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ABSTRACT

It is often necessary to analyze the time response of a tracer. A common way of analyzing the tracer time
response is to use a compartment model and estimate the model parameters. The model parameters are generally
physiologically meaningful and called “kinetic parameters”. In this paper, we simultaneously estimate both the
kinetic parameters at each voxel and the model-based plasma input function directly from the sinogram data.
Although the plasma model parameters are not our primary interest, they are required for accurate reconstruction
of kinetic parameters. The plasma model parameters are initialized with an image domain method to avoid local
minima, and multiresolution optimization is used to perform the required reconstruction. Good initial guesses for
the plasma parameters are required for the algorithm to converge to the correct answer. Therefore, we devised
a preprocessing step involving clustering of the emission images by temporal characteristics to find a reasonable
plasma curve that was consistent with the kinetics of the multiple tissue types. We compare the root mean
squared error (RMSE) of the kinetic parameter estimates with the measured (true) plasma input function and
with the estimated plasma input function. Tests using a realistic rat head phantom and a real plasma input
function show that we can simultaneously estimate the kinetic parameters of the two-tissue compartment model
and plasma input function. The RMSE of the kinetic parameters increased for some parameters and remained
the same or decreased for other parameters.
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1. INTRODUCTION

The tracer concentration in the plasma, also called input function, is required for the estimation of physiological
parameters. This plasma concentration is generally obtained by sampling blood from arteries and direct mea-
surement of activity in these samples.1 However, there are many risks associated with this invasive procedure
such as arterial thrombosis, arterial sclerosis, and irreversible tissue ischemia. Furthermore, the arterial sam-
pling causes discomfort to the patients and may expose the medical staff to additional radiation. As a result
of these drawbacks, there has been growing interest to develop algorithms that eliminate the need for arterial
blood sampling. Gunn et al.2 proposed a reference region model. In this model, the brain is segmented into
target (with specific binding) and reference (no specific binding) regions. An expression for the input function
in terms of kinetic parameters can be obtained from the reference region in the brain, and this expression can
be substituted in the target region to eliminate the need for plasma concentrations. Takikawa et al.,3 Onishi et
al.,4 and Eberl et al.5 proposed population-based methods. The arterial sample measurements obtained from
a population of former patients were used to approximate the input function. This approach is validated for
[18F ]fluorodeoxyglucose (FDG) in positron emission tomography (PET),5 and [123I]iomazenil in single-photon
emission computed tomography (SPECT).4 Litton,6 Chen et al.,7 and Liptrot et al.8 proposed image-derived
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Figure 1. 2 tissue compartment model with 4 kinetic parameters.

input function estimation. In these cases, the input function is estimated from imaged volumes that consist
primarily of blood. Morris et al.,9 used a shape-based method to derive the input function by automatically
identifying voxels that were mostly like to represent the blood signal in perfusion MR images. Feng et al.10 and
Wong et al.11 estimated a model-based input function and kinetic parameters simultaneously from the images.

Recently, we have proposed a method to estimate the kinetic parameters directly from PET sinograms using
parametric iterative coordinate descent (PICD).12 We also showed that for simulated data the PICD method can
improve over image domain estimation methods. As with image domain estimation methods, PICD algorithm
requires the arterial input function to be known. In this paper, we extend the idea of direct reconstruction
from sinograms to include the estimation of a model-based plasma input function. The scale of the plasma
input function and tracer uptake rate cannot be estimated individually. Because a linear increase in the plasma
concentration or tracer uptake rate produces the same measurements. Therefore, we fixed the scale of the plasma
input function and estimate the tracer uptake rate within an unknown scale factor. With this extension, the
PICD algorithm can be used in the cases where the input function is not known.

This paper is organized as follows; Section 2 reviews the 2-tissue compartment model and the set of ODE’s
that govern a tracer’s kinetics. Section 3 introduces the PICD algorithm for direct parametric reconstruction.
Section 4 presents simulation results. Conclusion follows the results.

