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COMPARISON OF ALGEBRAIC RECONSTRUCTION ALGORITHMS 

FOR TOMOSYNTHESIS 

SUMMARY 

Breast cancer is an extremely important health problem worldwide. It's among the 

most common form of cancer observed on women. Mammography is  a  radiographic  

examination designed  to detect  breast cancer. Digital mammography has brought 

many advantages to the diagnosis of breast cancer. Film and digital mammography 

have equal diagnostic accuracy in screening of breast cancer, but the accuracy of 

digital mammography is higher in women less than 40 year-old and having dense 

breasts. Digital mammography develops in accordance with computer technology to 

produce digital images of the breast. Therefore, it enables to remove physical storage 

by means of the possibility of electronic transfer and the storage of images. 

Computed tomography (CT) was used for breast imaging in the beginning. The CT 

system was not practically used because of poor image quality and taking long 

scanning time. Furthermore, the entire chest to be scanned is necessary for the use of 

a body scanner in breast imaging. Therefore, it resulted in increased patient dose and 

poorer resolution of the reconstructed breast images. Digital Breast Tomosynthesis 

(DBT) is an innovative 3D imaging technique implemented using a limited number 

of low dose projections, which are taken with the x-ray source moving in a limited 

angle of rotation around the breast. Then these low dose projection images should be  

processed using mathematical methods, to reconstruct tomographic images, resulting 

in a 3D representation of the imaged breast. In tomosynthesis imaging, out-of-focus 

slice blur problem arises due to incomplete sampling problem. Several approaches 

have been suggested to deal with this problem. The purpose of this work is to 

implement from among these approaches Algebraic Reconstruction Technique 

(ART) and Multiplicative Algebraic Reconstruction Technique (MART). Former 

studies generally offered solutions  for 2D tomosynthesis image reconstruction 

problem. In this study, a 3D phantom model was used. All  of  the  algorithms  and  

experiments  are  programmed with C++. The difference between two reconstruction 

algorithms is also investigated by means of comparing root mean square error 

(RMSE), contrast to noise ratio (CNR) value, and mean structural similarity 

(MSSIM). 
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TOMOSENTEZ İÇİN CEBİRSEL GERİ ÇATMA ALGORİTMALARININ 

KARŞILAŞTIRILMASI 

ÖZET 

Meme  kanseri  dünya  çapında  önemli  bir  sağlık  sorunudur.  Bayanlar arasında en 

çok gözlenilen kanser çeşididir. Mamografi meme kanserinin tanımlanması için özel 

tasarlanmış radyografik bir incelemedir. Mamografinin film teknolojisinden sayısal 

hale geçişi  meme  kanseri  tehşisine  bir  çok  avantaj  sağlamıştır. Tümörün erken 

teşhis rolü sayesinde son on yılda ölüm oranlarında %20 kadar bir düşüş sağlamıştır. 

Ancak teşhislerde bazı sınırlamaları vardı. Meme kanseri teşhisinde neden olduğu 

kısıtlamalardan dolayı var olan mamografi teknolojileri ilerletilmiş ve yenileri 

geliştirilmiştir. Sayısal mamografi (DM), bilgisayar destekli teşhis (CAD), meme 

tomosentezi, mıknatıslı rezonans görüntüleme (MRI) ve ultrason, umut veren meme 

görüntüleme yeni teknolojilerinden bazılarıdır.  

Meme kanserini görüntüleme açısından sayısal ve film mamografisinin teşhis 

başarısı aynıdır, ancak sayısal mamografi 40 yaşından daha genç bayanlarda daha 

başarılıdır. Sayısal mamografi memenin sayısal görüntüsünü sağlamak için bilgisayar 

teknolojisine göre gelişir. Görüntüler sayısal işaret olarak tutulur, böylece elektronik 

transferi ve görüntülerin depolanması mümkündür. Bu da filmin gerektirdiği dağıtımı 

ve fiziksel depolamayı önler. Elektronik kopyalama, bilgisayar destekli teşhis ve üç 

boyutlu görüntüleme mamografik yorumlamada ilerleme için çok iyi fırsat sunar. 

Sayısal mamografi önemli derecede düşük dozda radyasyon gösterdiği ve hatırlatma 

ve biopsi oranlarını düşürdüğü için sayısal mamografiye erişim artmaya devam 

edecektir. Örneğin Amerikan meme görüntüleme tesislerinin %60 ‘ tan fazlası 

sayısal mamografi kullanır ve her yıl daha çok dijital servis elde etmektedirler. 

