Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data

M. Kamasaka, C.A. Boumana, E. Morrisb, K. Sauerc

a Purdue University Electrical and Computer Engineering Department
b Indiana University Purdue University-Indianapolis Biomedical Engineering Department
c Notre Dame University Electrical and Computer Engineering Department

Thanks to Dr. Tie-Qiang Li, Dr. Karmen Yoder and Mr. Cristian Constantinescu at Indiana University Purdue University -Indianapolis for their help in making the rat phantom
• PET accumulates/averages the emissions of voxels.

• Time resolution can be achieved by dividing the data into time frames.
 – Heart perfusion
 – Brain activation
 – Glucose utilization rate
 – Receptor-ligand

• Time response of voxels are governed by ODEs

• Parameters of these ODEs are clinically important
Current Method for Estimation of Compartment Model Parameters

- SNR is low
- Some parameters are nearly unidentifiable
- Current techniques reconstruct time sequences of images and perform parameter estimation on large regions.

![Diagram of Current Method](image)
Limitation of Current Approach

- Requires high SNR
- Depends on accurate ROI
- Does not yield dense parametric estimate
- “Partial Volume” effect is a problem
- Requires reconstruction of many low SNR images
Extensions to Dense Parameter Estimation Methods

- Pixelwise Weighted Least Squares (PWLS):
 - Each voxel parameter is estimated independently
 - no a priori information

- Pixelwise Weighted Least Squares with regularization (PWLSR):
 - Same as PWLS but with spatial regularization
Our Approach: Parametric Image Reconstruction

Advantages:
- Directly reconstructs parameters from sinogram data
- Improves SNR
- Dimensionality reduction
- Produces a single full image of parameter vector
- Point spread function and system geometry can account for “Partial Volume” effects
Parametric Reconstruction Model

\[\varphi = \begin{bmatrix} K_1 \\ k_2 \\ k_3 \\ k_4 \end{bmatrix} \rightarrow \text{2-tissue Compartment Model} \rightarrow F(\varphi) \rightarrow LL(y|\varphi) \rightarrow \text{Scanner Geometry} \]

- \(\varphi_s \) parameter vector of voxel \(s \)
 \[f(t_1, \varphi_s) \]
 \[\vdots \]
 \[f(t_K, \varphi_s) \]

- \(f(\varphi_s) = \) time response at voxel \(s \)

- \(F(\varphi) = [f(\varphi_1), f(\varphi_2), \ldots, f(\varphi_N)] \) time response of all voxels

- \(y \) is the sinogram data

- Log likelihood has the form \(LL(y|F(\varphi)) \)
Compartmental Models

- Models needed to quantify processes
- Parameters of the model correspond to clinically important information
- Compartmental models,
 - use compartments for physical spaces and states of tracer
 - use rate of tracer exchange between compartments as its parameters
 - can be described by first order ODEs
- Complex processes can be modeled by adding more compartments into the model
2-tissue Compartment Model

- Used in:
 - FDG studies
 - Receptor studies

- C_P, plasma compartment: Tracer concentration inside the arterial blood vessels
- C_F, free compartment: Tracer concentration in the tissue that is not metabolized or bounded
- C_B, bound compartment: Tracer concentration in the tissue that is metabolized or bounded
2-tissue Compartment Model Equations

- \(C_P \) is measured by sampling blood from the patient during the scan
- Tracer concentration at other compartments
 \[
 \frac{dC_F(t)}{dt} = K_1 C_P(t) - (k_2 + k_3) C_F(t) + k_4 C_B(t) \tag{1}
 \]
 \[
 \frac{dC_B(t)}{dt} = k_3 C_F(t) - k_4 C_B(t) \tag{2}
 \]
- PET signal,
 \[
 C_T(t) = C_F(t) + C_B(t) \tag{3}
 \]
 \[
 f(K_1, k_2, k_3, k_4) = [(1 - V_B) C_T(t) + V_B C_P(t)] S_A e^{-\lambda t} \tag{4}
 \]
2-tissue Compartment Model: Important Parameters

- For receptor-ligand imaging binding potential (BP) and volume distribution (VD) are clinically important parameters.

\[
BP = \frac{k_3}{k_4} \quad (5)
\]

\[
VD = \frac{K_1}{k_2} \left(1 + \frac{k_3}{k_4} \right) \quad (6)
\]
MAP Estimate of Parametric Image

\[C(y|\varphi) = LL(y|\varphi) + S(\varphi) \] \hspace{1cm} (7)

\[\hat{\varphi} = \arg \max_{\varphi} C(y|\varphi) \] \hspace{1cm} (8)

- How do we efficiently compute this
PICD - Parametric Iterative Coordinate Descent

- Efficient implementation of ICD for reconstruction with kinetic models
- Sequentially update parameter φ_s vector at each voxel
- $LL(y|\varphi) + S(\varphi)$ will increase with each PICD iteration
- Efficient when $F(\varphi)$ is a nonlinear function
- Works with MRF prior
PICD - Update Strategy

