sensing concepts. In Chapter 4, the proposed method is yet described, by

first introducing the DART algorithm and TvMin technique, respectively. In Chapter

5, the simulation experiment results are presented by considering several conditions

and comparing the proposed method with the DART algorithm and finally, Chapter 6

is reserved for the conclusions and recommendations. The thesis is organized from the

general to specific and the more specific the subject is, the more detailed it is explained.

1.1 Background

Tomography is a technique to view the internal structure (i.e. density distribution) of

an object by scanning it through penetrating waves. A range of tomographic imaging

modalities are available depending on the physical phenomena (e.g. X-rays, gamma

rays, radio-frequency waves etc.) used. Even its most famous applications (e.g. CT,

SPECT, MRI etc.) are used in medical imaging, it is also employed in the other

scientific fields such as material science, geophysics and microbiology.

From the etymological point of view, the word tomography is derived from two

Greek words τ óµoς tomos, meaning slice and γράϕω grapho, meaning to write.

Tomographic imaging basically deals with the reconstruction of cross-sectional images

of an object from its projections. Projection measurements, which are acquired from a

range of angles, actually corresponds to the line integrals of the image for a set of lines

along a range of directions. The primitive reconstruction problem, which asks how to

1



Figure 1.1: "Hand mit Ringen (Hand with Rings)" the first medical X-ray picture by
Wilhelm Röntgen (1845–1923), it shows the hand of his wife.

determine a function from its available line integrals in mathematical point of view, was

solved by Austrian Radon, in 1917. After nearly fifty years of it, both Allan MacLeod

Cormack and Godfrey Newbold Hounsfield developed Radon’s inverse transformation

further and then, Hounsfield experimented his technique using X-rays for projections

and computers for calculations. It was the invention of X-ray computed tomography

(CT), introduced in 1971. For more details about the history of CT, the reader is

referred to [2].

CT scans an object with X-rays sent from different angles and acquires several

projections, which are practically the measures of the radiation attenuated by the

density of the object. Measured projections, referred as sinogram, are then used

to obtain the three-dimensional image of the object, which is also considered to be

a series of two-dimensional slices. Slice reconstruction is a transformation of the

one-dimensional projection measurements from sinogram domain to image domain. In

this thesis, our interest is restricted with the reconstruction of the slice images without

extending it to the third dimension.

Slice reconstruction problem is solved either analytically or iteratively (e.g. algebraic

techniques), by considering the slice image as a function to be reconstructed from

its line integrals [3]. Analytical methods, such as Filtered Backprojection (FBP), are
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based on Fourier analysis, in particular central slice theorem, and derives the function

from an almost complete projection data set. However, in many practical applications

of CT, acquired projection data is fewer due to the limitation of radiation dose, time

and physical facilities. Iterative methods, even primitive Kaczmarz’s method (see

Chapter 2), have the ability of reconstructing the function from fewer projections, but

their computational cost is higher than the analytical methods, performed in frequency

domain. The phrase iterative reconstruction techniques, which constitutes the broadest

scope of this thesis, is used to denote all algorithms which approximate the solution

by iteratively updating the variables. One subcategory of the iterative methods, called

as algebraic reconstruction methods (ARM), proposes an algebraic approach to solve

the reconstruction problem. The abbreviation ARM is used to refer the algebraic

reconstruction algorithms whose principle method is Kaczmarz’s [4] (e.g. ART, SART,

SIRT), in this document.

Reconstruction problem can be set up as a linear system of equations in which the slice

image is taken as an array of unknowns to be evaluated from the available projections.

This approach constitutes the basis of the algebraic methods. Several investigations on

algebraic methods basically concern with two problems: how to reduce the complexity

and how to develop the ability of reconstruction from small number of projections

further. The field called discrete tomography is fundamentally focus on the second

goal. Discrete tomography techniques (DT) highly reduces the number of required

projections by assuming that, the range of the image is restricted to be a discrete set

of numbers. There is another recent approach, known as Compressed Sensing (CS)

based reconstruction techniques, sharing the same goal with DT. CS based techniques

deals with the compressible signals (e.g. sparse images) and based on the fundamental

fact that the signals can be recovered from very few measurements if the sparsity is the

case.

Discrete Algebraic Reconstruction Technique (DART) refers to a novel algorithm,

proposed by Batenburg and Sijbers in [5], and lies at the core of this thesis. It basically

combines two alternating stages: a continuous iterative reconstruction algorithm and a

discretization procedure. In this work, the two stages of DART are separately examined

and extended with certain approaches in an effort to improve the reconstruction quality

in a time efficient manner. This work first concentrates on the initial guess to make
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it easier to segment. This is achieved by a total variation minimization technique

(TvMin) instead of algebraic reconstruction method (abbreviated ARM), used in

DART. TvMin is a CS based technique, not an algorithm, used to solve ill-posed

problems by assuming that a sparse representation of the image exists. Second focus

of this thesis is the accurate and efficient discretization of the continuous image, using

the projection error and total variation (TV). And as a final interest, the thesis focus on

the gray level estimation and reformulate the procedure in order to compute the gray

levels, used in discretization stage, in case lack of prior knowledge.

1.2 Literature Review

There are a variety of iterative methods to solve the reconstruction problem by

modelling it as a system of linear equations, in which the image has a range of real

numbers. The name Algebraic Reconstruction Technique and the abbreviation ART

were first used by Gordon, Bender and Herman in 1970 [6]. The technique was

applying the Kaczmarz’s algorithm (Stefan Kaczmarz, 1937), used to solve linear

systems, to the field of image reconstruction. Hounsfield’s CT was also using the

same principle, so it is possible to say that the ART is the first technique used for the

purpose of tomographic imaging. In order to improve the computational inefficiency of

the ART or tackle with the noise, it is developed further [7] [8] [9] and it is reproduced

as Simultaneous Iterative Reconstructive Technique (SIRT), Simultaneous Algebraic

Reconstruction Technique (SART) [10] and so on.

Even though the term discrete tomography (DT) was first suggested by Larry Shepp, in

1994; the discussions on the problems, subjected to DT, goes back to the late 1950s [1].

There are many strategies used to solve DT problems, such as handling the problem

as a combinatorial problem [11] [12], approximating the solution statistically (e.g.

maximum a posteriori probability estimate (MAP estimate)) by fitting the problem to a

probability distribution [13] or combining a continuous reconstruction technique with

a discretization step [5]. For a very detailed source on the history of DT, [1] is referred.

Discrete Algebraic Reconstruction Technique (DART) was proposed by Batenburg

and Sijbers in [14], described in [5] and then became a well-known reconstruction

technique used in the field of DT. It alternates between two stages, one is a continuous

ARM and the other is the discretization step by exploiting the prior knowledge on
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the gray levels (i.e. the number of gray levels and the values of them). In DART

algorithm the discretization is applied during the reconstruction. The discretization

of the continuous tomogram is considered as an image segmentation problem.

Tomographic image segmentation are usually performed by using global or local

thresholding methods to select optimal thresholds by optimizing an objective, such as

within/between-class variance, entropy, probability distribution, etc. They all differ

in the segmentation accuracy, the computational complexity and the requirements.

The original DART [5] uses Otsu’s global thresholding scheme [15] which is a

histogram-based method described in Chapter 4. However, the only information used

by Otsu’s algorithm is based on the reconstructed image, whereas there are available

projection measurements in a reconstruction problem to be used. On the other hand,

the drawback of Otsu type thresholding schemes is its susceptibility to segment the

artefacts caused by the reconstruction process. Due to these reasons; Batenburg

and Sijbers, the developers of the DART, proposed a thresholding technique, called

as Projection Distance Minimization (PDM) in [16], which exploits the available

projections. Their method aims to minimize the Euclidean distance between the

measured data and the forward projection of the reconstructed tomogram. In [17],

they extended the original DART algorithm with PDM segmentation technique, but

this time they used PDM approach to determine not only the thresholds, but also the

gray levels automatically.

Image reconstruction from small number of projections has received considerable

attention among the tomographic imaging scientists. Similar to DT, compressed

sensing (or compressive sensing) based methods are also used to accomplish this

goal. Compressed sensing (CS) theory [18] deals with the sparse (compressible)

representations of signals, or images in our case, and states that it is possible to

reconstruct them from their fewer number of projections than required according to

the Nyquist - Shannon sampling criteria [19]. Computing the sparsest solution directly

has high computational load, hence the solution is usually approximated by heuristic

methods, that might be roughly classified as greedy algorithms, `1 −minimization

and total variation minimization (TvMin). Norm-minimization techniques are used

in many applications related to the topic, such as the reconstruction of magnetic

resonance images (MRI) [20] since it requires short scan time causing undersampled
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projection data. For an image reconstruction problem, image is not sparse in

spatial domain, hence the sparsity in another domain is exploited. TvMin uses

the norm of gradient of the image, since the gradient is almost always sparse.

The application of TvMin concept to image processing is first introduced in [21]

and then, the methodology is discussed in [22] [23] [24]. TvMin techniques

are often used in medical imaging [25] [26] [27]. A novel comparison between

norm-minimizing reconstruction and TvMin is presented in [28] by considering the

real world applications.