Sayısal mamografi sistemleri ekran filmi görüntüleme sistemlerinde, özellikle 

dinamik aralıklarda görüntülemede, sayısal elde edinimde, depolama, görselleştirme 

ve son işlemelerde gelişme sağlamıştır. Sayısal mamografi hala hızlı bir şekilde 

gelişmektedir ve hasta bakımında etkili olacaktır.  

Tomosentez, telemamografi, sayısal görüntü işleme ve CAD gibi yeni uygulamalar 

üzerinde hala devam eden gelişmeler mevcuttur. Telemamografi az hizmet alan 

yerlerde ve coğrafi açıdan uzak olan populasyonlarda en son meme bakımına erişimi 

sağladığı için dijital mamografi ile birlikte çok etkilidir. Mamografi görüntülerinin 

sayısal formatı sayesinde sayısal görüntü işleme tekniklerinin kullanılabilir. 

Memedeki farklı yapıların zıtlığına göre yapılan işlemler kanserin belirlenebilirliğini 

arttırabilir. Aynı zamanda, kenar iyileştirme ya da görüntü yumuşatma ve şüpheli 

alan üzerinde yakınlaştırma gibi görüntü işleme teknikleri daha iyi bir görüntüleme 

sağlar. Diğer bir uygulama olan bilgisayar destekli teşhis önemli bir araştırma 

alanıdır. Dijital görüntüler yazılımlar tarafından incelendikten sonra, daha ileri 

gözlem için radyologlar şüpheli bölgelerin üstünde dururlar. Bu sistemlerin zorluğu 

hassaslığı ve özgünlüğü arasında uygun bir denge bulmaktır. Özgünlük artarsa 
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görüntü üzerinde işaretlenmiş çok sayıda yanlış pozitifle sonuçlanır. Aksine doğru 

pozitifler yeterince işaretlenmezse sistem radyologlara yeteri kadar yardımcı olamaz.  

Bilgisayarlı tomografi başlarda meme görüntülemede kullanılmıştır. Sistemin 

gelişmesi ve ticari olarak kullanımının artmasıyla vücut görüntülemede de 

kullanılmıştır. Düşük görüntüleme kalitesi ve uzun tarama zamanından dolayı  bu 

sistem pratik olarak çok kullanılmamaktadır. Buna ek olarak, bu sistem için meme 

görüntülemede bütün göğsün taranması gerekmektedir. Teknolojik kısıtlardan dolayı 

2000’ lerin başında bu tarama tekniği önemsiz hale gelmiştir. Genel radyografi ve 

mamografi uygulamaları için çeşitli düz panel ekran detektörler geliştirilmiştir. Bu 

detektörler, 1990’ larda sayısal x-ışın sistemlerini oluşturmak için kullanılmıştır. 

Detektörlerin akademik birimlerde kullanılabilirliğinin arttırılması için bazı 

algoritmalar geliştirilmiştir. Meme anatomisinin ve yumuşak meme dokularının 

gösterilmesi ve bulunması açısından bilgisayarlı meme tomografi görüntülerinin 

mamogramdan daha çok tercih edilmesi için güncel hasta çalışmaları yapılmıştır. 

Ancak, bu görüntüler küçük kireçlenmelerin gösteriminde kısıtlı kalmıştır. 

Yinelemeli algoritmalar, son zamanlarda x-ışın dozunda azalma sağlamış olmalarına 

rağmen, bu algoritmalar genellikle geri çatmayı tamamlamak için çok zaman 

harcalar.  

Tomosentez 3 boyutlu mamografinin bir uygulanma türüdür. X-ışın dozu neredeyse 

geleneksel 2 boyutlu mamografi ile aynıdır. Tomosentez görüntüleme göğüs, eklem, 

diş ve meme görüntüleme gibi birçok uygulamada araştırma alanına sahiptir. Bu 

konu üzerinde araştırmacı ve üretici firma birçok araştırma ve çalışma yapılmıştır, 

yeni teknikler geliştirilmiştir. Çoğu üretici firma aleni satış için ticari tomosentez 

cihazı sağlamada aktif rol oynamaktadır. Birçok meme tomosentez tarayıcıları GE, 

Hologic, Siemens ve Philips gibi ticari satıcılar tarafından sağlanmaktadır.  

Anatomik yapının üst üste gelerek oluşturduğu nesnelerin ayırt edilmesi için 

geliştirilen 3 boyutlu görüntüleme teknikleri girişimleri 20. yüzyılın başlarına 

dayanır.  