- For each voxel update, make approximation

\[LL(y|\varphi_s) - LL(y|\tilde{\varphi}_s) \approx \sum_k (\theta_{1k} \Delta f_{sk} + \frac{1}{2} \theta_{2k} \Delta f_{sk}^2) \] \hspace{1cm} (9)

where \(\Delta f_{sk} = f(t_k, \varphi_s) - f(t_k, \tilde{\varphi}_s) \)

- \(\theta_{1k} \) and \(\theta_{2k} \) can be recursively updated using same algorithm as in conventional ICD [Bouman and Sauer 96]

- We re-parametrize using \(\varphi_s = [a_s, b_s, c_s, d_s] \)

- Then the time response is

\[f(t_k, \varphi_s) = [(1 - V_B)((ae^{-ct} + be^{-dt}) \otimes C_P(t_k)] + V_B C_P(t_k)] S_A e^{-\lambda t} \] \hspace{1cm} (10)
PICD - Pixel Vector Update

- Estimation of a_s and b_s parameters
 - linear parameters
 - closed form update for fixed values of c_s and d_s
 - dependence on a_s and b_s is removed
- Estimation of c_s and d_s parameters
 - nonlinear parameters
 - $\Delta f_{sk}(c_s, d_s)$

\[
\begin{bmatrix}
 c_s \\
 d_s
\end{bmatrix}
\xrightarrow{\text{Parametric Model}}
\begin{bmatrix}
 \Delta f_{sk} \\
 \Delta LL
\end{bmatrix}
\]

\[
c_n \leftarrow \arg\max_{c_s \geq d_s} \Delta LL(y|c_s, d_s) + S(\varphi) \tag{11}
\]

\[
d_n \leftarrow \arg\max_{d_s \geq 0, d_s \leq c_s} \Delta LL(y|c_s, d_s) + S(\varphi) \tag{12}
\]
Multiresolution Reconstruction

- Multiresolution reconstruction
 - Coarsest scale initialized to constant value
 - Coarse scale solutions are used to initialize fine scale solutions
 - Used 3 scales (32×32, 64×64 and 128×128)
Simulations - Phantom

- Rat phantom with seven separate regions is used to assess the estimation methods

<table>
<thead>
<tr>
<th>Region</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CSF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nonbrain (NB)</td>
<td>.1836</td>
<td>.8968</td>
<td>0</td>
<td>0</td>
<td>.1836</td>
<td>0</td>
<td>.8968</td>
<td>0</td>
</tr>
<tr>
<td>Whole brain (WB)</td>
<td>.0918</td>
<td>.4484</td>
<td>0</td>
<td>0</td>
<td>.0918</td>
<td>0</td>
<td>.4484</td>
<td>0</td>
</tr>
<tr>
<td>Striatum (STR)</td>
<td>.0918</td>
<td>.4484</td>
<td>1.2408</td>
<td>.1363</td>
<td>.02164</td>
<td>.07016</td>
<td>1.7914</td>
<td>0.0312</td>
</tr>
<tr>
<td>Cortex (COR)</td>
<td>.0918</td>
<td>.4484</td>
<td>.141</td>
<td>.1363</td>
<td>.0607</td>
<td>.0311</td>
<td>.628</td>
<td>.09725</td>
</tr>
<tr>
<td>White matter (WM)</td>
<td>.02295</td>
<td>.4484</td>
<td>0</td>
<td>0</td>
<td>.02295</td>
<td>0</td>
<td>.4484</td>
<td>0</td>
</tr>
</tbody>
</table>

- Regions are obtained by segmenting MRI scans of a rat

- Total scan time is 60 min., divided into 18 time frames: 4×0.5 min, 4×2 min and 10×5 min
Simulations - Assumptions

- Raclopride with ^{11}C is used as tracer.
- The blood function, $C_{P}(t)$ was generated as described in [Wong et. al. 01]
- Activity scaled to are scaled 10M counts
- 180 projection angles each with 200 projection and 0.875 mm spacing
- Used 4 mm. wide triangular PSF
- Poisson noise model with accidental coincidences
- Comparison methods use FBP
Reconstructed Emission Images

Original phantom

FBP reconstruction

Parametric reconstruction
Parametric Images of a, b, c and d

(1) Original Phantom

(2) Pixelwise Weighted Least Squares
(3) Pixelwise Weighted Least Squares with Regularization

(4) Parametric Image Reconstruction
Parametric Images of K_1, k_2, k_3 and k_4

(1) Original Phantom
(2) Pixelwise Weighted Least Squares
(3) Pixelwise Weighted Least Squares with Regularization

(4) Parametric Image Reconstruction
Parametric Images of BP and V_D

<table>
<thead>
<tr>
<th>Original Phantom</th>
<th>Pixelwise Weighted Least Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixelwise Weighted Least Squares with Regularization</td>
<td>Parametric Image Reconstruction</td>
</tr>
</tbody>
</table>
Normalized RMSE of the Parametric Images

Pixelwise WLS
Pixelwise WLS with regularization
Parametric Image Reconstruction
Conclusions

- Propose direct reconstruction of parametric image
- Advantages
 - Higher SNR
 - Dense parameter estimates
 - Reduced “Partial Volume” effect
- Demonstrated improved quality on realistic simulation data
References
