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a b s t r a c t

Segmentation of dynamic PET images is an important preprocessing step for kinetic parame-

ter estimation. The time activity curve (TAC) of individual pixels has very low signal-to-noise

ratio (SNR). Therefore, the kinetic parameters estimated from the TAC of an individual pixel

may not be accurate, and these estimations may have very high spatial variance. To allevi-

ate this problem, pixels with similar kinetic characteristics are clustered into regions, and

TACs of pixels within each region are averaged to increase SNR. It has recently been shown

that clustering dynamic PET images in the sinogram domain is better than clustering them

in the reconstructed image domain [M.E. Kamasak, B. Bayraktar, Clustering dynamic PET

images on the projection domain, IEEE Trans. Nucl. Sci. 54 (3) (June 2007) 496–503.]. In that

study, the sinograms are assumed to have Poisson distribution. The clusters and TACs of the
clusters are then chosen to maximize the posterior probability of the measured sinograms.

Although the raw sinogram data are Poisson distributed, the sinogram data corrected for

scatter, randoms, attenuation etc. are not Poisson distributed anymore. In this paper, we

describe how to cluster dynamic PET images on the sinogram domain when the sinograms

are Gaussian distributed.

against the method that is proposed in this study, and it is
. Introduction

stimation of kinetic parameters for compartment models
enerally requires the clustering of pixels into physiologi-
ally similar regions. Pixels within each physiologically similar
egion are expected to have similar time activity curves (TAC).
AC extracted from a group of pixels have higher signal-to-
oise ratio (SNR) compared to TAC extracted from a single
ixel. Therefore, the accuracy of clustering and the precision
f the extracted TAC are critical for accurate kinetic parameter
stimation. The clustering is generally performed manually,
nd the TAC of each region is computed by averaging the
Please cite this article in press as: M.E. Kamasak, Clustering dynamic PE
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

ACs of the pixels within the region. However, manual clus-
ering is a time-consuming and operator dependent task. It is
lso challenging because of noise and partial volume effect in
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PET images. Automatic clustering algorithms have improved
reproducibility, and they are relatively faster compared to
manual clustering.

Recently, there has been increasing interest in automatic
clustering algorithms for dynamic PET. A modified mixture
model algorithm was proposed by Ashburner et al. [2]. This
algorithm maximizes the likelihood of a pixel belonging to
a cluster given the pixel’s TAC. Wong et al. [3] proposed a
distance-based clustering algorithm. In that study, pixels are
assigned to clusters based on their TACs’ weighted distance
to the cluster TACs. This algorithm is used for comparison
T images on the Gaussian distributed sinogram domain, Comput.

further described in Section 3.1. An expectation maximization
(EM) based algorithm was proposed by Chen et al. [4]. Guo et
al. [5,6] proposed a hierarchical linkage based algorithm for

erved.

dx.doi.org/10.1016/j.cmpb.2008.11.001
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clustering pixels. Brankov et al. [7] defined a new distance
metric for pixel TACs and used this metric for clustering. Auto-
matic clustering can either be integrated into [8] or performed
simultaneously [9] with kinetic parameter estimation algo-
rithms. In some studies, segmentation is used to estimate the
plasma input function from the PET images without arterial
sampling [10,11].

The image-domain algorithms require tomographic recon-
structions of emission images. TACs extracted from the
emission images are used as features for clustering. Recently,
we proposed an algorithm that clusters dynamic PET images
directly on the sinogram domain [1]. Simulations showed that
the algorithm that was proposed in that study produced better
clustering results and more accurate cluster TACs compared to
image-domain algorithms. In [1], the sinograms are assumed
to have Poisson distribution. However, if the data are corrected
for randoms, deadtime, scatter, and for some other artifacts,
the corrected sinograms are not Poisson distributed anymore
[12]. There are many distributions that are proposed to model
pre-corrected PET data. Some of these models are ordinary
Poisson distribution, shifted Poisson distribution, saddle point
approximation [13], and Gaussian distribution [14,15]. In this
paper, we extend our Poisson distributed sinogram domain
clustering algorithm for the Gaussian distributed sinograms.
For this purpose, the proposed clustering framework of [1] is
adapted for the Gaussian distributed sinograms.