Radon, 2 boyutlu izdüşüm verisinden nesnenin düzlemlerini oluşturmayı 

matematiksel olarak tanımladı. Ziednes des Plantes de geleneksel doğrusal tomografi 

üzerine çalışmalar yaptı ve Ernest Twining de klinik denemeler yaptı. Başlangıçta 

tomografi sisteminde, bir odak noktası oluşturmak için film algılayıcısı ve x-ışın 

tüpünün doğrusal bir hareketi gerekliydi. Birden fazla odak noktası istenirse bu işlem 

tekrarlanacaktır. Bu da hastaların yüksek dozda radyasyona maruz kalmasına neden 

olacaktır. Diğer bir dezavantaj ise odak dışı dilim bulnaklığı yeterli bir şekilde 

önlenemez. Sayısal x-ışın elde edinim teknolojisindeki ilerlemeler sayesinde 1990 

ların başında bir dizi izdüşüm görüntüsü memenin derinliğini elde etmek için farklı 

açılardan alınarak elde edilmiştir.  

Son zamanların meme tomosentez tarayıcılarının tasarımları tam alan sayısal 

mamografi sistemi temellidir ve birbirlerine çok benzerler. Geleneksel x-ışın tüpü 

sıkıştırılmış meme üzerinde sınırlı izomerkezsel bir dönme hareketi yaparak sınırlı 

açıda bir dizi izdüşüm görüntüleri elde eder. İzlenen bu yol detektöre paraleldir. X-

ışın tüpünün dönme merkezi göz önüne alınarak otomatik olarak döndüğünden emin 

olabilmek için mekanik tasarım, yazılım ve tam bir açı ölçen cihaz kullanılır. Aynı 

zamanda her bir izdüşüm görüntüsü için x-ışın tüpünün açısal olarak tam konumunun 

kaydedilmesi gereklidir. Tipik bir tomosentez taraması yaklaşık 20 saniye sürer. Bu 

süre bakış açısı sayısına bağlıdır. Son zamanlarda Amerikan gıda ve ilaç kurumu 

sadece bir meme tomosentez cihazının ticaretini onaylanmıştır, o da ilk teşhiş 
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ürünlerinin lider üreticilerinden biri olan Hologic tarafından yapılmış Selenia 

Dimensions’dır.  

Dijital tomosentez meme görüntüleme ve teşhis sisteminin yeni bir türüdür. Her bir 

memenin çoklu x-ışın görüntüleri farklı açılardan alınarak elde edilir. Meme, 

geleneksel mamografideki gibi konumlanır, ama sadece çok küçük bir baskı 

uygulanır. Bu baskı, işlem boyunca memenin sabit bir pozisyonda tutulmasını 

sağlayacak kadardır. X- ışın tüpü meme etrafında yay çizer ve meme ile ilgili 

odaklanmış 3 boyutlu görüntüleri net bir şekilde elde etmek için işlem boyunca 

alınan bilgiler bilgisayara gönderilir. Bu çalışma görüntüleme mamografideki dozla 

başarılabilir. Projeksiyon görüntülerinde tomografik görüntülerin geriçatılması için 

matematiksel yöntemler kullanılarak memenin üç boyutlu görüntüsü elde edilir.  

İleri izdüşüm almak için Siddon’ nun algoritması kullanılır. Işın x-ışın tüpünden 

çıkıp  görüntü dizilerinde yol izlerken 3 boyutlu nesnenin içinden geçtiği uzunluğu 

hesaplamada hızlı ve doğru bir algoritmadır. Elde edilen izdüşüm görüntülerinin 

geriçatılması için kullanılan tekniklerden biri de Cebirsel Geriçatma Tekniğidir. İlk 

olarak Kaczmarz tarafından tasarlanmıştır. Daha sonra Gordon ve arkadaşları bu 

tekniği görüntülerin geri çatılmasında kullanmıştır. Bu teknik, istenilen nesneyi geri 

çatmak için izdüşüm görüntüleri kullanarak satırlar üzerinde bir çalışan bir 

algoritmadır. Ayrıca, sınırlı açıda geri çatma problemine alternatif bir çözümdür. 