2. TWO-TISSUE COMPARTMENT MODEL

Compartment models are commonly used in modelling physiological processes.13 A compartment model is
characterized by the number of its compartments and their interactions. Each compartment in a model represents
a distinct physical space or different states of the tracer. In this paper, we used a 2-tissue compartment model
with 4 parameters. This model is commonly used to describe the uptake and retention of an analog of glucose, 2-
deoxy-2-[18F]fluoro-D-glucose (FDG). The model can also be properly applied to receptor ligand studies provided
that there is no non-specific binding and that the tracer has been administered at sufficiently high specific activity.
Figure 1 illustrates the model: CP (pmol/ml) is the molar concentration of tracer in the plasma, CF (pmol/ml)
is the molar concentration of unbound tracer, and CB (pmol/ml) is the molar concentration of metabolized
or bound tracer. The model depends on the kinetic parameters, k1, k2, k3, and k4, which specify the tracer
exchange rates between compartments in units of inverse minutes. The parameters k1, k2, and k4 are first order
rate constants, and k3 is an apparent first order rate constant describing a process (metabolism or receptor-
binding) that proceeds in proportion to the concentration of the labelled tracer only, as long as the number of
sites available for binding do not become rate-limiting.

In addition to the above-stated parameters, there are two compound parameter groups that have ready
physiological interpretations and practical application, particularly for receptor-ligand imaging: binding potential
(BP ), and total volume of distribution (V D). BP is proportional to the number of receptors and V D represents
the steady state distribution of tracer between the plasma and tissue. BP and V D can be expressed in terms of
the aforementioned kinetic parameters,

BP =
k3

k4
(1)

V D =
k1

k2

(
1 +

k3

k4

)
. (2)

In applying the model in Fig. 1 to all voxels, we assume that the delivery of tracer is the same to all regions
being imaged. In other words, the value of CP is not a function of voxel position. However, the values of the
kinetic parameters will be allowed to vary for each voxel location, s.



Forward Transforms Inverse Transforms

as = k1s

2∆ (k2s − k3s − k4s + ∆) k1s = as + bs

bs = k1s

2∆ (−k2s + k3s + k4s + ∆) k2s = ascs+bsds

as+bs

cs = 1
2 (k2s + k3s + k4s + ∆) k3s = asbs(cs−ds)

2

(as+bs)(ascs+bsds)

ds = 1
2 (k2s + k3s + k4s −∆) k4s = csds(as+bs)

ascs+bsds

∆ = |√(k2s + k3s + k4s)2 − 4k2sk4s|

Table 1. Forward and inverse transformations from standard kinetic parameters [k1s, k2s, k3s, k4s] for the voxel s to new
parameters [as, bs, cs, ds]. Note that cs = α2 and ds = α1 given in equation 8.

In this work, the plasma concentration, CP , is modelled using 5 parameters14 as

CP (φ, t) = {(A1(t− τ) −A2)e−λ1(t−τ) + A2e
−λ2(t−τ)}u(t− τ) , (3)

where φ = [A1, A2, λ1, λ2, τ ]t is the array of plasma model parameters, and u(·) is the unit step function. Using
these assumptions, the time variation of the concentrations for a single voxel are governed by the following
ordinary differential equations (ODE).

dCF (s, φ, t)
dt

= k1sCP (φ, t)− (k2s + k3s)CF (s, φ, t) + k4sCB(s, φ, t) (4)

dCB(s, φ, t)
dt

= k3sCF (s, φ, t)− k4sCB(s, φ, t) . (5)

The solution to the ODE’s in (4,5) is given by

CF (s, φ, t) =
{

k1s

α2 − α1
[(k4s − α1)e−α1t + (α2 − k4s)e−α2t]u(t)

}
∗ CP (φ, t) (6)

CB(s, φ, t) =
{

k1sk3s

α2 − α1
[e−α1t − e−α2t]u(t)

}
∗ CP (φ, t) (7)

where ∗ indicates continuous-time convolution, and

α1, α2 =
(k2s + k3s + k4s)∓

√
(k2s + k3s + k4s)2 − 4k2sk4s

2
. (8)

where α1 and α2 are real valued constants that result from the subtraction and addition of terms in (8) respec-
tively.

Next, we transform the kinetic parameters (k1, k2, k3, k4) to form the new parameters (a, b, c, d) as shown in
Table 1. This transformation is important because while the parameters (a, b, c, d) are well suited for optimization,
(k1, k2, k3, k4) are more physiologically relevant. We use ϕs = [as, bs, cs, ds]t to denote the parameter vector for
each voxel s.