1.3 Hypothesis

DART utilizes an ARM in order to obtain an initial reconstruction and keeps using it

in subsequent iterations, while updating the discretization points (i.e. pixels). Keeping

the update procedure as it is, but switching the initial phase with a TvMin step

can yield a better approximation, since TvMin technique is good at reconstructing

edge-preserved, leading easy-to-segment, images. And what’s more, TvMin has the

ability of reconstructing from fewer number of projections compared to ARM and that

makes it preferable as the initial stage where the system is more under-determined than

the succeeding iterations. Even though the TvMin solvers have more computational

load than ARM algorithms, it is negligible for a stage, which is performed once and

with a small number of iterations.

Discretization of the continuous tomograms is handled by a segmentation, in particular

thresholding, method. Using a thresholding scheme which is only based upon

the image without considering the available measurements, may not satisfy a true

reconstruction; since the input image is actually the output of the former reconstruction

and it might be corrupted by different kinds of artefacts. On the other hand, selection

of an optimal threshold value, such that minimizes the error in sinogram domain, is a

optimization problem with large search space and high computational load, due to its

non-differentiability. To reduce the size of search space, this optimization procedure

can be combined with an optimized, histogram-based, multilevel, global thresholding

method (two-stage multilevel Otsu is used in this thesis). The histogram-based method

might first be used to obtain a set of candidate thresholds and then, the optimum

threshold can be selected by computing and comparing the forward projections of
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each possible segmentations. Here the cost function can also be regularized by using

total variation minimization approach, again due to its capability of preserving high

frequency details.

Gray level estimation is also considered within the scope of this thesis. In case the

gray levels are not known a priori, they might be approximated automatically by

minimizing the projection error. Since the projection error is differentiable to the gray

levels, it can directly be formulated, as it is done in Chapter 4, and used to update the

previous gray levels in each subsequent iterations.
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2. TOMOGRAPHIC RECONSTRUCTION

2.1 Problem Definition

The physical phenomena behind the projection data acquisition process in CT is the

attenuated X-rays. X-rays are sent through the cross section of the scanned object

and some of the photons are absorbed, so the ray is attenuated until it reaches the

corresponding detector. The amount of the attenuation depends on the density (or

attenuation coefficient) of the object and this relationship is described as follows:

Is = I0e−(
∫ s

0 f (x)dx) (2.1)

where I0 is the intensity of the ray while it is passing into the object, Is is the intensity of

the ray while it is passing out from the object and f (x) is the attenuation as a function

of the density (so the grayness of the pixels) of the object. By taking the logarithm of

both sides, one obtains:

ln(
Is

I0
) =−(

∫ s

0
f (x)dx). (2.2)

The result given in Eq. 2.2 is the mathematical expression of the term projection. It is

nothing more than the sum of the densities (line integral or ray sum, when using the

phrase for an image instead of object) along a line.

The data collection process can be considered as a transform from a two-dimensional

slice of the object to one-dimensional projections. An illustration is given in Fig. 2.1.

In this section, the attenuation function of the object is denoted by f (x,y). By assuming

the rays sent from an angle are all parallel (known as parallel beam geometry), the

projection for the angle θ , using the normal equation of a line, is given by:

bθ (s) =
∫

xcos(θ)+ysin(θ)=s

f (x,y)dt. (2.3)
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Figure 2.1: The coordinate system of data collection from the projection angle θ using
parallel beam geometry.

where s is any ray sent with the angle θ . Eq. 2.3 can also be written as follows:

bθ (s) =
∞∫
−∞

∞∫
−∞

f (x,y)δ (xcos(θ)+ ysin(θ)− s)dxdy. (2.4)

where δ denotes Dirac-delta function. Eq. 2.4 is the Radon transform of f (x,y), which

defines transforms a cross-section of the object from spatial domain to the projection

domain where the slice is defined by its line integrals. Projection domain is also called

as sinogram domain due to the shape of projections. In Fig. 2.2, Radon transform of

an example image is shown.

After collecting projection data, the next step is re-transforming it to obtain (the image

of) the original slice. At that point, various algorithms are available to reconstruct

the data collected. In this thesis, these algorithms are categorized as analytical and

iterative, according to the way they are solving the reconstruction problem.
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(a) (b)

Figure 2.2: An example on Radon transform: (a) the original image, (b) the sinogram
of the image.

2.2 Analytical Reconstruction Techniques

Analytical methods basically solve the reconstruction problem using Fourier transform

of the image and its projections. The filtered backprojection (FBP) method is a

well-known analytical reconstruction technique. Before making a brief explanation

on FBP, the terminology is merely introduced.

Obtaining the projections of an object is modelled as a forward Radon transform in

previous section. The central slice theorem provides a relationship between the object

and the projections, by using Fourier transform. It states that the Fourier transform of

the cross-sectional object is approximated by the Fourier transforms of the projections

(acquired using parallel beams) at from different angles over 180 degree range. Each

transformed projection corresponds to a slice (a line at corresponding angle) of the

transformed cross-sectional object (or image).

The Fourier transform of the projection bθ (s) is

Bθ (ω) =

∞∫
−∞

b(s)e−2πωs jds (2.5)

where ω frequency, and the Fourier transform of the object function F(u,v) is given,

F(u,v) =
∞∫
−∞

∞∫
−∞

f (x,y)e−2π(ux+vy) jdxdy (2.6)
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where u = ωcosθ and v = ωsinθ . So, according to the theorem Bθ (ω) is placed along

a line at an angle θ in F(u,v). When the possible slices in frequency domain are filled,

an inverse Fourier transform can be applied to obtain the image.

2.2.1 Filtered backprojection (FBP)

As it is mentioned in the previous section, Fourier transform of each acquired

projection constructs one slice of the Fourier transform of the image, moreover number

of the projections are always finite, yielding missing frequencies, especially the higher

ones. Lack of information occurs in the high frequency regions, placed away from

the origin, since the distance between slices are increasing radially in the frequency

domain; and this causes blurry reconstructions. This problem can be handled by

interpolation using a rectangular grid in frequency domain.

The FBP method is based on central slice theorem. To tackle with the problem caused

by the finite number of projections, it first multiplies the Fourier transforms of the

projections with a weight function |ω| to compensate the increasing distance between

the slices, then convolves the image with the weighted backprojections in the spatial

domain, instead of interpolating in frequency domain.

f (x,y) =
π∫

0

dθ

∞∫
−∞

Bθ (ω)|ω|e2πωs jdω (2.7)

The considerable advantage of FBP is its computational load. Its computational cost is

less that the iterative methods, not only due to the analytical nature (single iteration) of

it, but also not to need to wait until all projections are collected, to start computation.

Moreover, FBP doesn’t produce good reconstructions for imperfect (e.g. incomplete,

noisy) projections.

2.3 Iterative Reconstruction Techniques (IRT)

Iterative reconstruction techniques refers to the techniques which solve the

reconstruction problem iteratively, as the name suggests. These techniques are better

in terms of the reconstruction quality, especially under some constraints; but they are

computationally more expensive than the analytical methods. The core idea behind
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the iterative methods is correction of the solution in each iteration such that a better

approximation is satisfied.

2.3.1 Algebraic reconstruction methods (ARM)

Algebraic reconstruction methods assume that the image is an array of unknowns and

the reconstruction problem can be set up as a system of linear equations. The unknowns

of this system are approximated with respect to the ray sums, iteratively [29]. In each

iteration, current reconstruction is re-projected and updated according to how much it

satisfies the projection measurements.

Ax = b (2.8)

where x ∈ ℜn, the vector of unknowns, represents the image and A ∈ ℜmxn is the

projection matrix whose entry ai j corresponds to the weight of the contribution of the

pixel x j to the projection bi where b ∈ℜm.

Eq. 2.8 can be written as weighted sums of the pixels, i.e. the line integrals of rays

over the traversed pixels as
n

∑
j=1

ai jx j = bi, i = 1,2, · · · ,m (2.9)

In practice, m < n and thus Eq. 2.8 is an under-determined system where the solution

is not unique, if it exists.

In Fig. 2.3, an illustration is shown to clarify the image projection problem.

An n-element square grid is superimposed on the image, in which each element

corresponds a discretization point (i.e. pixels). Pixel intensity is uniform within each

discretization point x j. A ray is represented by a thick line (or region between two

lines) and the shaded area, which is the intersection of the ith ray and the jth pixel, is

the weight ai j for the pixel x j to the projection measurement bi.

2.3.1.1 Algebraic reconstruction technique (ART)

Kaczmarz’s method, which constitutes the principle of the ARM algorithms (e.g. ART,

SART, SIRT), is an iterative projection technique used to solve inverse problems (e.g.

image reconstruction), declared as a linear system of equations (e.g. Eq. 2.10). The

method is based upon the assumption that x is a point in n dimensional space and the
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Figure 2.3: An illustration how ART defines the image as an array of unknowns and
uses the line integrals of rays.

solution, if exists, corresponds to the intersection of m hyperplanes. These hyperplanes

are expressed with the equations of the following linear system:

a11x1 +a12x2 + . . .+a1nxn = b1

a21x1 +a22x2 + . . .+a2nxn = b2

...

am1x1 +am2x2 + . . .+amnxn = bm

(2.10)

What the Kaczmarz’s method does is back-projection of the difference between the

projection data and the forward projection of the current reconstruction, hereafter

the residual, on the currently estimated image. It starts with an initial guess x0 and

computes x1 by projecting x0 onto the first hyperplane in Eq. 2.10. An illustration of

the process is given in Fig. 2.4, for the case of two variables and two hyperplanes. The

update procedure (or error correction) of the Kaczmarz’s method is given in Eq. 2.11.

