Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data

M. Kamasak^a, C.A. Bouman^a, E. Morris^b, K. Sauer^c

^a Purdue University Electrical and Computer Engineering Department

^b Indiana University Purdue University-Indianapolis Biomedical Engineering Department

^c Notre Dame University Electrical and Computer Engineering Department

Thanks to Dr. Tie-Qiang Li, Dr. Karmen Yoder and Mr. Cristian Constantinescu at Indiana University Purdue University -Indianapolis for their help in making the rat phantom

1

- PET accumulates/averages the emissions of voxels.
- Time resolution can be achieved by dividing the data into time frames.
 - Heart perfusion
 - Brain activation
 - Glucose utilization rate
 - Receptor-ligand
- Time response of voxels are governed by ODEs
- Parameters of these ODEs are clinically important

Current Method for Estimation of Compartment Model Parameters

- SNR is low
- Some parameters are nearly unidentifiable
- Current techniques reconstruct time sequences of images and perform parameter estimation on large regions.

Limitation of Current Approach

- Requires high SNR
- Depends on accurate ROI
- Does not yield dense parametric estimate
- "Partial Volume" effect is a problem
- Requires reconstruction of many low SNR images

Extensions to Dense Parameter Estimation Methods

- Pixelwise Weighted Least Squares (PWLS):
 - Each voxel parameter is estimated independently
 - no a priori information
- Pixelwise Weighted Least Squares with regularization (PWLSR):
 - Same as PWLS but with spatial regularization

Our Approach: Parametric Image Reconstruction

- Advantages:
 - Directly reconstructs parameters from sinogram data
 - Improves SNR
 - Dimensionality reduction
 - Produces a single full image of parameter vector
 - Point spread function and system geometry can account for "Partial Volume" effects

Parametric Reconstruction Model

• φ_s parameter vector of voxel s

•
$$f(\varphi_s) = \begin{bmatrix} f(t_1, \varphi_s) \\ \vdots \\ f(t_K, \varphi_s) \end{bmatrix}$$
 time response at voxel s

- $F(\varphi) = [f(\varphi_1), f(\varphi_2), \dots, f(\varphi_N)]$ time response of all voxels
- y is the sinogram data
- Log likelihood has the form $LL(y|F(\varphi))$

Compartmental Models

- Models needed to quantify processes
- Parameters of the model correspond to clinically important information
- Compartmental models,
 - use compartments for physical spaces and states of tracer
 - use rate of tracer exchange between compartments as its parameters
 - can be described by first order ODEs
- Complex processes can be modeled by adding more compartments into the model

2-tissue Compartment Model

- Used in;
 - FDG studies
 - Receptor studies

- C_P , plasma compartment: Tracer concentration inside the arterial blood vessels
- C_F , free compartment: Tracer concentration in the tissue that is not metabolized or bounded
- C_B , bound compartment: Tracer concentration in the tissue that is metabolized or bounded

2-tissue Compartment Model Equations

- C_P is measured by sampling blood from the patient during the scan
- Tracer concentration at other compartments

$$\frac{dC_F(t)}{dt} = K_1 C_P(t) - (k_2 + k_3) C_F(t) + k_4 C_B(t)$$
(1)
$$\frac{dC_B(t)}{dt} = k_3 C_F(t) - k_4 C_B(t)$$
(2)

• PET signal,

$$C_T(t) = C_F(t) + C_B(t) \tag{3}$$

$$f(K_1, k_2, k_3, k_4) = [(1 - V_B)C_T(t) + V_B C_P(t)] S_A e^{-\lambda t}$$
(4)

2-tissue Compartment Model: Important Parameters

• For receptor-ligand imaging *binding potential (BP)* and *volume distribution (VD)* are clinically important parameters.

$$BP = \frac{k_3}{k_4}$$
(5)
$$VD = \frac{K_1}{k_2} \left(1 + \frac{k_3}{k_4} \right)$$
(6)

$$C(y|\varphi) = LL(y|\varphi) + S(\varphi)$$

$$\hat{\varphi} = \arg \max_{\varphi} C(y|\varphi)$$
(7)
(8)