The total activity concentration (e.g., in nCi/ml) for voxel s at time t is denoted by

f(ϕs, φ, t) � (1− VB) [CF (s, φ, t) + CB(s, φ, t)] SAe−λt + VBCWB(t)
= (1− VB)

[
(ase

−cst + bse
−dst)u(t) ∗ CP (φ, t)

]
SAe−λt + VBCWB(t) (9)

where SA is the initial specific activity of the tracer (nCi/pmol), λ is the decay rate of the isotope (min−1), VB

is a known constant for the volume fraction of the voxel that contains blood, and CWB (nCi/ml) is the tracer
activity concentration in whole blood (i.e., plasma plus blood cells plus other particulate matter). ∗

∗Notice that both f(ϕs, t) and CWB(t) in equation (9) include decay, either explicitly or implicitly. Therefore, the
sinogram data should not be decay corrected for the implementation of this method.



We next discretize f(ϕs, φ, t) using t0, · · · , tK−1 as the K discrete times at which the tissue is imaged. The
activity at each time for voxel s is given by the 1×K row vector

f(ϕs, φ) = [f(ϕs, φ, t0), f(ϕs, φ, t1), · · · , f(ϕs, φ, tK−1)] . (10)

Let the N voxels be indexed by the values s = 0, 1, · · · , N − 1, and let ϕ = [ϕ0, ϕ1, · · · , ϕN−1] denote the 4×N
matrix of parameters at all voxels. With this, we define the N ×K function

F (ϕ, φ) =




f(ϕ0, φ)
...

f(ϕN−1, φ)




which maps the parametric image, ϕ, to the activity of each voxel at each time. Finally, let F (ϕ, φ, tk) denote
the kth column of F (ϕ, φ), so F (ϕ, φ, tk) contains the activity for each voxel at time tk.

3. PARAMETRIC RECONSTRUCTION FROM SINOGRAM DATA WITH PLASMA
FUNCTION ESTIMATION

In this section, we describe our method for reconstructing the parametric image, ϕ, and estimating the plasma
function directly from sinogram data. We do this by first formulating a conventional scanner model under the
assumption that the sinogram measurements are Poisson random variables. We then use the kinetic model of
Section 2 as the input to the scanner model. Once the complete forward model is formulated, we present a cost
function that consists of a negative log likelihood and a prior for the kinetic parameters. The reconstructed
kinetic parameters are essentially the maximum a posteriori (MAP) estimate of the kinetic parameters, but they
are computed by simultaneously optimizing the plasma model parameters, φ, along with the kinetic parameters.
This algorithm can also be viewed as joint MAP estimation with a uniform prior distribution for the plasma
model parameters.15 Although the plasma model parameters are not of direct interest, they are required for
the accurate reconstruction of kinetic parameters.

3.1. Scanner Model

Let Ymk denote the sinogram measurement for projection 0 ≤ m < M and time frame 0 ≤ k < K, and let Y be
the M×K matrix of independent Poisson random variables that form the sinogram measurements. Furthermore,
let A be the forward projection matrix, with elements Ams (counts-ml/nCi), and let µ be the number of accidental
coincidences. Then the expected number of counts for each measurement at a given time, tk is given by

E[Ymk|F (ϕ, φ, tk)] =
N−1∑
s=0

Amsf(ϕs, φ, tk) + µ . (11)

This relationship can be compactly expressed using matrix notation as

E[Y |F (ϕ, φ)] = AF (ϕ, φ) + µ . (12)

It is easily shown that under these assumptions the probability density for the sinogram matrix is given by16

p(Y |ϕ, φ) =
K−1∏
k=0

M−1∏
m=0

(Am∗F (ϕ, φ, tk) + µ)Ymke−(Am∗F (ϕ,φ,tk)+µ)

Ymk!
(13)

where Am∗ is the mth row of the system matrix, A. The log likelihood of the sinogram matrix is then given by

LL(Y |ϕ, φ) =
K−1∑
k=0

M−1∑
m=0

Ymk log(Am∗F (ϕ, φ, tk) + µ)− (Am∗F (ϕ, φ, tk) + µ)− log(Ymk!) . (14)

This is a very general formulation. For specific scanners, the form of the system matrix A may vary considerably,
and accurate determination of the matrix A can be critical to obtaining accurate tomographic reconstructions.17



foreach iteration {
ϕ̂← arg min

ϕ
C(Y |ϕ, φ)

φ̂← arg min
φ

C(Y |ϕ̂, φ)

}

Figure 2. Each iteration of optimization has two steps; first the plasma model parameters were kept fixed and parametric
image is updated, then plasma model parameters are estimated for the updated parametric image.