This paper is organized as follows: in Section 2, the
mathematical notation is introduced, the framework and for-
mulation are described for the proposed clustering algorithm
with Gaussian distributed sinogram data. In Section 3, the
existing image-domain clustering algorithms are explained.
Using simulations, the proposed method and image-domain
methods are compared in Section 4. The conclusions are pre-
sented in Section 5.

2. Unsupervised clustering on sinogram
domain

In this section the scanner model and the MAP framework for
Gaussian distributed sinogram data are briefly introduced.

Assume that the sinogram data are collected at K time
frames, and there are L clusters. Each cluster has an associ-
ated TAC and a set of pixels that are in the cluster. For cluster
l, let �l = [�l0, . . . , �l(K−1)] denote the TAC of the cluster, and
let �l denote the set of pixels that belong to this cluster. Let
� denote L× K matrix formed as � = [�0, �1, . . . , �L−1]T where
superscript T denotes the matrix transpose. Let � denote the
label image, i.e. � = {�0, . . . , �L−1}.

The MAP estimates of � and � are

(�, �)← arg max p(�, �|Y), (1)
Please cite this article in press as: M.E. Kamasak, Clustering dynamic P
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

where Y denotes the sinogram measurements and p(·) denotes
the probability.

In the following sections, p(Y|�, �) is formulated with the
assumption of Gaussian distributed sinograms, and iterative
estimation of (�, �) is described.
 PRESS
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2.1. Scanner model

The sinogram measurement for projection 0 ≤ m < M at time
frame 0 ≤ k < K is denoted as Ymk. Y is an M× K sinogram
matrix formed by Ymk that are independent Gaussian dis-
tributed random variables. The expected number of counts
for each measurement at a given time, tk is given by:

E[Ymk|�, �] =
L−1∑
l=0

∑
s∈�l

Ams�lk, (2)

where A is the forward projection matrix with elements Ams.
Furthermore, let’s define

Qml(�) =
∑
s∈�l

Ams, (3)

Qm(�) = [Qm0, . . . , Qm(L−1)], (4)

and

Q(�) =

⎡
⎢⎣

Q0

...
QM−1

⎤
⎥⎦ (5)

Using this notation, Eq. (2) can be expressed as

E[Y|�, �] = Q(�)�. (6)

If the sinogram data are Gaussian distributed, the probability
density function is

p(Y|�, �) =
K−1∏
k=0

M−1∏
m=0

1√
2��mk

exp

{
−1

2��2
mk

(Ymk − Qm(�)�∗k)2
}

(7)

where �mk is the standard deviation of Ymk.

2.2. Estimation framework

A cost function, i.e.:

C(Y|�, �) = −ln(p(Y|�, �))+ S(�) (8)

is formed as in [1] by negating the logarithm of the probability
density function given in (7) and adding a regularization func-
tion, S(�). The log likelihood term in the cost function has to
be derived for Gaussian distributed sinogram measurements.
The regularization function is similar to the one that was pro-
posed by Besag [16]. This regularization function penalizes the
local label changes and therefore it controls the spatial con-
tinuity of pixel labels. The label image is modelled using a
Markov random field (MRF) with Gibbs distribution as in [1].

