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Dynamic PET
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• PET accumulates/averages the emissions of voxels.

• Time resolution can be achieved by dividing the data into time frames.

– Heart perfusion

– Brain activation

– Glucose utilization rate

– Receptor-ligand

• Time response of voxels are governed by ODEs

• Parameters of these ODEs are clinically important

2



PURDUE UNIVERSITY

Current Method for Estimation of Compartment

Model Parameters

• SNR is low

• Some parameters are nearly unidentifiable

• Current techniques reconstruct time sequences of images and perform

parameter estimation on large regions.
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Limitation of Current Approach

• Requires high SNR

• Depends on accurate ROI

• Does not yield dense parametric estimate

• “Partial Volume” effect is a problem

• Requires reconstruction of many low SNR images
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Extensions to Dense Parameter Estimation Methods

• Pixelwise Weighted Least Squares (PWLS):

– Each voxel parameter is estimated independently

– no a priori information

• Pixelwise Weighted Least Squares with regularization (PWLSR):

– Same as PWLS but with spatial regularization
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Our Approach: Parametric Image Reconstruction

DATA
PET

Scanner
Geometry

K1
k2
k3
k4

t=1 .. K Parametric

Reconstruction
Image

• Advantages:

– Directly reconstructs parameters from sinogram data

– Improves SNR

– Dimensionality reduction

– Produces a single full image of parameter vector

– Point spread function and system geometry can account for “Partial

Volume” effects
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Parametric Reconstruction Model
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• ϕs parameter vector of voxel s

• f(ϕs) =











f(t1, ϕs)
...

f(tK , ϕs)











time response at voxel s

• F (ϕ) = [f(ϕ1), f(ϕ2), . . . , f(ϕN )] time response of all voxels

• y is the sinogram data

• Log likelihood has the form LL(y|F (ϕ))
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Compartmental Models

• Models needed to quantify processes

• Parameters of the model correspond to clinically important information

• Compartmental models,

– use compartments for physical spaces and states of tracer

– use rate of tracer exchange between compartments as its parameters

– can be described by first order ODEs

• Complex processes can be modeled by adding more compartments into

the model
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2-tissue Compartment Model

• Used in;

– FDG studies

– Receptor studies

CP

K1

k2

CF CB

k3

k4

• CP , plasma compartment: Tracer concentration inside the arterial

blood vessels

• CF , free compartment: Tracer concentration in the tissue that is not

metabolized or bounded

• CB , bound compartment: Tracer concentration in the tissue that is

metabolized or bounded
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2-tissue Compartment Model Equations

• CP is measured by sampling blood from the patient during the scan

• Tracer concentration at other compartments

dCF (t)

dt
= K1CP (t)− (k2 + k3)CF (t) + k4CB(t) (1)

dCB(t)

dt
= k3CF (t)− k4CB(t) (2)

• PET signal,

CT (t) = CF (t) + CB(t) (3)

f(K1, k2, k3, k4) = [(1− VB)CT (t) + VBCP (t)]SAe−λt (4)
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2-tissue Compartment Model: Important Parameters

• For receptor-ligand imaging binding potential (BP) and volume

distribution (VD) are clinically important parameters.

BP =
k3

k4

(5)

VD =
K1

k2

(

1 +
k3

k4

)

(6)
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MAP Estimate of Parametric Image

C(y|ϕ) = LL(y|ϕ) + S(ϕ) (7)

ϕ̂ = arg max
ϕ

C(y|ϕ) (8)

• How do we efficiently compute this
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PICD - Parametric Iterative Coordinate Descent

• Efficient implementation of ICD for reconstruction with kinetic models

• Sequentially update parameter ϕs vector at each voxel

• LL(y|ϕ) + S(ϕ) will increase with each PICD iteration

• Efficient when F (ϕ) is a nonlinear function

• Works with MRF prior
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PICD - Update Strategy