3.2. Estimation Framework

For the joint optimization of the kinetic parameters and the plasma model parameters, a cost function is formed
by negating the log likelihood given in (14) and adding a stabilizing function.

C(Y |ϕ, φ) = −LL(Y |ϕ, φ) + S(ϕ) (15)

The kinetic parameter reconstructions and the plasma model parameters can be estimated by minimizing this
cost function;

{ϕ̂, φ̂} ← arg min
{ϕ,φ}

C(Y |ϕ, φ) . (16)

The stabilizing function can be obtained from an assumed prior probability distribution for the parametric
image. In this work, we model the distribution of the parametric image as a Markov random field (MRF) with
a Gibbs distribution of the form

p(ϕ) =
1
z

exp{−
∑

{s,r}∈N
gs−r‖T (ϕs)− T (ϕr)‖qW } (17)

where z is the normalization constant, N is the set of all neighboring voxel pairs in ϕ, gs−r is the coefficient
linking voxels s and r, q is a constant parameter that controls the smoothness of the edges in the parametric
image, T (·) is a transform function, and W is the diagonal weighting matrix.

In this paper, we will assume q = 2 and that N is formed with voxel pairs using an 8-point neighborhood
system. In this case, the probability density function corresponds to a Gaussian Markov random field, and we
choose the negative logarithm of this function as our stabilizing function.

S(ϕ) =
∑

{s,r}∈N
gs−r‖T (ϕs)− T (ϕr)‖2W . (18)

By choosing an appropriate transform function, T (·), the regularization can be done in the space of the physiolog-
ically relevant parameters. Typically, we will select T (·) to transform from the a, b, c, d space to the k1, k2, k3, k4

as shown in Table 1; however, any well behaved one-to-one transformation, T (·), is suitable for our algorithm.

3.3. Optimization Strategy using PICD

Simultaneous update of the parametric image, ϕ, and plasma model parameters, φ, is not tractable. Therefore,
we chose an iterative optimization strategy. Each iteration had two steps; 1) estimate the kinetic parameters
using parametric iterative coordinate descent (PICD) algorithm12 by keeping the plasma model parameters
constant, 2) update the plasma model parameters (See Fig. 2).

The PICD algorithm is similar to the ICD algorithm used in conventional PET image reconstruction,16 but
it is adapted to account for the nonlinear parameters of the compartmental model. PICD sequentially updates
the parameters of each voxel thereby monotonically decreasing the cost function given in Equation (16);

ϕs ← arg min
ϕs

C(Y |ϕs, ϕ) . (19)



When F (ϕ, φ) is a nonlinear function, the PICD algorithm reduces computation by decoupling the dependencies
between the compartment model nonlinearities and the forward tomography model. Therefore, it is computa-
tionally efficient.

After updating the parametric image, the plasma model parameters are sequentially updated using line
searches;

Â2 ← argmin
A2

C(Y |ϕ, [A1, A2, λ1, λ2, τ ])

λ̂1 ← argmin
λ1

C(Y |ϕ, [A1, Â2, λ1, λ2, τ ])

λ̂2 ← argmin
λ2

C(Y |ϕ, [A1, Â2, λ̂1, λ2, τ ])

τ̂ ← argmin
τ

C(Y |ϕ, [A1, Â2, λ̂1, λ̂2, τ ])

φ̂ ← [A1, Â2, λ̂1, λ̂2, τ̂ ]

Note that in equation (4) k1s and CP (φ, t) are multiplied. We can estimate the value of k1sCP (φ, t), but
we cannot individually estimate the scale of the plasma concentration and tracer uptake rate, k1s. In our
optimization framework, the scale of the plasma function is determined by A1 and A2, and the scale of the
tracer uptake rate is a function of as and bs. Therefore, only three parameters out of A1, A2, as, and bs can be
identified at the same time. In order to address this unidentifiability issue, A1 can be fixed to a constant, and in
this case, parameters A2, k1 and V D can only be estimated within a scale factor. Other parameters (k2, k3, k4,
and BP ) are not effected. It may be possible to use some additional experimental data such as injected dosage
or a single late blood sample or prior information such as population-average blood curve to properly scale the
plasma input function (A1 and A2) and the kinetic parameters (k1 and V D).18