~x(k) =~x(k−1)+λ
bi−~ai~x(k−1)

‖~ai‖2 ~ai (2.11)

where ~ai = (ai1,ai2, ...,ain) is ith row of the projection matrix and λ is the relaxation

parameter. Relaxation parameter was fixed to λ = 1. in Kaczmarz method. ‖~ai‖2

is the normalization factor. In Eq. 2.11, the update is performed for each projection

measurement bi separately meaning that the kth iteration consists of a sweep through
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Figure 2.4: A geometric illustration on the re-projection principle of ARM using the
Kaczmarz method in case of two unknowns and λ = 1.

the m projection measurements. The algorithm iterates through the equations

periodically, as so i = (i−1) mod (m) + 1.

Algebraic Reconstruction Technique (ART) is a rediscovery of the Kaczmarz’s method

to be used in tomographic image reconstruction field. It updates x by using Eq. 2.11

until it converges. Here the converge refers to the case where a termination criterion,

such that the residual r = b−Axk is smaller than a threshold, is met.

2.3.1.2 Simultaneous iterative reconstruction technique (SIRT)

The ART algorithm updates the image vector per ray, such that the update satisfies only

a single equation representing the corresponding ray integral. The SIRT algorithm, on

the contrary, updates the image vector after all equations are considered. The update

procedure of SIRT is given in Eq. 2.12 according to [30].

~x(k) =~x(k−1)+λ
1

∑
m
i ai j

m

∑
i

ai j
bi−~ai~x(k−1)

∑
n
j=1 ai j

(2.12)
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The iterative procedure given in Eq. 2.12 aims to find a solution which minimizes the

weighted squared projection error ‖Ax− b‖R = (Ax− b)T R(Ax− b) where R ∈ Rmxm

is diagonal matrix that contains rii = 1
∑ j ai j

[30].

2.3.1.3 Simultaneous algebraic reconstruction technique (SART)

The SART algorithm [10] is proposed as a combination of the ART and the SIRT

algorithms. It updates superior implementation of ART and based on a simultaneous

update of the current reconstruction, just like SIRT. In the SART algorithm, the update

procedure is applied for all rays in a given scan direction (projection) instead of each

ray separately as in the conventional ART or instead of all rays simultaneously as in

the SIRT. The SART update is given by:

~x(k) =~x(k−1)+λ
1

∑i∈Ωt ai j
∑

i∈Ωt

ai j
bi−~ai~x(k−1)

∑
n
j=1 ai j

(2.13)

where Ωt is the set of indices of the rays sent from tth projection direction. Eq. 2.13

starts with an initial estimate x0 and updates each estimate with a new one, iteratively.

When all projection directions are swept, one SART iteration is accomplished.

ART is good at rapid converge, but it results with a noisy looking reconstruction. On

the other hand, SIRT exhibits smoother reconstructions but it requires larger number

of iterations to converge. SART aims to tackle with the noise, caused by the sequential

update approach of ART, by proposing a SIRT-type algorithm; but it also aims to

reduce the cost of SIRT by considering a subset of equations in the system Eq. 2.10.

The proof and details on how this objective is satisfied by SART are accounted in [10],

the original paper of the SART algorithm.
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3. RECONSTRUCTION FROM SMALL NUMBER OF PROJECTIONS

3.1 Problem Definition

The name of this chapter is inspired from the name of the paper [28], proposed by

Herman and Davidi, in 2008. The reason having a chapter with this name is a need

to group discrete tomography and compressed sensing topics, since both are directly

related to the proposed method, in an appropriate place within entire document.

Reducing the number of projections have a crucial meaning in tomographic

reconstruction field. In many applications of CT, one desires to limit the radiation dose

due to the fact that it can damage to the exposed structure. To do that, the number of

X-ray projections which are acquired by the detectors should be reduced. Besides,

there are often limitations about the physical facilities and required time, which

prevents to acquire large number of projections. However, the image reconstruction

problem suffers from the difficulty that there are multiple images having identical

projections [28] when the number of projections small. Taking an algebraic viewpoint,

this difficulty is due to the under-determined characteristic of the system (see Chapter

2). Nyquist-Shannon sampling theorem states that a perfect reconstruction of the

signal is possible if the sampling rate is at least two times of the highest frequency

of the signal. If one has prior knowledge on the frequencies, the reconstruction can be

accomplished using fewer measurements. Both of the fields discrete tomography and

compressed sensing aims to reconstruct desirable images from even fewer number of

projections (incomplete) than required by the Nyquist-Shannon criterion and they both

make some assumptions to accomplish this goal.

3.2 Discrete Tomograhy

The name "discrete tomography" was suggested by Larry Shepp, who organized the

meeting, named DIMACS Mini-Symposium on Discrete Tomography, in 1994. The

problems related to this topic had been considered as combinatorial problems until
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they are grouped with this name after subjected meeting, and then new approaches

rather than combinatorial ones were started to be proposed. Discrete tomography (DT)

basically assumes that the range of the function, which will be reconstructed, is known

to be a given discrete set [1]. Let ΞL = {ξ1,ξ2, ..,ξL} be a priori discrete set with

L elements, each of which, ξl ∈ ZL, is corresponding to a gray level (label) for an

image reconstruction problem. This reconstruction problem of discrete tomography is

formulated as follows:

f ind Ax = b, such that x ∈ {ξ1,ξ2, ..,ξL} (3.1)

There are roughly two variants of discrete tomography. They differ from each other in

terms of the domains of the functions (images in our case). First approach basically

deals with the reconstruction of finite subset of the integer lattice. In [1], Herman and

Kuba define an image, considered by DT, as a function x : F → {ξ1,ξ2, ..,ξL}, where

F is a subset of Zn, meaning that an integer lattice in n dimensional space and the gray

levels of each of the lattice points must be equal to the one of the ξl ∈ ΞL [31]. For

this first approach, by assuming κ is a set of lines that intersects F , the projection, line

sums (i.e. ray sums) of the function x, is defined as:

∑
t∈F∩`

x(t), ` ∈ κ (3.2)

In Fig. 3.1, a simplified problem by taking only binary images into consideration,

so the label set is restricted with the values Ξ2 = {0,1}, illustrated together with

corresponding linear system, in order to exemplify the first approach which assumes

the domain of the function is also discrete.

Figure 3.1: A lattice set of Z2, its projections in two directions and corresponding
system of linear equations [1]

In contrast to the first variant which uses integer valued functions, second approach

assumes that the image has a continuous domain (such as Euclidean space), x : R2→

{ξ1,ξ2, ..,ξL}, while it has a finite and discrete set of range [31].
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Figure 3.2: A geometric illustration for a discrete reconstruction using one iteration
continuous reconstruction followed by discretization.

DT researchers try to answer the questions such that, is there a solution consistent

with the observed projections; is it unique, if a solution exists and how the solution

is reconstructed. There are different strategies to answer and solve these questions,

for both variants of DT. The problem is sometimes redefined as a combinatorial

problem (e.g. a network flow problem [11] [12]), sometimes modelled by fitting

a probability distribution or sometimes solved using optimization techniques. The

continuous algebraic reconstruction techniques can also be exploited while solving a

DT problem. The Discrete Algebraic Reconstruction Technique (DART) algorithm,

which is lying at the core of this study, also uses a continuous algebraic reconstruction

method to reconstruct the image. It applies the discretization after the continuous

reconstruction by using an image segmentation technique to enforce the range being

discrete and finite. DART algorithm is discussed in Chapter 4, in detail.
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3.3 Compressed Sensing Theory

The field of compressed sensing (CS) was pioneered by Donoho in [18] and by Candès

et al. in [19], in 2006. The idea behind the field of compressed sensing is to recover

a sparse (i.e. having very few non-zero coefficients) signal from very few linear

measurements. Here the assumption is having a sparse x ∈ Rn to be reconstructed

from the observations (projection measurements in our case) formulated as follows.

b = Ax (3.3)

For a sparse recovery problem, the objective is finding the sparsest solution and to

accomplish this goal one should first know how the sparsity is measured. Minimization

of the number of non-zero coefficients is corresponding to the `0 −minimization

technique, formulated in Eq. 3.4, which is the most primitive way and unfortunately,

it is an NP-hard problem.

min
x
‖x‖0 s.t. Ax = b (3.4)

where ‖x‖0 is defined as follows:

‖x‖0 := #{ j : x j 6= 0} (3.5)

After it was discovered that `0−minimization is same with `1−minimization, which is

the closest convex norm, under some conditions [32], solving such an NP-hard problem

has become possible [33]. So the `1−minimization, which is also known as Basis

Pursuit, problem is formulated as in Eq. 3.6.

min
x
‖x‖1 s.t. Ax = b (3.6)

where ‖x‖1 = ∑ j |x j|. By considering that the projections are noisy as in the following

model:

b = Ax+ e (3.7)

where e is the error term with bounded energy ‖e‖2
2 6 ε , the `1−minimization problem

should be redefined as follows:

min
x
‖x‖1 s.t. ‖Ax−b‖2

2 6 ε (3.8)
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where ε > 0 is controlling the consistency.