• For each voxel update, make approximation

LL(y|ϕs)− LL(y|ϕ̃s) ≈
∑

k

(θ1k∆fsk +
1

2
θ2k∆f2

sk) (9)

where ∆fsk = f(tk, ϕs)− f(tk, ϕ̃s)

• θ1k and θ2k can be recursively updated using same algorithm as in

conventional ICD [Bouman and Sauer 96]

• We re-parametrize using ϕs = [as, bs, , cs, ds]

• Then the time response is

f(tk, ϕs) =
[

(1− VB)[(ae−ct + be−dt)⊗ CP (tk)] + VBCP (tk)
]

SAe−λt

(10)
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PICD - Pixel Vector Update
• Estimation of as and bs parameters

– linear parameters

– closed form update for fixed values of cs and ds

– dependence on as and bs is removed

• Estimation of cs and ds parameters

– nonlinear parameters

– ∆fsk(cs, ds)

Parametric
Model

PSfrag replacements

cs

ds

∆fsk

∆LL

cn ← arg max
cs≥ds

∆LL(y|cs, ds) + S(ϕ) (11)

dn ← arg max
ds≥0, ds≤cs

∆LL(y|cs, ds) + S(ϕ) (12)
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Multiresolution Reconstruction

• Multiresolution reconstruction

– Coarsest scale initialized to constant value

– Coarse scale solutions are used to initialize fine scale solutions

– Used 3 scales (32×32, 64×64 and 128×128)
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Simulations - Phantom

• Rat phantom with seven separate regions is used to assess the estimation

methods
Region k1 k2 k3 k4 a b c d

Background 0 0 0 0 0 0 0 0

CSF 0 0 0 0 0 0 0 0

Nonbrain (NB) .1836 .8968 0 0 .1836 0 .8968 0

Whole brain (WB) .0918 .4484 0 0 .0918 0 .4484 0

Straitum (STR) .0918 .4484 1.2408 .1363 .02164 .07016 1.7914 .0312

Cortex (COR) .0918 .4484 .141 .1363 .0607 .0311 .628 .09725

White matter (WM) .02295 .4484 0 0 .02295 0 .4484 0

• Regions are obtained by segmenting MRI scans of a rat

• Total scan time is 60 min. , divided into 18 time frames: 4×0.5 min, 4×2 min

and 10×5min
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Simulations - Assumptions

• Raclopride with 11C is used as tracer.

• The blood function, CP (t) was generated as described in [Wong et. al. 01]

• Activity scaled to are scaled 10M counts

• 180 projection angles each with 200 projection and 0.875 mm spacing

• Used 4 mm. wide triangular PSF

• Poisson noise model with accidental coincidences

• Comparison methods use FBP
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Reconstructed Emission Images

Frame 5 Frame 10 Frame 15

Original phantom

FBP reconstruction

Parametric reconstruction
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Parametric Images of a, b, c and d

a b c d

(1)

(2)

(1) Original Phantom (2) Pixelwise Weighted Least Squares
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a b c d

(3)

(4)

(3) Pixelwise Weighted Least Squares with Regularization (4) Parametric Image Reconstruction
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Parametric Images of K1, k2, k3 and k4

K1 k2 k3 k4

(1)

(2)

(1) Original Phantom (2) Pixelwise Weighted Least Squares
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K1 k2 k3 k4

(3)

(4)

(3) Pixelwise Weighted Least Squares with Regularization (4) Parametric Image Reconstruction
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Parametric Images of BP and VD

BP VD BP VD

(1) Original Phantom (2) Pixelwise Weighted Least Squares

(3) Pixelwise Weighted Least Squares with Regularization (4) Parametric Image Reconstruction
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Normalized RMSE of the Parametric Images
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Conclusions

• Propose direct reconstruction of parametric image

• Advantages

– Higher SNR

– Dense parameter estimates

– Reduced “Partial Volume” effect

• Demonstrated improved quality on realistic simulation data
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