The probability of a label image, � is
ET images on the Gaussian distributed sinogram domain, Comput.

p(�) = 1
Z

exp

{
−ˇ

∑
s,r ∈N

gs−r(1− ı(ωs, ωr))

}
, (9)

dx.doi.org/10.1016/j.cmpb.2008.11.001
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here Z is the normalization constant, N is the set of all spa-
ially neighboring pixel pairs in �, gs−r is the coefficient linking
ixels s and r, ˇ is a constant that controls the spatial smooth-
ess of the label image, and ı(·, ·) denotes the Kronecker delta

unction. The negative logarithm of (9) is used as the regular-
zation function, i.e.:

(�) = ˇ
∑

s,r ∈N
gs−r(1− ı(ωs, ωr)). (10)

igh values of the regularization parameter ˇ, will result in
moother label images.

The labels and region TACs are assigned to minimize the
ost function given in (8):

, �← arg min C(Y|�, �). (11)

.3. Clustering with iterative coordinate descent
lustering (CICD)

lustering with iterative coordinate descent (CICD) is an iter-
tive coordinate-descent minimization technique that was
roposed in [1]. CICD is used to minimize the cost function

n (8). A CICD iteration has two steps: first the cluster TACs
re fixed and pixel labels are sequentially updated to mini-
ize the cost function. When all pixel labels are assigned, the

luster TACs are updated to minimize the cost function as the
econd step. Therefore, the cost monotonically decreases with
ach CICD iteration.

.3.1. Pixel label update
iven fixed cluster TACs, pixel labels can be updated sequen-

ially to minimize the cost function given in (8). If we change
he label of pixel s from ωs to ω̃s, the change in the cost function
s

C(Y|ωs, ω̃s) = C(Y|ωs)− C(Y|ω̃s) = ln(p(Y|ω̃s))− ln(p(Y|ωs))

+ˇ
∑
r ∈ ∂s

gs−r(1− ı(ω̃s, ωr)) (12)

here

ln(p(Y|ω̃s))− ln(p(Y|ωs))

=
K−1∑
k=0

M−1∑
m=0

Ams(−2(Ymk − Qm(�))+Ams(�ω̃sk − �ωsk))

�2
mk

(13)

nd ∂s is the set of pixels that are 8-connected neighbors of
ixels s. Since A is a sparse matrix, there will be a few nonzero
erms in (13).

The label of each pixel is updated as

˜ s ← arg min �C(Y|ωs, ω̃s) (14)

o minimize the cost function. This minimization is per-
Please cite this article in press as: M.E. Kamasak, Clustering dynamic PE
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

ormed by simply searching through all possible L values of
˜ s ∈ {0, 1, . . . , ws, . . . , (L− 1)}. {Qml}L−1

l=0 are stored in the mem-
ry, and they are updated with pixel label updates. For
xample, if the label of pixel s changes from ωs to ω̃s, the values
 PRESS
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of Qmωs and Qmω̃s are updated as follows:

Qmωs ← Qmωs −Ams

Qmω̃s ← Qmω̃s +Ams for m = 0 . . . M− 1.
(15)

2.3.2. Cluster TAC update
The cluster TACs are updated after all pixel labels are assigned.
Since the cost function is quadratic in terms of �, a closed
form expression exists for the cluster TAC that minimizes the
cost. The first and second derivative of the cost function with
respect to �lk are

d
d�lk

C(Y|�) = −2

M−1∑
m=0

Qml(Ymk − Qm(�)�∗k)

�2
mk

(16)

and

d2

d�lk
2

C(Y|�) = 2

M−1∑
m=0

Q2
ml

�2
mk

. (17)

The gradient and hessian of the cost function are

∇�l
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d
d�l0

C(Y|�)

d
d�l1

C(Y|�)

...
d

d�l(K−1)
C(Y|�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(18)

∇2
�l
= diag

{
d2

d�l0
2

C(Y|�),
d2

d�l1
2

C(Y|�), . . . ,
d2

d�l(K−1)
2

C(Y|�)

}
.

(19)

The cluster TAC that minimizes the cost function is computed
as

�̃l = �l − (∇2
�l

)
−1∇�l

. (20)

3. Image-domain clustering algorithms

In this section, two of the image-domain clustering algo-
rithms; weighted least squares clustering and Gaussian
mixture model with expectation maximization methods
are briefly described. These algorithms require tomographic
reconstruction of emission images. In this section, xsk denotes
the reconstructed emission rate for pixel s at time frame k,
and xs = [xs0, . . . , xs(K−1)] is the reconstructed time response of
pixel s.