The same problem can also be written as an unconstrained optimization problem as in

Eq. 3.9.

min
x

1
2
‖Ax−b‖2

2 +µ‖x‖1 (3.9)

where µ is the regularization parameter. This parameter is indicating the importance

of each terms. Since it has a crucial meaning, there are various studies on selecting the

appropriate regularization parameter.

Typically, in an image reconstruction problem, signals are not themselves sparse but

they might be sparse in an appropriate transform domain, with some orthonormal basis

Φ, such that x = Φc where c is sparse. If almost all the entries of c are zero (or almost

zero), x is said to be sparse in Φ domain. So the problem is formulated as in Eq. 3.10

so that c is desired to be recovered from the observations, defined as follows:

min
x
‖c‖1 s.t. AΦc = b (3.10)

Most of the CT images, have large amount of low frequency (smooth) regions while

having fewer high frequency ones. So, transforming an image to frequency domain will

probably result with a sparse representation of it, due to the coefficients which are very

close to zero. Fourier, Wavelet and discrete cosine transform are all used as sparsifying

transforms. On the other hand, the signals may have sparser representations even in

spatial domain. Using the spatial finite differences, using first or second derivations

(e.g. Laplacian transform) may yield better results, since the gradients of the images

are generally sparse. Total variation minimization (TvMin) is a well-known technique

which exploits the sparsity of the gradient magnitude of the image and tries to minimize

the total variation (TV) which denotes the `1− norm of the gradient magnitude. The

problem can be defined as follows:

min
x

TV (x) s.t. ‖Ax−b‖2
2 6 ε (3.11)

where TV (x) denotes the total variation of the image and ‖Ax−b‖2
2 6 ε enforces the

measured data consistency.

The standard TvMin techniques solve the following unconstrained formulation of the

problem:
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min
x

TV (x)+
µ

2
‖Ax−b‖2

2 (3.12)

TvMin techniques are known as edge-preserving methods, which yields sharper

reconstructions. TV regularization is also applied on image denoising and

deconvolution problems. For more details on TvMin technique, one is referred to

Chapter 4 of this document.
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4. PROPOSED METHOD

The proposed method involves three major parts: (1) using TvMin as an initial stage

to DART, (2) selection of thresholds, which minimizes the projection error and total

variation, from a finite set of candidates obtained a histogram-based segmentation

procedure and (3) gray level estimation. In this chapter, first two sections are reserved

for the DART algorithm and the TvMin technique, respectively; since the proposed

method, is said to be a combination of these two methods.

4.1 Discrete Algebraic Reconstruction Technique (DART)

The DART was first proposed by Batenburg et al. in [14]. DART combines a

continuous algebraic reconstruction method (ARM) with a discretization step in order

to obtain a discrete image in which all pixels are assigned to one of the gray levels

from a pre-defined level set. Discretization step requires a prior knowledge, It is

capable of computing better reconstructions from fewer projections as compared to

the alternatives, not only because of its discrete nature, but also by reason of its ability

to reduce the number of variables by focusing on the regions where the reconstruction

procedure is tend to fail. These regions correspond to the boundary pixels on the image

and they are tried to be reconstructed with the subsequent iterations, while the others

are fixed. Less number of variables makes the problem less under-determined resulting

with more accurate solution.

The DART starts with a continuous step to compute an initial approximation by

performing fixed number of ARM iterations. After several ARM iterations, a

reconstruction whose range is real numbers is obtained. The resulting image tends

to have artefacts due to the less number of projection data, limited range of projection

angles or noise, and it is hard to detect where the exact boundaries of the object are,

from reconstructed image. This step is followed by the segmentation step in which the

reconstructed image is discretized, so that it has only the gray values from given level
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set: x j ∈ {ξ1,ξ2, ..,ξL}. To segment the image, Otsu’s global thresholding scheme is

used by choosing the thresholds as the average of two consecutive gray levels.

The segmented image generally has the correct gray levels in the interior regions,

which are far away from the boundaries. The DART exploits this observation in order

to reduce the number of variables for the subsequent iterations. Hence, the boundary

pixels B, which differ from at least one of the adjacent pixels using 8-connected

neighbourhood, are extracted from the segmented image. Instead, one can use

4-connected neighbourhood which may yield less number of boundary pixels, so the

variables, to be updated.

Next, the boundary pixels are extended with a randomized scheme in which a

non-boundary pixel is included to the set of B with probability 1− p, where p is the

fix probability and defined as 0 < p ≤ 1. This process is accomplished to cope with

the images with small holes and the noisy projections. This extended new set is called

as free pixels U which implies the only pixels that will be reconstructed in the next

iteration of DART. The remaining pixels, called fixed pixels and denoted by F , are

assigned to the pre-defined gray levels and not updated.

Recall the system of linear equations that is presented in Section 3.2

Ax = b (4.1)

where A ∈ Rmxn is the projection matrix, b ∈ Rm is the vector of the projection

measurements and x ∈ Rn is the vector of the image pixels.

Eq. (4.1) consists of m linear equations while it has n variables and the systems

considered in tomographic reconstruction mostly be under-determined, i.e. n� m,

meaning fewer projections than the discretization points (pixels). If the elements of

set of F are assigned to the correct gray levels, the remaining less under-determined

system yields more accurate results for the pixels i ∈ F . Eq. 4.2 shows how the

remaining system is formed when the variable xi is fixed and removed from the

equations.
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Succeeding ARM steps are performed on the new system where the variables are

restricted to be the set of U and the new measured data is the residual sinogram

rk ∈ Rm, which is computed by subtracting the forward projection of the image with

the fixed pixels only f k ∈ Rn from the projection data as in Eq. 4.3, where k denotes

the DART iteration number.

rk = b−A f k. (4.3)

In Eq. 4.4, a fixed number of ARM update is applied on the free pixels and the resulting

reconstruction is added on the already fixed ones.

x(k+1) = f (k)+Su(k)r
(k). (4.4)

where S denotes the ARM operator which is applied on the residual sinogram r(k) to

update the image of update pixels u(k) ∈ Rn.

As a final stage of one DART iteration, a Gaussian smoothing filter is applied on the

resulting image x(k+1) to suppress the fluctuations between the fixed and non-fixed

pixels.

DART iterations are performed as long as the termination criterion, such as a fixed

number of iterations or converge of the projection error, is not met.

DART reduces the number of unknowns in the original under-determined system,

since almost each succeeding iteration comes up with the reconstruction problem to

be solved for only free pixels. This approach not only reduces the computational cost

but also computes higher quality reconstructions.

To clarify the DART algorithm, the pseudo code is given in Fig. 4.1.
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Algorith 1 (DART)

x(0)←− ARM(x := 0,A,b), k := 0

while (stop criterion is not met) do

begin

Segment image: sk←− Otsu(xk)

Subdivide sk into free pixels Uk ⊂ xk and fixed Fk = xk \Uk

Extend Uk with the pixels in Fk with probability 1− p

Compute the residual sinogram rk←− b−A f k

Update the image of free pixels uk←− ARM(uk,Ak,rk)

Smooth uk and obtain xk+1←− f k +uk

end

Figure 4.1: The pseudo code of the original DART algorithm

The drawback of the original DART algorithm is requiring the gray levels to be known

in advance, besides the number of them. In [17], it is shown that, the gray levels

can be estimated automatically, while the algorithm is already been performed. Gray

level estimation is accomplished with an optimization scheme, whose objective is

minimizing the projection distance. Projection distance, used as the projection error

in the proposed method, refers to the distance between the measured data and the

forward projection of the reconstructed image. In [17], the optimization procedure

is called as projection distance minimization (PDM), hence the algorithm is named

as PDM-DART. The PDM-DART algorithm estimates the segmentation parameters,

referring both the gray levels and the threshold values, to be used in segmentation step.

4.2 Total Variation Minimization (TvMin)

Compressed Sensing (CS) theory [18] ensures that it is possible to recover a signal,

which is a priori known to be sparse (or sparse by a transformation with a known

transform), from its far fewer measurements required by Shannon’s criterion. Image

reconstruction problem can be classified as a compressed sensing problem (CS), since

the available measurements are mostly fewer than the variables, resulting with an
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under-determined system. There are diverse range of techniques developed to solve

CS problems, including total variance (TV) minimization (abbreviated as TvMin in this

work) technique which is a generalized form of another well-known `1−minimization

technique.

TV was introduced as a criterion for image denoising and reconstruction in 1992 by

Rudin et al., with the motivation of finding an edge preserving method [21]. Basic

foundation of the TV regularization methods is the assumption of having sparse

gradients (see Fig. 4.2), instead of signals. The discrete gradient of the matrix

image X at the pixel at ith row and jth column is denoted by D(X)i j and defined as

the magnitude of the horizontal and vertical gradients Dx(X)i, j = |Xi+1, j −Xi, j| and

Dy(X)i, j = |Xi, j+1−Xi, j|, respectively. Eq. 4.5 shows how it is defined for an image X

written in matrix notation.