3.4. Initialization

The joint estimation strategy described in Section 3.3 can converge to local minimum with an arbitrary initial
plasma input function. To avoid local minima, a good initial plasma input function is required. In order to
choose good initial plasma model parameters, we used an approach similar to Feng et al.10 (See fig. 3.) First, we
reconstructed the sinograms using filtered back projection (FBP). The voxels were then segmented into a pre-
determined number of clusters according to their reconstructed time responses.19 Each cluster was represented
by a single time response. Let L be the number of clusters, and xl be the representative time response of cluster
l. Then, initial plasma model parameters and the kinetic parameters for each cluster were chosen to minimize
the weighted least squares between the time responses of the clusters and the model;

{ϕinit
0 , · · · , ϕinit

L−1, φ
init} ← arg min

{ϕ0,···,ϕL−1,φ}

L−1∑
l=0

‖xl − f(ϕl, φ)‖2Wl
. (20)

In this equation, Wl denotes the K ×K diagonal weighting matrix for cluster l. Wl is formed by the inverses of
the time-response variances, i.e. the kth diagonal element of Wl is given by

[Wl]k,k =
∆tk
xl,k

,

where ∆tk is the duration of the kth time frame, and xl,k is the time response of cluster l at time tk. Note that,
this initialization may also converge to a local minimum. However, it is a relatively fast method, and it can be
executed many times starting from different points. The solution that minimizes equation (20) can be chosen as
the initial point for our algorithm.

It is well known that for the tomographic problem the ICD reconstruction algorithm tends to have slow
convergence at low spatial frequencies.20 To solve this problem, we use a multiresolution reconstruction scheme,
which first computes coarse resolution reconstructions and then proceeds to finer scales. The coarsest resolution
reconstruction is initialized with φinit and a single set of parameters obtained by weighted least squares curve



0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20
original plasma
estimated plasma

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

time (min)

a
ct

iv
ity

 (
n

C
i/m

l)

original
fitted

RECONSTRUCTION

CLUSTER

LEAST SQUARES FITTING

Figure 3. Initialization strategy for plasma model parameters. First sinograms are reconstructed, then the tomographic
reconstructions are clustered. Finally plasma model parameters and kinetic parameters are estimated using least squares
curve fitting.

fitting to the average emission rate of each time frame. Importantly, the average activity of each time frame
can be calculated directly from the sinogram data with little computation. Finer resolution reconstructions are
then initialized by interpolating the parametric reconstruction of the previous coarser resolution. This recursive
process reduces computation because the computationally inexpensive reconstructions at coarse levels provide a
good initialization for finer resolution reconstructions.

4. SIMULATION AND RESULTS

The following section compares the accuracy of kinetic parameter estimates with measured plasma input function,
and with estimated plasma input function.

4.1. Phantom Design

Our simulation experiments are based on a phantom of a rat’s head. Figure 4(a) shows a schematic representation
of the rat phantom and its constituent regions. The phantom has 7 regions including the background. These
regions were obtained by segmenting an MRI scan of a rat through automated and manual techniques.21 The
regions and their corresponding parameters22 are given in Table 2, and their time activity curves are shown
in Fig. 4(b). Time frames of emission images are generated using these parameter images and the 2-tissue
compartment model equations. The plasma function, CP (t), is obtained by arterial plasma sampling of a rat
scanned in IndyPET-II.23 The blood contribution to the PET activity is assumed to be zero, and the tracer
is assumed to be raclopride with 11C, which has a decay constant of λ = 0.034 min−1. Total scan time is 60
min., divided into 18 time frames with 4×0.5 min, 4×2 min, and 10×5 min. The phantom had a resolution of
128×128 with each voxel having dimensions of (1.2 mm)3.
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Figure 4. (a) Regions of the rat phantom derived from a segmented MR Image. (b) Time-activity curves for 5 distinct
tissue regions in rat brain phantom.

Region k1 k2 k3 k4 a b c d
min−1 min−1 min−1 min−1 min−1 min−1 min−1 min−1

Background 0 0 0 0 0 0 0 0
CSF 0 0 0 0 0 0 0 0
Nonbrain .1836 .8968 0 0 .1836 0 .8968 0
Nonspecific-gray matter .0918 .4484 0 0 .0918 0 .4484 0
Striatum .0918 .4484 1.2408 .1363 .02164 .07016 1.7914 .0312
Cortex .0918 .4484 .141 .1363 .0607 .0311 .628 .09725
White matter .02295 .4484 0 0 .02295 0 .4484 0

Table 2. Kinetic parameters used in the simulations for distinct tissue regions of the rat head.