3.1. Weighted least squares clustering (WLS)
T images on the Gaussian distributed sinogram domain, Comput.

The weighted least squares clustering (WLS) is a distance-
based clustering algorithm that was proposed by Wong et al.
[3]. In this algorithm, the weighted square distance between

dx.doi.org/10.1016/j.cmpb.2008.11.001
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Fig. 1 – Single slice NCAT phantom that is used in the

Rat dataset is taken from Kamasak et al. [22]. It is a rat head
whose regions are shown in Fig. 3. It has six separate regions
including the background. The regional TACs are shown in
ARTICLE
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the pixel TACs and the cluster TACs are minimized, i.e.:

(�, �)← argmin
�,�

L−1∑
l=0

∑
s∈�l

‖xs − �l‖2W, (21)

where W is a weight matrix, and ‖x‖2W denotes xTWx. The diag-
onal weighting matrix is formed as W = diag{�tk}K−1

k=0 where
�tk is the duration of k th time frame.

This algorithm also updates the pixel labels and cluster
TACs iteratively. Each iteration has two steps: in the first step,
labels of pixels are sequentially updated. The label of a pixel
is updated as follows:

ω̃s ← argmin
l
‖xs − �l‖2W (22)

After all pixel labels are assigned, the cluster TACs are updated
as follows to decrease the weighted distance given in (21):

�l =
1
|�l|

∑
s∈�l

xs, (23)

where |�l| denotes the number of pixels that are labeled as
l. The cost function monotonically decreases with each WLS
iteration. The iterations are repeated until the stopping (con-
vergence) criterion is reached.

3.2. Gaussian mixture model with expectation
maximization (GMM-EM)

In Gaussian mixture model with expectation maximization
(GMM-EM) method, the pixel TACs are assumed as samples
from Gaussian mixtures that correspond to clusters with dif-
ferent TACs. In this method, pixel labels and cluster TACs are
updated iteratively.

Let Rl denote the covariance matrix, and �l denote the prior
probability of cluster l. The posterior probability of a pixel
being in cluster l is

p(ωs = l|xs, �l) =
�l

(2�)K/2
|Rl|−1/2 exp

{
−1

2
(xs − �l)

TR−1
l

(xs − �l)
}

(24

Using the TACs and covariance matrices of the clusters com-
puted from the previous iteration, pixel labels are assigned to
maximize the posterior, i.e.:

ωs ← argmin
l

{
1
2

(xs − �l)
TR−1

l
(xs − �l)+

1
2

log |Rl| − log(�l)
}

.

(25)

Once the labels are assigned, the cluster TACs and covariance
matrices are updated using the EM algorithm [17].

4. Simulations
Please cite this article in press as: M.E. Kamasak, Clustering dynamic P
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

The proposed clustering algorithm is tested on two different
simulated datasets. Emission images at different times are
generated using a phantom and kinetic parameters for the
2-tissue compartment model. Both the phantom and kinetic
simulations.

model parameters for the datasets are obtained from the lit-
erature.

Emission images are then forward projected into sinogram
frames of 180 angles and 200 projections. The plasma function,
CP(t), is taken from Wong et al. [18]. Total scan time is 60 min.,
which is divided into 18 time frames: 4 × 0.5 min, 4 × 2 min,
and 10× 5 min. The phantom resolution is 128× 128 for both
datasets. The data are not decay-corrected.