D(X)i, j =
√
(Dx(X)i, j)2 +(Dy(X)i, j)2 (4.5)

And the total variation TV (X) or TV (x) ,by rewriting the image in vector notation as

x, is defined as the sum of the discrete gradient for each pixel.

TV (x) = ‖D(x)‖p = ∑
j
|D(x) j| (4.6)

where D(x) j is the discrete gradient of x at the pixel j, x denotes the image written

using vector notation and ‖.‖p is either `1− or `2−norm, corresponding to anisotropic

TV and isotropic TV respectively.

Since the isotropic TV is not differentiable, anisotropic TV, which corresponds to `1−

norm, is used and it leads to exploit `1−minimization techniques, when the sparsity

in gradient domain is the case. The TV minimization is a constraint optimization

problem, defined as follows:

minx∈Rn ∑
j
|D(x) j|, s.t. Ax = b (4.7)

This problem can also be rewritten as an unconstrained problem as follows:
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(a) (b)

Figure 4.2: An example on sparse gradients exploited by TV minimization technique
(a) the original image, (b) its gradient magnitude.

minx∈Rn ∑
j
|D(x) j|+

µ

2
‖b−Ax‖2

2 (4.8)

where p = 1 in most cases and µ is a regularization parameter. Eq. 4.8 aims to

minimize both the TV and the projection error, simultaneously.

Researches show that the minimization of TV yields sharper reconstructions by

preserving the high frequency regions. The significant advantage of the TvMin

technique is the ability of recovering non-sparse signals, e.g. almost all of the subjected

images, if its gradient is sparse. On the other hand, the technique has disadvantages

in terms of computational complexity due to its non-differentiable and non-linear

characteristics. To cope with this problem, meaning to solve the problem faster, several

algorithms are proposed by either reformulating [34] [35] the problem or splitting it

into low-complexity sub-problems, as in [36]. For more detailed presentation of the

TV regularization models, the reader is referred to [24] [22].

4.3 The Proposed TvMin+DART Algorithm

The DART algorithm starts with a fixed number of ARM iterations to compute an

initial approximation. In the paper of the original DART, published by Batenburg

et al., the SART algorithm (discussed in Chapter 2) is used; while the PDM-DART,

proposed by Aarle, et al., prefers the SIRT algorithm, instead. In this work, the SART is

employed in order to update the free pixels as in the original DART, however the initial

stage is switched to another heuristic approach: TvMin. In this section, the proposed

algorithm which combines DART with an initial TvMin stage, in order to ensure a
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better initial guess, is described. The algorithm also proposes to use an optimized

global thresholding scheme by exploiting the valleys in the gray level histogram and

aims to minimize both the projection error and the TV simultaneously.

It is important to start DART with a good initial estimate, in terms of the compliance

to segmentation. In the proposed algorithm, the initial reconstruction is computed by

TvMin, as it is defined in Eq. 4.8, instead of any other ARM (e.g. ART, SART, SIRT).

This approach yields a more easy to segment reconstruction to be used in segmentation

step, since the artefacts formed after TvMin is less than the SART algorithm, as it

can easily be seen from Fig. 4.3. The image computed by TvMin reconstruction is

sharper and high frequency regions, such as edges and boundaries, are more accurately

preserved. Two initial reconstructions, one from SART and another from TvMin, are

shown in Fig. 4.3.

TvMin constrained optimization problem, given in Eq. 4.7, is known having high

computational cost due to its non-differentiability and non-linearity. However, it has

already been solved in [36] efficiently and named as TV minimization scheme based

on augmented Lagrangian and alternating direction algorithms (TVAL3 scheme). This

TV solver combines augmented Lagrangian and alternating direction algorithms to be

able to optimize TV model. The solver is used to solve Eq. 4.8 with non-negativity

constraint, defined as Eq. 4.9, in the proposed method.

minx∈Rn ∑
j
‖D(x) j‖p +

µ

2
‖b−Ax‖2

2 s.t. x≥ 0, (4.9)

where x∈Rn, D jx∈R2 is the discrete gradient of x at pixel j, A∈Rmxn is the projection

matrix and b ∈ Rm is the observation of x with some linear measurements and µ is a

regularization parameter used to determine the importance of the data fidelity term. ‖.‖

is either `1− or `2−norm.

The output of the TvMin technique is then used as the initial guess for the succeeding

DART algorithm and this process is accomplished in a time efficient manner using

TVAL3 solver.

In this work, a thresholding scheme is also proposed to be used in segmentation step of

DART, by combining a histogram-based approach with total variation regularization

problem. In the proposed thresholding scheme, the thresholds which minimize both
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(a) (b)

(c) (d)

Figure 4.3: Initial reconstructions obtained with t0 = 3 iterations and p = 7 number
of noisy projections using (a) SART, (b) TvMin and segmented (c) SART,
(d) TvMin reconstructions

the projection error and total variation are selected among a number of candidate

thresholds, obtained by a two-stage multilevel Otsu algorithm (TSMO) [37]. To

determine the number of candidate thresholds, a valley estimation (VE) procedure,

proposed in [37], is utilized. To be able to express the overall scheme; Otsu’s global

thresholding algorithm and its more efficient two stage extension are explained first.

Otsu’s algorithm [15] selects an optimum global threshold by either minimizing

within-class, given in Eq. 4.10 or maximizing between-class variance, given in

Eq. 4.11 where σ , τ and p denotes the standard deviation, the threshold and the

occurrence probability of the associated cluster, respectively. The formulation is first

given according to the bi-level thresholding where the idea is finding a threshold to be

able to extract the region of interest (foreground) from background. So the associated

subscripts f and b, used in the Otsu’s formulation, are referring the foreground and

background pixels, respectively.

σ
2
within(τ) = p f (τ)σ

2
f (τ)+ pb(τ)σ

2
b (τ) (4.10)
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where psubscript(τ) =
nsubscript(τ)

n using n to denote the total number of pixels and

nsubscript is the number of the pixels associated with the given subscript.

σ
2
between(τ) = σ

2−σ
2
within(τ)

= (∑
j

x2
i −µ

2)− p f (τ)(∑
j∈ f

x2
i −µ

2
f )− pb(τ)(∑

j∈b
x2

i −µ
2
b )

= p f (µ f −µ)2 + pb(µb−µ)2

(4.11)

where µsubscript denotes the mean intensity of the associated subscript and µ without

subscript is the mean intensity of whole image.

Since Otsu’s algorithm searches for a threshold τ to maximize Eq. 4.11, the problem

can be defined as in Eq. 4.12.

τ
∗ = argmax

τ

{σ2
between(τ) = p f (µ f −µ)2 + pb(µb−µ)2} (4.12)

Otsu’s bi-level thresholding formulation can straightforwardly be extended to a

multilevel thresholding problem by defining the between-class variance of L clusters,

as shown in Eq. 4.13.

σ
2
between(T ) =

L−1

∑
l=0

plµ
2
l −µ

2 (4.13)

So, the objective becomes:

T ∗ = argmax
T
{σ2

between(τ0,τ1, ...,τL−2) =
L−1

∑
l=0

plµ
2
l −µ

2} (4.14)

where L is the number of gray levels (clusters) leading L−1 thresholds and T denotes

the threshold vector in which τl ∈ T .

After a brief explanation on Otsu’s method, here its more efficient successor two-stage

multilevel Otsu’s (TSMO) thresholding, proposed by Huang and Wang in [38], is

concisely presented. TSMO is, as the name implies, a two-stage Otsu optimization

procedure and it utilizes the histogram binning concept to reduce the computational

complexity of Otsu. In the first stage of TSMO, the gray level histogram of the

input image is divided into K (TSMO uses K = 32) bins and assume these bins are

clustered into L clusters (from now bin clusters), each of which is denoted by Cl , using

Otsu’s multi-level thresholding scheme. The objective of this stage is maximizing the

between-class variance of the bin clusters. The equations Eq. 4.13 and Eq. 4.14 can
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easily be redefined by rewriting the terms pl and µl by means of the bin clusters’

occurrence probability pϕk and the mean intensity µϕk as follows:

pl = ∑
ϕk∈Cl

pϕk , µl = ∑
ϕk∈Cl

µϕk

pϕk

pl
(4.15)

where ϕ = {ϕk|k = 1,2, ...,K} denotes the set of bins, so ϕk is used to indicate kth bin

in the histogram.

At the end of the first stage of TSMO, L−1 thresholds, corresponding to the bins, are

obtained. In the second, and also final, stage, Otsu’s bi-level thresholding is used to

determine the optimal threshold τ∗l for each bin ϕ∗k obtained from the first stage.

τ
∗
l = argmax

τl∈ϕ∗k

{σ2
between(τl)} (4.16)

To resume on the proposed algorithm, the segmentation step of the original DART

is accomplished using Otsu’s thresholding algorithm which is a histogram-based

method. In PDM-DART, on the contrary, the determination of the threshold values

is managed using an optimization scheme, which is not histogram-based, to minimize

the projection distance (the norm of the distance between measured projections and

the forward projection of the segmentated image). Since PDM-DART aims to estimate

the gray levels, together with the optimal thresholds; the projection distance is

optimized with respect to both the gray levels and the thresholds. However, the cost

function (projection distance) in this problem is not differentiable to the thresholds, so

PDM-DART runs a simplex search through all the pixels by computing the forward

projection for each. At that point, an approach which limits the search space to a set of

candidate thresholds might be reasonable. In this work, these candidates are chosen by

utilizing the TSMO approach after determining the number of candidates by counting

the valleys in the gray level histogram as in [37].