The rat phantom image at each time frame is forward projected into a sinogram using a Poisson model for
the detected counts with a background (accidental coincidence) level of 0.001 nCi/ml. Each sinogram consists
of 180 angles and 200 radial bins per angle. A triangular point spread function with a 4 mm base width is used
in forward projections.

4.2. Algorithmic Implementation

The plasma model parameters were initialized as described in Section 3.4. Since we cannot identify A1,A2 and
k1 simultaneously, we can fix A1 to any arbitrary value. However, with an arbitrary A1 the estimated values of
A2, k1 and V D will be off by a scale factor. We fixed A1 to its true value.

In the initialization, the tomographic reconstructions are clustered into 8 regions. To find initial plasma
model parameters, 10 starting points in the range of 2 ≤ A2 ≤ 10, 0.5 ≤ λ1 ≤ 5, 0 ≤ λ2 ≤ 0.2, 0 ≤ τ ≤ 2 were
used, and for each of these the solution that minimizes equation (20) is chosen as the initial point.

The maximum likelihood (ML) estimate of the stabilizing function parameters were computed from true
parametric image and used in the simulations.24

The kinetic parameters are reconstructed using PICD algorithm with three levels of multiresolution optimiza-
tion corresponding to resolutions 32× 32, 64× 64, and 128× 128. Regularization was applied directly to the k1,
k2, BP , and V D parameters. The multiresolution PICD method was executed with a fixed number of iterations
at each resolution; 40 iterations at 32 × 32 resolution, 20 iterations at 64 × 64 resolution, and 10 iterations at
128× 128 resolution.



true estimated
A1 49.325 –
A2 7.310 7.341
λ1 1.789 1.617
λ2 0.045 0.045
τ 0.893 0.825

Table 3. True and estimated plasma model parameters. Note that A1 is not estimated.
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Figure 5. (a) Measured and estimated plasma input functions (b) Measured and estimated plasma function in the first
10 minutes.

4.3. Results

Table 3 shows the true and estimated plasma model parameters. Figure 5(a) shows the measured (true) plasma
input function and estimated plasma input function, and Fig. 5(b) displays only the first 10 min of the measured
and estimated plasma input functions.

Figure 6 and 7 display the kinetic parameter reconstructions with the measured plasma input function
and with the estimated plasma input function. All kinetic parameters in these figures are estimated with
regularization on k1, k2, BP , and V D.

Figure 8 shows the normalized RMSE of the kinetic parameter estimates, k2, k3, k4, and BP with the
measured and estimated plasma input function. Note that these are the only kinetic parameters that we can
estimate without any side information. The RMSE of parameters k2 and k3 are calculated over the support of
k1, and the RMSE of k4 is calculated over the support of k3.† From this figure, the RMSE of k2, and k4 estimates
increase with estimated plasma input function.

5. CONCLUSION AND FUTURE WORK

We have demonstrated that it is possible to estimate kinetic parameters k2, k3, k4, and BP directly from the
PET sinograms without plasma input function measurements. The tracer uptake rate, k1, and V D can only
be estimated to within a scale factor since the scale of the plasma input function is not known. A model-based
plasma input is estimated jointly with kinetic parameters. In our simulation, with real plasma input function
and realistic phantom, the estimated plasma input function was close to the measured (true) input function.

†When k1 is zero, then k2 and k3 are not defined. Similarly, when k3 is zero, k4 is not defined.
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Figure 6. (a) Original k1, k2, k3, and k4. Estimated k1, k2, k3, and k4 (b) estimated with measured input function, and
(c) estimated with simultaneous estimation of input function.
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Figure 7. Original BP and V D. Estimated BP and V D (b) estimated with measured input function, and (c) estimated
with simultaneous estimation of input function.
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Figure 8. Normalized RMSE of the kinetic parameter estimations with measured input function and with estimated
input function.

Furthermore, some of the estimated kinetic parameters have higher RMSE (k2 and k4), some of them (k3 and
BP ) have either similar or lower RMSE when the input function is estimated.

Better optimization for plasma model parameters may also be needed for avoiding local minima and for
computational efficiency. Further simulations and tests with real data are needed to analyze the the RMSE,
bias, and variance of the kinetic parameter estimations.
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