4.1. NCAT dataset

The phantom is taken from NURBS based Cardiac-Torso Phan-
tom (NCAT) dataset [19]. The phantom that is shown in
Fig. 1 consists of three distinct regions; background, liver, and
tumor. The kinetic parameters of the background, liver and
tumor are taken from [20,21]. The TACs of the regions are
shown in Fig. 2. The tracer is assumed to be fluoro-deoxy-
glucose (FDG) labeled with18F, which has a decay constant of
	 = 0.0063 min−1. The NCAT dataset is used for simulation of
Gaussian distributed and pre-corrected sinogram data.

4.2. Rat dataset
ET images on the Gaussian distributed sinogram domain, Comput.

Fig. 2 – Simulated time activity curves corresponding to
background, liver, and tumor regions in the NCAT phantom.

dx.doi.org/10.1016/j.cmpb.2008.11.001
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Fig. 3 – Single slice rat phantom that is used in the
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Table 1 – DSC and � statistics for the Gaussian
distributed sinogram of NCAT dataset.

Method DSC 


ICD+WLS 0.984 0.963
imulations.

ig. 4. Poisson noise is used with this dataset. For further
etails about this phantom see Kamasak et al. [22].

.3. Performance evaluation

ice similarity coefficient (DSC), Kappa statistics, and RMSE
f the cluster TACs are used as measures of clustering perfor-
ance. Dice similarity coefficient is computed as

SC =

N∑
s=1

ı(ωestimated
s , ω

original
s )

N
. (26)

appa statistic is computed as

= Po − Pc

1− Pc
(27)

here

N∑
Please cite this article in press as: M.E. Kamasak, Clustering dynamic PE
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

o = s=1

ı(ωestimated
s , ω

original
s )

N
, (28)

ig. 4 – Simulated time activity curves for 5 distinct tissue
egions in the rat phantom.
ICD+ GMM 0.962 0.913
CICD-Gaussian 0.998 0.995
CICD-Poisson 0.993 0.985

and

Pc =
L∑

l=1

N∑
s=1

ı(ωestimated
s , l)

N

N∑
s=1

ı(ωoriginal
s , l)

N
. (29)

In (26), (28), and (29); N denotes the total number of pixels,
ωestimated

s denotes the label of pixel s assigned by the clustering
algorithm, and ω

original
s denotes the correct label of pixel s. DSC

and 
 can take values between zero and one. Higher DSC and

 values correspond to better clustering results.

The RMSE, given in (30), is used to evaluate the accuracy of
the estimated cluster TACs. The RMSE of the TAC estimations
is computed as

RMSE =

√√√√ 1
K

L∑
l=1

‖�estimated
l

− �
original
l

‖2, (30)

where �estimated
l

denotes the estimated TAC for cluster l, and

�
original
l

is the correct TAC for cluster l.

4.4. Simulation results

The image-domain clustering algorithms require the emis-
sion images for each time frame. Iterated coordinate descent
(ICD) algorithm is used to obtain the required reconstructions
[23]. A quadratic prior with different regularization parame-
ters for each time frame is used with ICD. The regularization
parameters are chosen to minimize the RMSE of the emission
images.

Initial pixel labels and cluster TACs are same for the CICD
and image-domain clustering algorithms. Initialization pro-
cess is described at [1].

All algorithms are stopped when none of the pixels change
label during an iteration.

4.4.1. Results for Gaussian distributed sinograms of
NCAT dataset
The images are clustered into four regions that are shown in
Fig. 1. For these simulations, the regularization parameters
ˇ, for both CICD-Gaussian and CICD-Poisson algorithms are
set to 40. This value for ˇ is chosen empirically to maximize
the DSC. The pixel labels that are assigned by the image-
domain algorithms and the CICD methods are shown in Fig. 5.
DSC and 
 statistics for these clustering results are listed in
T images on the Gaussian distributed sinogram domain, Comput.