Histogram valley estimation procedure, used in [37], is proposed as a pre-process to the

TSMO algorithm to determine the number clusters. To briefly explain the procedure,

first of all the normalized histogram binning is performed by dividing the histogram of

the reconstructed image into K (=32) bins, each of which is denoted by ψk, containing

|ψk|= 8 pixels as in [37]. Then, normalized histogram Hk of each bin is estimated by

using the following equation:

Hk =
hk

max(hk)
x100,k ∈ 0,1, ...,K−1 (4.17)
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where hk = ∑k∈ψk
nk and nk denotes the number of pixels in kth bin.

Next, each group is assigned to a probability according to its location on the histogram

and the normalized histogram distribution. This probability estimation stage is

performed by scanning the histogram from the lower gray levels to the higher ones

and comparing the normalized histogram of the current group with its neighbouring

groups. If Hk of current group is less than both of its neighbours, its probability is set

to 100%. Otherwise, if Hk is equal to Hk−1 while less than Hk+1 or if it is less than

Hk−1 while equal to Hk+1, 75% and 25% are assigned as probabilities of being a valley,

respectively. For the groups whose normalized histogram is equal to the previous one,

previous probability value is assigned. All the other groups, including ψ0 and ψK−1,

will have 0% probability after this stage. Lastly, histogram is scanned in reversed

order to detect the groups whose probabilities exceed 100% when summed with the

adjacent ones and their probabilities are updated to be 100%. The groups which don’t

satisfy this condition are directly assigned to 0% and dismissed from being a candidate

threshold in our algorithm. Simply, the valleys corresponding to 100% probabilities

are counted and that many thresholds are chosen as candidate thresholds Tcdt by the

succeeding TSMO algorithm.

Otsu and its successor TSMO are both searching for the thresholds that either

minimize within-class variance or maximize between-class variance, second is used

and presented in this work. In a reconstruction problem, we have projections available;

hence we also want to choose the thresholds from which minimize the projection

error, which is used as the fidelity term in the unconstrained TvMin problem, given

in Eq. 4.18. So the chosen threshold values should also satisfy the projection

measurements. After the valley estimation and TSMO procedure, the candidate

thresholds are obtained. These thresholds construct the search space for the cost

function, given in Eq. 4.18, of the proposed method.

τ
∗
l = argmin

τ∈Tcdt

{∑
j
‖D(x) j‖+

1
2
‖b−Ax‖2

2} (4.18)

where D(x) j is the discrete gradient of the image, ‖.‖ denotes the `1−norm and K is

the number of candidate thresholds Tcdt .

Furthermore, to prevent high fluctuations caused by the segmentation step, a control

operation is carried out after each threshold selection procedure. This operation
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checks the difference between the current cost, given in Eq. 4.18, obtained by using

the selected threshold and the previous cost and if this difference is greater than a

predefined penalty parameter, the algorithm keeps using the previous threshold value

instead of the selection. So, this operation might be defined as follows:

τ
(k) =

{
τ∗, ∆cost < εpenalty
τ(k−1), otherwise

(4.19)

where ∆ is used to denote the difference between current and previous costs, ε denotes

the penalty parameter and τ∗ is the selected optimum threshold value.

To demonstrate the effect of the proposed threshold selection procedure, two DART

algorithms, one with Otsu’s segmentation and another with the proposed segmentation

are compared, and the results are shown in Fig. 4.4.

(a) Otsu, r = 3 (b) proposed, r = 3

(c) Otsu, r = 1 (d) proposed, r = 1

Figure 4.4: A comparison between the reconstructions obtained by using Otsu and by
the proposed threshold selection procedure (r is the Gaussian filter radius.)

Finally, the pseudo code and the flowchart of the proposed algorithm are given in Fig.

4.5 and Fig. 4.6, respectively.

34



Algorith 2 (TvMin+DART)

x(0)←− TVAL3(x := 0,A,b), k := 0

while (stop criterion is not met) do

begin

Compute the histogram Hk

Estimate the number of valleys L−1←−V E(Hk)

Find K candidate thresholds Tcdt ←− T SMO(Hk,L−1)

Select threshold τ∗l which makes Eq. 4.18 minimum

Segment image: sk←− S(xk,τk)

Subdivide sk into free pixels Uk ⊂ xk and fixed Fk = xk \Uk

Extend Uk with the pixels in Fk with probability 1− p

Compute the residual sinogram rk←− b−A f k

Update the image of free pixels uk←− ARM(uk,Ak,rk)

Smooth uk and obtain xk+1←− f k +uk

end

Figure 4.5: The pseudo code of the proposed TvMin+DART algorithm

The DART algorithm requires prior knowledge about the gray levels of the image.

However, the gray levels might not be known (or they might erroneously be known)

and that is why a requirement of automatic gray level (from now label) estimation

is revealed. Finally, the proposed algorithm is extended to estimate gray levels to be

applied in case of the exact labels are not known, in advance. The projection error is

defined as follows:

E(x) = ‖b−b
′
‖ =

m

∑
i
(bi−b

′
i)

2 (4.20)

It can be rewritten as in Eq. 4.21 by substituting the forward projection of the labelled

image x j ∈ {ξ1,ξ2, ..,ξL} where ξl denotes the labels.

E(x) =
m

∑
i
(bi−

L

∑
l=1

ξlQil)
2 where Qil = ∑

j∈Ωl

ai j (4.21)
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Since Eq. 4.21 is differentiable to ξl , by taking the derivative of it with respect to the ξl

to find the labels which minimize the error, one comes up with the following solution:

∂E
∂ξl

=
∂

∂ξl
{

m

∑
i=1

(bi−
L

∑
l=1

ξlQil)
2}

=
∂

∂ξt
{

m

∑
i=1

(bi− (
L

∑
l=1
l 6=t

ξlQil +Qitξt))
2}

=−2{
m

∑
i=1

(biQit−
L

∑
l=1
l 6=t

QilQitξl−Q2
itξt)}

=−2
m

∑
i=1

Qit(bi−
L

∑
l=1
l 6=t

Qilξl)+2ξt

m

∑
i=1

Q2
it

(4.22)

where t = 1, ..,n. Therefore, the gray levels can easily be estimated by using the

following equation:

ξt =

∑
m
i=1 Qit(bi−∑

L
l=1
l 6=t

Qilξl)

∑
m
i=1 Q2

it
. (4.23)

Once Eq. 4.23 is computed, the previous gray level set is updated with the new labels

and this procedure is repeated for each iteration, after the thresholds are determined

and the image is segmented.
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Figure 4.6: A schematic overview of the proposed algorithm
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5. SIMULATION EXPERIMENTS

In this chapter, the results obtained via the proposed algorithm, named as

TvMin+DART for simplicity while referring, is presented and TvMin+DART is

compared to the original DART, plus segmented FBP. The DART algorithm is

implemented as described in [5] and FBP is performed using inverse Radon transform

(iradon) function in MATLAB with linear interpolation and Ram-Lak filter and

segmented using Otsu’s thresholding scheme. TvMin+DART algorithm is also

implemented in MATLAB environment. AIR Tools package [39] is exploited for the

simulation of the parallel beam geometry and the required ARM algorithm. To solve

the TvMin problem, TVAL3 MATLAB solver [36] [33] is used.

To start with introducing the performance evaluation metrics, misclassification

percentage, given in Eq. 5.1, root means squared error (RMSE), given in Eq. 5.2

and root means squared projection error (RMSPE), given in Eq. 5.3 are used where x′

denotes the reconstructed image, b′ is the forward projection of x′.

misclassi f ication(%) =
100

n

n

∑
j=1

(1−δ (x,x′)) (5.1)

where δ is the Dirac delta function known as: δ (x− x′) =
{

1, x = x′

0, x 6= x′

RMSE =
(∑

n
j=1 (x j− x′ j)

2

n

)1/2

(5.2)

where n is the total number of pixels.

RMSPE =
(E(x)

m

)1/2

(5.3)

where m is the number of the projection measurements and E(x) is the projection error

defined as E(x) = ‖b−b′‖2 = ∑
m
i=1(bi−b′i)2.

The test images used in the simulation experiments are given in Fig. 5.1. They differ

in size; while Phantom-1 is 128 by 128, Phantom-2, Phantom-4 and Phantom-5 are all
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(a) Phantom-1 (b) Phantom-2 (c) Phantom-3

(d) Phantom-4 (e) Phantom-5

Figure 5.1: Phantom images used for the experiments

256 by 256 and Phatom-3 is 512 by 512 pixels. Phantom-2 is a binarized version of

well-known Sheep-Logan phantom, Phantom-3 is same with one of the phantoms used

in the paper [5], in which the original DART is proposed. Phantom-4 and Phantom-5

are both taken from the phantom gallery which comes with AIR Tools package [39].