Asimetric nesnelerde kolayca çalışabilir ve sınırlı açıda detaylar üretebilir. Diğer bir 

geri çatma tekniği de  Çarpımsal Cebirsel Geriçatma Tekniğidir. CT görüntülerinin 

geri çatılmasında doğrusal olmayan yinelemeli bir algoritmadır. Formülündeki üssel 

değişken olan gevşetme katsayısı için çeşitli öneriler bulunmaktadır. Bu algoritma, 

karanlık arka plandaki yüksek zıtlıklı nesnelerin tomografik geri çatma problemine 

bir çözüm sağlayabilir. Diğer algoritmalarla karşılaştırıldığında, bu teknik öncesinde 

bahsedilen problem tarzına daha iyi bir sonuç verir. Bu teknik, diğer algoritmalarla 

karşılaştırıldığında az yineleme ile daha iyi geri çatma kalitesine sahip olmasına 

rağmen daha uzun hesaplama zamanı alır ve daha çok hafıza kaplar. 

Tomosentez görüntülerinde, tamamlanmamış örnekleme probleminden dolayı odak 

dışı dilim bulanıklığını oluşmaktadır. Bu problemin çözümü için birçok yaklaşım 

mevcuttur. Bu çalışmanın amacı bu yaklaşımlardan olan Cebirsel Geriçatma Tekniği 

ve Çarpımsal Cebirsel Geriçatma Tekniği gerçeklemektir. Önceki çalışmalar 

genellikle iki boyutlu tomosentez görüntülerinde geriçatma problemine çözüm 

getirmişlerdir. Bu çalışmada ise üç boyutlu fantom modeli kullanılmıştır. Tüm 

algoritmalar ve deneyler C++ ile programlanmı ve gerçeklenmiştir. Ele alınan iki 

geriçatma algoritması arasındaki fark ortalama karesel hata ve zıtlık gürültü oranı 

değerlerinin karşılaştırılmasıyla bulunur. 
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1. INTRODUCTION 

1.1 Breast Cancer 

Breast cancer is one of the most common form of cancer among females. The 

mortality rate of breast cancer takes the second place after lung cancer in the U.S, but 

especially for women, with an age range 40-55, breast cancer is the leading cause of 

death. In 2005, almost 40,410 women died of breast cancer [2]. In U.S. the incidence 

and mortality rate of breast cancer generally raise in parallel with age 95% of new 

cases and 97% of deaths from breast cancer in 40 year-old women as shown Figure 

1.1 [1]. 

 

Figure 1.1:  Female breast cancer incidence according to ages and (2004-2008)  

                          mortality rates (2003-2007) [1]. 

Since the causes of breast cancer are not completely known, early diagnosis is 

required in decreasing the death rate. Mammography is the most effective method for 

early detection of breast cancer at this time [3, 4], and microcalcifications, which are 

tiny calcium deposits appearing on the mammograms as bright spots, are important 

signal of early stage of breast cancer [5]. 
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1.2 Mammography 

Mammography  is  a  radiographic  examination designed  to detect  breast cancer. 

Mammography played a vital role in decreasing the death rate by 20% via early 

tumor detection in the last decade. Although mammography is determined as the 

most effective method for early detection of breast cancer, the modality has the 

limitations. It has 20% false-negative rates, where the modality fails to detect cancers 

and 12% false-positive rates, which is noticed a cancer though there is none. 

Moreover, though it detects almost 90% of tumors in women over the age of 50, it 

can detect only 60% of tumors in women under the age of 50 because of dense breast 

tissue. The other limitation is that the modality lacks of specificity, where 

mammography cannot identify between malignant and benign breast lesions. Due to 

these limitations of mammography, new solutions and technologies in breast imaging 

including computer-aided detection (CAD), digital mammography (DM), and breast 

tomosynthesis have been proposed [2]. 

1.3 Digital Mammography  

Digital mammography is currently the most effective diagnostic and screening 

device for early detection of breast cancer. Film and digital mammography have 

equal diagnostic accuracy in screening of breast cancer, but the accuracy of digital 

mammography is higher in women less than 40 year-old and having dense breasts 

[26]. 

Flat panel x-ray detectors can present very high quantum efficiency and high 

resolution. These digital detectors allow reducing dose while improving image 

quality, and therefore, help the development of new imaging techniques like 

tomosynthesis. Furthermore, the essential detector properties of digital 

mammography are geometrical characteristics, quantum efficiency, sensitivity, 

spatial resolution, noise characteristics, dynamic range, uniformity, and acquisition 

speed. The rate where sequential images obtained is also crucial for dynamic studies 

such as tomosynthesis. 

Digital mammography develops in accordance with computer technology to produce 

digital images of the breast. Therefore, it enables to remove physical storage by 

means of the possibility of electronic transfer and the storage of images. Digital 
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systems offer a wide dynamic variety of operation and a successful visualization of 

the breast. For optimizing contrast for each imaging task, the digital format allows 

gray scale adjustment. Additionally, Computer-aided diagnosis, three-dimensional 

imaging, and softcopy reading provide great opportunities for advancement in 

mammographic interpretation [6]. 