Table 1. The CICD methods have higher DSC and 
 values
than image-domain clustering algorithms. In addition, CICD-
Gaussian algorithm has slightly higher DSC and 
 values than
CICD-Poisson algorithm.

dx.doi.org/10.1016/j.cmpb.2008.11.001
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Fig. 5 – Pixel labels assigned to the Gaussian distributed sinogram of NCAT dataset. (a) Original, (b) ICD + WLS, (c)
ICD + GMM − EM, (d) CICD-Gaussian, (e) CICD-Poisson.

gram
Fig. 6 – Cluster TACs for the Gaussian distributed sino

The RMSE values of the estimated cluster TACs are shown
in Fig. 6, and the corresponding RMSE values are given in
Table 2. For all regions, CICD-Gaussian algorithm produced the
lowest RMSE for cluster TACs.
Please cite this article in press as: M.E. Kamasak, Clustering dynamic P
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

Clustering results of the CICD-Gaussian algorithm with dif-
ferent ˇ values are shown in Fig. 7. DSC and 
 statistics of the
clustering results for different values of ˇ are illustrated in
Fig. 8.

Table 2 – RMSE of the cluster TACs for the Gaussian distributed

Region WLS GMM-EM

Background 0.0123 0.0157
Liver 0.0626 0.0721
Tumor 0.1042 0.0664
of NCAT dataset. (a) Background, (b) liver, (c) tumor.

4.4.2. Results for Poisson distributed sinogram data of rat
dataset
The images are clustered into six regions that are shown in
Fig. 3. For these simulations, the regularization parameter,
ET images on the Gaussian distributed sinogram domain, Comput.

ˇ, is set to 50 for for both CICD-Gaussian and CICD-Poisson
algorithms, which is chosen to maximize the DSC.

Clustering results of the image-domain algorithms and the
CICD algorithms are shown in Fig. 9. The DSC and 
 statistics

sinogram of NCAT dataset.

CICD-Gaussian CICD-Poisson

0.0002 0.0033
0.0007 0.0088
0.0029 0.0501

dx.doi.org/10.1016/j.cmpb.2008.11.001
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Fig. 7 – Clustering results of CICD-Gaussian algorithm for the Gaussian distributed sinogram of NCAT dataset using
d (e) ˇ

f
T
c
w
c

F
i
a
b
t
i

F
r

ifferent values of ˇ. (a) Original, (b) ˇ = 0, (c) ˇ = 1, (d) ˇ = 5,

or these algorithms are given in Table 3. From Fig. 9 and
able 3, it can be seen that CICD methods performs better
lustering in terms of DSC and 
 statistics. Clustering results
ith CICD-Poisson algorithm have higher DSC and 
 statistics

ompared to the results of CICD-Gaussian algorithm.
TACs estimated by the clustering algorithms are shown in

ig. 10. The RMSE for the estimated cluster TACs are listed
n Table 4. For all regions except the white matter, the CICD
lgorithms estimated the lowest RMSE TACs. TACs estimated
Please cite this article in press as: M.E. Kamasak, Clustering dynamic PE
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

y the CICD-Poisson algorithm have lower RMSE compared to
he estimates of the CICD-Gaussian algorithm for all regions
n the rat dataset.

ig. 8 – DSC and � statistics of the CICD-Gaussian clustering
esults with different ˇ values.
= 20, (f) ˇ = 40.

4.4.3. Results for pre-corrected sinogram data of NCAT
dataset
The CICD algorithms: CICD-Gaussian and CICD-Poisson are
compared against each other using pre-corrected sinogram
simulation of the NCAT dataset. Effects of scatter, randoms,
attenuation, deadtime, and detector efficiency are simulated
using NCAT dataset. The data are corrected before clustering
with CICD algorithms. Simulations are performed with 15%
scatter (to count) fraction and 30% scatter fraction. Typically,
10–20% scatter fraction occurs when a septa is used to acquire
2D PET data. Without septa, 3D PET data are acquired with
20–40% scatter fraction.