There are several parameters to be used. The number of variables, so the total number

of pixels, depends on the phantom sizes which are stated above. The ARM, which will

be used for subsequent updates of both the DART and the TvMin+DART, is chosen

as the SART algorithm. Hence, the algorithm used to obtain the initial estimate will

also be the SART algorithm for the DART. Unconstrained TvMin model (with the

fidelity term) is used, to choose an initial estimate which minimizes both the projection

error and the `1 norm of the discrete gradient, but the non-negativity constraint is also

considered. For the sake of practicability, some parameters, such as the relaxation

parameter (λ ) of SART as 0.8 (as suggested in [39]), the radius of the Gaussian

smoothing filter as 3 (default) and the fix probability (p) as 0.85 (as suggested in

[5]). The randomized procedure is applied both the DART and the TvMin+DART

algorithms simultaneously, meaning that the update pixels, which are selected with fix

probability, are determined once and used for both algorithms. Also, the number of the

initial estimation iterations (t0) for the TvMin and the SART are both fixed to 3, like

the subsequent SART iterations (t) which are also set to 3. For all experiments, only
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the binary images are considered. The algorithm can be extended to be used for the

images with multiple gray levels, in a straightforward manner. Except the last section,

in all experiments, the exact gray levels {0,1}, in our case) are assumed to be known

and used. The remaining parameters such as, the number of the projections (s), the

angular range (θ ), the number of the iterations (k) and the noise level (η), are all the

parameters that are considered separately and used while comparing the performances

of the algorithms.

5.1 Limited Number of Projections

In this section, varying number of equidistant projections, which are sampled

between [0,π), are taken into consideration. FBP, the original DART and the

proposed TvMin+DART are compared in terms of the reconstruction quality, which

is determined by using the metric misclassification(%), as a function of the number

of the projections. While the reconstruction results of the TvMin+DART algorithm

are presented in Fig. 5.5 for several number of projections, the reconstructed images

obtained from the FBP and the DART are shown in Fig. 5.6, together with the results

of the proposed method, using a certain number of projections for each phantom. For

all simulations carried out in this section, k = 200 number of iterations are used.

In Fig. 5.2 and Fig. 5.3, the misclassification percent of the reconstruction obtained

using the proposed algorithm is more or less lower than the FBP and the DART.

While number of projections are being increased, obvious improvements are observed,

it is also seen that the FBP algorithm isn’t good at reconstructing satisfying results

in both Fig. 5.2 and Fig. 5.3. However, an unexpected result is observed in Fig.

5.4 that the FBP algorithm yields better reconstructions than the iterative methods

even for the small number of projections. That is caused due to the morphology of

Phantom-5. As it is inferred from the results, iterative methods are tend to compute

better reconstructions for more rigid, symmetric and homogeneous patterns than the

bulk ones as in Fig. 5.1 (e). Furthermore, as it is understood from the results,

to obtain a satisfying reconstruction, different number of projections are used for

different phantoms. For instance, while s = 8 seems to be enough for Phantom-2,

the reconstruction of Phantom-3 is poor when s = 8 (see Fig. 5.5). So, this knowledge

is exploited for the succeeding simulation experiments.
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(a) Phantom-1

(b) Phantom-2

Figure 5.2: The misclassification percent with respect to the number of projections for
Phantom-1 and Phantom-2
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(a) Phantom-3

(b) Phantom-4

Figure 5.3: The misclassification percent with respect to the number of projections for
Phantom-3 and Phantom-4
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(a) Phantom-5

Figure 5.4: The misclassification percent with respect to the number of projections for
Phantom-5
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(a) s = 2 (b) s = 4 (c) s = 8 (d) s = 10

(e) s = 2 (f) s = 4 (g) s = 8 (h) s = 10

(i) s = 2 (j) s = 8 (k) s = 14 (l) s = 20

(m) s = 2 (n) s = 9 (o) s = 14 (p) s = 20

(q) s = 2 (r) s = 10 (s) s = 40 (t) s = 60

Figure 5.5: TvMin+DART reconstruction of the phantoms from Phantom-1 to
Phantom-5, from the top row to bottom, using number of projections s.
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(a) FBP, s = 6 (b) DART, s = 6 (c) TvMin+DART, s = 6

(d) FBP, s = 6 (e) DART, s = 6 (f) TvMin+DART, s = 6

(g) FBP, s = 14 (h) DART, s = 14 (i) TvMin+DART, s = 14

(j) FBP, s = 20 (k) DART, s = 20 (l) TvMin+DART, s = 20

(m) FBP, s = 60 (n) DART, s = 60 (o) TvMin+DART, s = 60

Figure 5.6: A comparison of FBP, DART and TvMin+DART reconstructions of the
phantoms from Phantom-1 to Phantom-5, from the top row to bottom,
using number of projections s.
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5.2 Limited View Problem

In this section, the full range is narrowed down from [0,π) to [4π/9,5π/9), gradually

and sampled the projections at 1 degree intervals for each range, to simulate limited

view. The reconstruction accuracy of the FBP, the original DART and the proposed

TvMin+DART are compared using misclassification(%) percentage as a function of

the angular range. The results are presented graphically in Fig. 5.7, Fig. 5.8 and Fig.

5.9 and the reconstructed images are shown in Fig. 5.10 and Fig. 5.11. All simulations

are performed by using k = 200 number of iterations.

In Fig. 5.7 (a), almost exact solution is reached by the TvMin+DART algorithm for

120-degree range, while it is the case for the FBP and the DART, when the range is 180.

On the other hand, the DART algorithm yields better reconstructions of Phantom-2 for

the narrower ranges, between 20 and 80; however the almost exact result is obtained by

TvMin+DART algorithm for the 120-degree angular range, as it is shown in Fig. 5.7

(b). The results of the DART and the TvMin+DART for Phantom-3 and Phantom-4

are shown in Fig. 5.8 (a) and (b), respectively and the misclassification percentages

are almost same for each angular ranges and both algorithms are reaching the accurate

solution when the range becomes 160 for Phantom-3. In Fig. 5.8 (b), nevertheless, the

accurate solution cannot be computed by both iterative algorithms, even for full range.

The FBP, on the contrary, results with the accurate reconstruction of Phantom-3, for the

case of full range; although its failure for the former phantoms and the narrower ranges.

For Phantom-5, the same situation with the limited number of projections experiment

is encountered and the FBP yield much better results for each angular ranges, as it can

be seen in Fig. 5.9. Finally, the increased range gradually improves the solution as it

can be inferred from each experiment and for each algorithm.

In Fig. 5.10 and Fig. 5.11, the reconstructions obtained by TvMin+DART algorithm

for various angular ranges and the reconstructions obtained by the FBP, the DART and

the proposed algorithm for certain angular ranges are shown, respectively. As it is seen

from the latter one, TvMin+DART results with slightly better reconstructions than the

ones obtained by the DART algorithm, for Phantom 1 to 3.
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(a) Phantom-1

(b) Phantom-2

Figure 5.7: The misclassification percent with respect to the angular range for
Phantom-1 and Phantom-2
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(a) Phantom-3

(b) Phantom-4

Figure 5.8: The misclassification percent with respect to the angular range for
Phantom-3 and Phantom-4
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(a) Phantom-5

Figure 5.9: The misclassification percent with respect to the angular range for
Phantom-5
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(a) θ = 20◦ (b) θ = 40◦ (c) θ = 60◦ (d) θ = 120◦

(e) θ = 20◦ (f) θ = 60◦ (g) θ = 100◦ (h) θ = 120◦

(i) θ = 20◦ (j) θ = 60◦ (k) θ = 100◦ (l) θ = 160◦

(m) θ = 20◦ (n) θ = 40◦ (o) θ = 60◦ (p) θ = 120◦

(q) θ = 20◦ (r) θ = 80◦ (s) θ = 120◦ (t) θ = 140◦

Figure 5.10: TvMin+DART reconstruction of the phantoms from Phantom-1 to
Phantom-5, from the top row to bottom, using angular range θ .
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(a) FBP, θ = 80◦ (b) DART, θ = 80◦ (c) TvMin+DART, θ = 80◦

(d) FBP, θ = 120◦ (e) DART, θ = 120◦ (f) TvMin+DART,θ = 120◦

(g) FBP, θ = 120◦ (h) DART, θ = 120◦ (i) TvMin+DART,θ = 120◦

(j) FBP, θ = 80◦ (k) DART, θ = 80◦ (l) TvMin+DART, θ = 80◦

(m) FBP, θ = 120◦ (n) DART, θ = 120◦ (o) TvMin+DART,θ =
120◦

Figure 5.11: A comparison of FBP, DART and TvMin+DART reconstructions of the
phantoms from Phantom-1 to Phantom-5, from the top row to bottom,
using number of projections using angular range θ .
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5.3 Noisy Projections

In the former sections, noise-free projection measurements were used. In this section,

the robustness of the algorithms with respect to noise are compared. To simulate a

noisy projection, the projection samples are polluted by adding a noise vector on them,

as in Eq. 5.4.

b̃ = b+η‖b‖ e
‖e‖

(5.4)

where e is a random noise vector and b̃ denotes the noisy projection measurements.

In Fig. 5.13, Fig. 5.14 and Fig. 5.12, the misclassification percentage as a function of

the noise level (η) is shown graphically. The noise levels η ∈ {0,0.05,0.1,0.15,0.2}

are used, where η = 0.05 is the most reasonable one. The number of the projections are

restricted with the values s = 6, 8, 14, 40 and 60 for Phantom 1 to 5, respectively. The

proposed method yields slightly better results when compared to the DART algorithm,

for almost every phantoms (except η = 0.05 and η = 0.1 for Phantom-4, in Fig. 5.14

(b)). As it can easily be seen, the FBP is highly sensitive to noise.