MAP Estimate of Parametric Image

• How do we efficiently compute this

PICD - Parametric Iterative Coordinate Descent

- Efficient implementation of ICD for reconstruction with kinetic models
- Sequentially update parameter φ_s vector at each voxel
- $LL(y|\varphi) + S(\varphi)$ will increase with each PICD iteration
- Efficient when $F(\varphi)$ is a nonlinear function
- Works with MRF prior

PICD - Update Strategy

• For each voxel update, make approximation

$$LL(y|\varphi_s) - LL(y|\tilde{\varphi_s}) \approx \sum_k (\theta_{1k} \Delta f_{sk} + \frac{1}{2} \theta_{2k} \Delta f_{sk}^2)$$
(9)

where $\Delta f_{sk} = f(t_k, \varphi_s) - f(t_k, \tilde{\varphi_s})$

- θ_{1k} and θ_{2k} can be recursively updated using same algorithm as in
 conventional ICD [Bouman and Sauer 96]
- We re-parametrize using $\varphi_s = [a_s, b_s, , c_s, d_s]$
- Then the time response is

$$f(t_k, \varphi_s) = \left[(1 - V_B) \left[(ae^{-ct} + be^{-dt}) \otimes C_P(t_k) \right] + V_B C_P(t_k) \right] S_A e^{-\lambda t}$$
(10)

PICD - Pixel Vector Update

- Estimation of a_s and b_s parameters
 - linear parameters
 - closed form update for fixed values of c_s and d_s
 - dependence on a_s and b_s is removed

• Estimation of c_s and d_s parameters PStrag replacements

– nonlinear parameters

Multiresolution Reconstruction

- Multiresolution reconstruction
 - Coarsest scale initialized to constant value
 - Coarse scale solutions are used to initialize fine scale solutions
 - Used 3 scales (32×32 , 64×64 and 128×128)

Simulations - Phantom

• Rat phantom with seven separate regions is used to assess the estimation methods

Region	k_1	k_2	k_3	k_4	a	b	С	d
Background	0	0	0	0	0	0	0	0
CSF	0	0	0	0	0	0	0	0
Nonbrain (NB)	.1836	.8968	0	0	.1836	0	.8968	0
Whole brain (WB)	.0918	.4484	0	0	.0918	0	.4484	0
Straitum (STR)	.0918	.4484	1.2408	.1363	.02164	.07016	1.7914	.0312
Cortex (COR)	.0918	.4484	.141	.1363	.0607	.0311	.628	.09725
White matter (WM)	.02295	.4484	0	0	.02295	0	.4484	0

- Regions are obtained by segmenting MRI scans of a rat
- Total scan time is 60 min., divided into 18 time frames: 4×0.5 min, 4×2 min and 10×5min

Simulations - Assumptions

- Raclopride with ${}^{11}C$ is used as tracer.
- The blood function, $C_P(t)$ was generated as described in [Wong *et. al. 01*]
- Activity scaled to are scaled 10M counts
- 180 projection angles each with 200 projection and 0.875 mm spacing
- Used 4 mm. wide triangular PSF
- Poisson noise model with accidental coincidences
- Comparison methods use FBP

Reconstructed Emission Images

Frame 10 Frame 5 Frame 15

Original phantom

FBP reconstruction

Parametric reconstruction

(3) Pixelwise Weighted Least Squares with Regularization

(4) Parametric Image Reconstruction

(3) Pixelwise Weighted Least Squares with Regularization

(4) Parametric Image Reconstruction

Parametric Images of BP and V_D

(1) Original Phantom	(2) Pixelwise Weighted Least Squares
(3) Pixelwise Weighted Least Squares with Regularization	(4) Parametric Image Reconstruction

Normalized RMSE of the Parametric Images

Conclusions

- Propose direct reconstruction of parametric image
- Advantages
 - Higher SNR
 - Dense parameter estimates
 - Reduced "Partial Volume" effect
- Demonstrated improved quality on realistic simulation data

References

- [1] C. A. Bouman and K. Sauer, "A unified approach to statistical tomography using coordinate descent optimization," *IEEE Trans. on Image Processing*, vol. 5, no. 3, pp. 480–492, March 1996.
- [2] Koon-Pong Wong, Dagan Feng, Steven R. Meikle, and Michael J.
 Fulham, "Simultaneous estimation of physiological parameters and the input function in *vivo* pet data," *IEEE Transactions on Information Technology in Biomedicine*, vol. 5, no. 1, pp. 67–76, March 2001.