Pixel labels assigned by the CICD-Gaussian and CICD-
Poisson algorithms for the pre-corrected sinogram data are
T images on the Gaussian distributed sinogram domain, Comput.

shown in Fig. 11. DSC and 
 statistics for these labels are listed
in Table 5. These results show that the CICD-Gaussian algo-
rithm performs better than the CICD-Poisson algorithm for the
pre-corrected data with both 15% and 30% scatter fractions.

Table 3 – DSC and � statistics for the Poisson distributed
sinogram of rat dataset.

Method DSC 


ICD+WLS 0.946 0.814
ICD+ GMM 0.938 0.798
CICD-Gaussian 0.993 0.974
CICD-Poisson 0.996 0.983

dx.doi.org/10.1016/j.cmpb.2008.11.001
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Table 4 – RMSE of the cluster TACs for the Poisson distributed sinogram of rat dataset.

Region WLS GMM-EM CICD-Gaussian CICD-Poisson

Background 0.017 0.022 0.000 0.0000
Nonbrain 0.013 0.007 0.013 0.0004
Nonspecific-gray matter 0.088 0.092 0.022 0.0063
Striatum 0.207 0.239 0.033 0.0218
Cortex 0.059 0.088 0.025 0.0110
White matter 0.059 0.019 0.838 0.2167

gram
Fig. 9 – Pixel labels assigned to the Poisson distributed sino
(d) CICD-Gaussian, (e) CICD- Poisson.

The performance of the CICD clustering algorithms are lower
on the pre-corrected sinogram data compared to Gaussian
distributed sinogram of NCAT dataset. The CICD-Gaussian
algorithm outperforms the CICD-Poisson algorithm for both
scatter fractions of the pre-corrected sinogram.

Cluster centers of the pre-corrected sinogram of NCAT
Please cite this article in press as: M.E. Kamasak, Clustering dynamic P
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

dataset that are estimated by the CICD clustering algorithm
are shown in Fig. 12. The corresponding RMSE values of the
estimated cluster centers are listed in Table 6. The RMSE val-
ues of the cluster centers for pre-corrected sinogram data are

Table 5 – DSC and � statistics for the pre-corrected
sinogram of NCAT dataset.

15% scatter 30% scatter

DSC 
 DSC 


CICD-Gaussian 0.996 0.991 0.993 0.985
CICD-Poisson 0.9912 0.980 0.989 0.976
of rat dataset. (a) Original, (b) ICD + WLS, (c) ICD+GMM-EM,

higher than the RMSE of Gaussian distributed sinogram of
the NCAT dataset. In addition, RMSE of cluster TACs increases
with scatter fraction in the pre-corrected sinogram data. Esti-
mated cluster centers by the CICD-Gaussian algorithm have
lower RMSE compared to the CICD-Poisson algorithm for the
pre-corrected sinogram data with both 15% and 30% scatter
fraction.

4.4.4. Discussion
The success of the CICD algorithms is due to the reduction in
the number of estimated parameters. The CICD algorithms
assign N labels and estimates L× K time points for clus-
ter TACs. However, the image-domain clustering algorithms
require the estimation of additional N× K pixels of emission
images.

The results of the CICD-Gaussian method for the Gaussian
ET images on the Gaussian distributed sinogram domain, Comput.

distributed sinogram of NCAT dataset are better than those of
CICD-Poisson algorithm in terms of the DSC, 
 statistics, and
RMSE criteria. On the other hand, for the Poisson distributed
sinogram of the rat dataset, the CICD-Poisson algorithm out-

dx.doi.org/10.1016/j.cmpb.2008.11.001
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Table 6 – RMSE of the cluster TACs for the pre-corrected sinogram of NCAT dataset.