(a) Phantom-1, s = 6

Figure 5.12: The misclassification percent with respect to the noise level for
Phantom-5
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(a) Phantom-2, s = 8

(b) Phantom-3, s = 14

Figure 5.13: The misclassification percent with respect to the noise level for
Phantom-1 and Phantom-2
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(a) Phantom-4, s = 40

(b) Phantom-5, s = 60

Figure 5.14: The misclassification percent with respect to the noise level for
Phantom-3 and Phantom-4
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(a) η = 0, s = 6 (b) η = 0.05, s = 6 (c) η = 0.1, s = 6 (d) η = 0.15, s = 6

(e) η = 0, s = 14 (f) η = 0.05, s = 14 (g) η = 0.1, s = 14 (h) η = 0.15, s = 14

(i) η = 0, s = 40 (j) η = 0.05, s = 40 (k) η = 0.1, s = 40 (l) η = 0.15, s = 40

Figure 5.15: TvMin+DART reconstruction from noisy projections with noise level η

and the number of projections s.
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5.4 An Experiment on Spatial Resolution

In this short section, the accuracies of the subjected algorithms are compared in terms

of the misclassification as a function of cycles/pixels. Cycles are represented by the

line pairs, shown in Fig. 5.16 with increasing line widths from 1 pixel to 5 pixels. So,

the cycles/pixel ratio is decreasing from 0.5 to 0.2, when the widths are increasing,

from Fig. 5.16 (a) to Fig. 5.16 (e). Since the images are discrete and have only two

gray values, the misclassification metric is found adequate for this study but one can

use different spatial resolution metrics, such as modulation transfer function (MTF),

and measure the spatial resolutions of the algorithms, either in spatial or in frequency

domain. In Fig. 5.17, the proposed method couldn’t result with a better reconstruction

for the image with highest frequency. The FBP has given more accurate results

than the iterative ones, for the each pattern used in this experiment. The number of

projections is set to s= 20, for the reconstruction of each line pattern.

(a) (b) (c)

(d) (e)

Figure 5.16: Line pair patterns, used to test spatial resolution.
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(a)

Figure 5.17: Misclassification with respect to cycles/pixel

5.5 Experiments on Converge Rate

In this section, the converge rate of the DART and the TvMin+DART algorithms are

compared in terms of the misclassification and the root means squared projection error

(RMSPE), by using Phantom-2, Phantom-3 and Phantom-5. While k = 100 iterations

were used for Phantom-1, k = 200 iterations were performed for Phantom-3 and

Phantom-5. All graphics show an almost monotonically decreasing behaviour. In Fig.

5.20, the misclassification remains around 24% and doesn’t reach to the region of the

exact solution, as it is predicted from the previous experiments. For Phantom-2, whose

size is 256 by 256; the reconstruction time of the DART was 11.22 seconds, while

12.63 seconds were elapsed by the TvMin+DART. The reconstruction of Phantom-3,

whose size is 512 by 512, took 107 seconds by the DART and 118 seconds by the

proposed algorithm. Experiments were done on a single CPU core.
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(a)

(b)

Figure 5.18: The converge rate for Phantom-2: (a) the misclassification and (b) the
root mean squared projection error (RMSPE), with respect to the number
of iterations, where s = 6
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(a)

(b)

Figure 5.19: The converge rate for Phantom-3: (a) the misclassification and (b) the
root mean squared projection error (RMSPE), with respect to the number
of iterations, where s = 14
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(a)

(b)

Figure 5.20: The converge rate for Phantom-5: (a) the misclassification and (b) the
root mean squared projection error (RMSPE), with respect to the number
of iterations, where s = 60
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5.6 Gray Level Estimation

In this section, the results of the gray level estimation procedure are presented for

the TvMin+DART algorithm. The experiments were started with the gray levels

{0.3,0.7} for each phantom, although the exact gray levels were {0,1}, and the final

labels were estimated as stated in Fig. 5.21. In Fig. 5.22, Fig. 5.23 and Fig. 5.24,

the converge behaviour of the algorithm is investigated for Phantom-2, Phantom-3

and Phantom-4, respectively. For this purpose, RMSE and RMSPE are used and as it

can be seen in especially Fig. 5.24, high fluctuations are encountered for Phantom-4.

Different number of projections are used for each phantom, s = 8, 10, 20 and 40 for

Phantom 1 to 4, respectively.

(a) Phantom-1, s = 8 (b) Phantom-2, s = 10

(c) Phantom-3, s = 20 (d) Phantom-4, s = 40

Figure 5.21: TvMin+DART with gray level estimation, started with the gray levels =
{0.3,0.7} and reconstructed phantoms with labels (a) {0.001,1.005}, (b)
{0.001,1.002}, (c) {0,0.980}, (d) {0.009,0.985}
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(a)

(b)

Figure 5.22: TvMin+DART with gray level estimation, converge rate for Phantom-2:
(a) RMSE and (b) RMSPE, with respect to the number of iterations,
where s = 10
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(a)

(b)

Figure 5.23: TvMin+DART with gray level estimation, converge rate for Phantom-3:
(a) RMSE and (b) RMSPE, with respect to the number of iterations,
where s = 20
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(a)

(b)

Figure 5.24: TvMin+DART with gray level estimation, converge rate for Phantom-4:
(a) RMSE and (b) RMSPE, with respect to the number of iterations,
where s = 40
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6. CONCLUSIONS AND RECOMMENDATIONS

This study has been focussed on the problem of reconstruction from incomplete

projections, investigated the DART algorithm, which was developed to accomplish

this goal and proposed a multi-staged approach to improve the capabilities of the

DART algorithm. The proposed approach considers three things about the original

DART: (1) the algorithm that is used to compute the initial estimate, (2) selection of the

threshold that is used to discretize the continuous reconstruction and (3) estimation of

the gray levels in case they are not known in advance. For the first one, a total variation

minimization technique (TvMin) is suggested, since it is famous with its ability

of preserving high frequency regions and computing sharper, so easy-to-segment,

reconstructions. This suggestion is supported by the simulation experiments that are

presented in the previous chapter. Second, a threshold selection procedure, which is

based on both the histogram and the projection data, is described in order to select

a threshold that satisfies the available projection measurements and accomplish this

in a computationally efficient manner. This procedure first counts the valleys of the

histogram and estimates that many candidate thresholds, using a global thresholding

method. Next, the optimum threshold is chosen among the candidates such that the

projection error is minimized. Here, the cost function is also regularized with a total

variation term. Third, a gray level estimation procedure is formulated such that the

labels which minimizes the projection error are chosen in each iteration. The proposed

algorithm is experimented in terms of accuracy, robustness and converge behaviour,

by using various phantom samples. Its accuracy is compared to the original DART

and the FBP algorithms, with respect to the several number of projections and several

angular ranges, to simulate a reconstruction process with incomplete data. Moreover,

the robustness of the proposed method is also compared to its two alternatives, with

respect to noise in projection data. Gray level estimation experiments are carried out

separately and the results are obtained in terms of the errors in the image and the

projection domain as a function of the total number of iterations. Based on the studies,

the following conclusions are drawn. The negative effects of limiting either the number
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of projections (while keeping the range as full) or the angular range are gradual and

in almost same fashion for all considered algorithms. However, the FBP algorithm

is highly sensitive to noise when compared to the DART and the proposed method.

It is also observed that the reconstruction quality highly depends on the morphology

of the phantom. When the phantom is rigid, homogeneous, symmetrical and has a

relatively low ratio of the edge pixels to the total number of pixels, the DART and the

proposed method are producing more reasonable results, in comparison to the FBP,

and these results show that the proposed method yields more accurate reconstructions

than the DART algorithm in almost all experiments. On the other hand, its robustness

to noise is comparable to the DART, just like its converge behaviour. With the gray

level estimation experiments, it is observed that the proposed algorithm is able to

compute reconstructions with the labels very close to the exact gray levels, however

this situation is not guaranteed, especially for some phantoms, since it may show a

non-stable behaviour when a local optimum is encountered.

This study and the simulation experiments call for new questions to be asked. Can

the proposed method be developed such that the images, which have a high ratio of

the edge pixels to the total number of pixels, can also be accurately and efficiently

reconstructed? Can the projection geometry be used for this purpose, for instance,

can the projections acquired from different angles and the reconstructions of them be

exploited to obtain the update pixels, instead of focusing on the boundary regions?

Also, it is observed that the proposed threshold selection procedure works better,

when a smaller smoothing filter is used for the update pixels. However, all simulation

experiments are done using a filter whose size is sufficient for both iterative algorithms.

Can some more experiments, which are carried out with smaller filter but increased

number iterations to estimate the initial guess, give more reasonable results on behalf of

the proposed algorithm? Can the proposed threshold selection procedure be developed

by using a penalty term? Furthermore, is it possible to enforce the results of each

update, performed for each ray, to be equal to one of the gray levels from a predefined

level set, meaning to change the conventional ART in a quantized fashion? All of these

questions will be subject of the forthcoming studies by the author.
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