CICD-Gaussian CICD-Poisson

15% scatter 30% scatter 15% scatter 30% scatter

Background 0.0005 0.0013 0.0083 0.0108
Liver 0.0012 0.0022 0.0104 0.0148
Tumor 0.0040 0.0056 0.0560 0.0583

Fig. 10 – Cluster TACs estimated for the Poisson distributed sinogram of rat dataset. (a) Background, (b) nonbrain, (c)
nonspecific-gray matter, (d) striatum, (e) cortex, (f) white matter.

dx.doi.org/10.1016/j.cmpb.2008.11.001
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Fig. 11 – Pixel labels assigned to the pre-corrected sinogram of NCAT dataset. (a) CICD-Gaussian – 15% scatter, (b)
CICD-Gaussian – 30% scatter, (c) CICD-Poisson – 15% scatter, (d) CICD-Poisson – 30% scatter.

m o
Fig. 12 – Cluster TACs for the pre-corrected sinogra

performs the CICD-Gaussian algorithm. It can be concluded
that the choice of the distribution model for the sinogram data
is critical for the performance of the CICD algorithm.

The strength of the regularization term is adjusted with
the regularization parameter, ˇ. The regularization parameter,
which is chosen to maximize the overall DSC, can make the
regularization too strong for small-area regions such as the
white matter in the rat dataset. Therefore, the CICD algorithms
fail to estimate the TAC of the white matter region. To avoid
this, a spatially adaptive regularization scheme can be used.
Please cite this article in press as: M.E. Kamasak, Clustering dynamic P
Methods Programs Biomed. (2008), doi:10.1016/j.cmpb.2008.11.001

Both CICD-Gaussian and CICD-Poisson algorithms perform
worse on the pre-corrected sinogram data than the Gaus-
sian distributed sinogram of NCAT dataset. This result shows
that neither Gaussian nor Poisson distribution can model
f NCAT dataset. (a) Background, (b) liver, (c) tumor.

the pre-corrected sinogram well enough. On the other hand,
the CICD-Gaussian algorithm performs better on the pre-
corrected sinograms compared to the CICD-Poisson algorithm.
Therefore, it can be concluded that the Gaussian distribution
can model the pre-corrected sinogram data better than the
Poisson distribution.

5. Conclusion

We recently proposed a new clustering algorithm that we
ET images on the Gaussian distributed sinogram domain, Comput.

call clustering with iterative coordinate descent [1]. The CICD
algorithm clusters the dynamic PET images directly on the
projection domain, assigns pixel labels without reconstruct-
ing emission images, and estimates the TAC for each cluster.

dx.doi.org/10.1016/j.cmpb.2008.11.001
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Trans. Image Process. 5 (3) (March 1996) 480–492.
ARTICLE
c o m p u t e r m e t h o d s a n d p r o g r a m s

he CICD algorithm performs better clustering compared to
he image-domain clustering algorithms in terms of DSC, 


tatistics, and RMSE.
In this paper, the CICD algorithm is extended for the case

here the sinogram data are Gaussian distributed. Gaussian
istribution can be useful to model sinograms obtained from
ome of the modern PET systems and sinograms that are
re-corrected. The choice of the data model affects the clus-
ering results. CICD-Gaussian algorithm performs better for
he Gaussian distributed sinogram data, whereas the CICD-
oisson algorithm performs better for the Poisson distributed
inogram data. Neither of these distributions may model the
re-corrected data perfectly. However, CICD-Gaussian algo-
ithm performs better than the CICD-Poisson algorithm on the
re-corrected sinogram data.

The proposed clustering method has certain limitations.
or example, it is possible to register the emission image
rames to compensate inter-frame patient motion in the
mage-domain clustering algorithms. For the CICD algorithms,
he inter-frame patient motion can be recorded during data
cquisition using external measurement devices, and the data
an be corrected before clustering [24]. In addition, it is some-
imes desired to analyze the clustering error corresponding to
ach pixel. This analysis can give an idea about the accuracy
f the pixel labels. With image-domain clustering algorithms,
ixel-based error analysis can be performed by comparing the
easured TAC of a pixel and the estimated TAC of the corre-

ponding cluster. However, when the pixel labels are assigned
irectly from the sinograms, this type of error analysis is not
traight forward.
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