In mammography, image quality depends on the shape, the dimensions, and the 

anatomic structure related to x-ray absorption of region to be scanned.  In addition, 

x-ray beam quality, the resolution,  and the noise properties of the imaging system 

are important [27]. 

As digital mammography has indicated significantly lower radiation dose and 

reduced the recall and biopsy rates, accessing to digital mammography will likely 

continue to increase.  More than 60% of U.S. companies on breast imaging provide 

digital mammography and are acquiring more digital services every year. Also, 

digital mammography systems suggest improvements on screen film imaging 

systems,  particularly in imaging dynamic range,  digital acquisition, storage, display 

and post processing. Digital mammography is still improving rapidly and will mean 

more effective and efficient patient care [6]. 

1.4 Breast CT 

Computed tomography (CT) was used for breast imaging in the beginning. After 

computed tomography (CT) was developed and commercialized and involved the use 

of a specially designed CT system [28-31] as well as a conventional body  scanner  

[33,34], the efforts to develop breast CT (BCT) began.  Because image quality was 

poor and it took long scanning time, the CT system was not practically used. 

Furthermore, the entire chest to be scanned is necessary for the use of a body scanner 

in breast imaging. Therefore, it resulted in increased patient dose and poorer 

resolution of the reconstructed breast images. The notion of a devoted BCT scanner 

was unimportant until the early 2000s because of technological limitations.  

Several flat panel detectors were developed for  general  radiography as  well  as  

mammography  applications; and they were used  to construct  digital  x-ray  systems 

in the 1990s.  Cone beam computed tomography (CBCT) techniques were developed 

with the availability of these detectors in academic institutions. Boone et al. at the 

University of California and Davis and Ning et al. at the University  of  Rochester   
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independently used  CBCT techniques  for BCT [35-40]. For clinical evaluation, the 

first patient imager was generated by the former. The latter’s efforts led to 

commercialize the BCT technology. Patient studies conducted up-to-date have 

indicated that BCT images are preferable to mammography in terms of finding and 

displaying breast anatomy and soft tissue masses. However, the images are more 

restricted in visualizing small micro calcifications. Although iterative algorithms 

have recently been shown to have the  potential  advantage  of  dose  reduction,  they  

generally  take much  longer  time to complete the reconstruction [6]. 

1.5 Digital Breast Tomosynthesis  

Attempts for developing three-dimensional imaging methods to discriminate objects 

from overlying anatomical structure date back to the early 20
th

 century [41]. In 1917, 

Radon suggested the famous Radon transformation of tomography. He described  the  

mathematics of generating  internal  object  planes from  two-dimensional  projection  

data [42]. In 1932, Ziedses des Plantes led to study the conventional linear 

tomography and Ernest Twining launched the clinical trials [41,43]. Early 

tomography systems required a linear, against motion of the x-ray tube and the film 

receptor to generate a focal plane. If more than one focal plane was needed, the 

process had to be repeated.  As a result, this led to give high dose to the patients.  

Secondly, suppressing out-of-plane blur is not sufficiently prevented in this modality 

[41].  In the late  1990s, a sequence of projection images are obtanined from different 

views  to  be retained  the  depth  of breast due to the improvement of  digital  x-ray  

acquisition  technology [41,44]. 

Tomosynthesis is a type of implementing 3D mammography. Its doses are identical 

to conventional 2D x-ray mammography. Tomosynthesis  imaging  has  already  

been researched on many applications such as chest imaging, joint imaging, 

angiography, dental  imaging, and breast imaging  [45-60].  A  few  researches  and 

studies have been made by several research groups and manufacturers. For instance, 

in  1997  Niklason  and  colleagues  published a tomosynthesis method with the x-ray 

tube moved in an arc above the stationary breast and detector [61]. Also, in  2003  

Wu  et  al. has a report about the  maximum  likelihood  iterative  algorithm  

(MLEM)  to  reconstruct  the  three-dimensional distribution of x-ray attenuation in 

the breast [62], matrix  inversion  tomosynthesis  (MITS)  technique  in  breast 
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tomosynthesis [63], filtered back-projection (FBP) [45,64-69], algebraic 

reconstruction techniques (ART) [49], etc. Major manufacturers are actively 

involved in providing commercial tomosynthesis devices for public sale. Several 

prototype breast  tomosynthesis  scanners  have  been  produced  by commercial  

sellers  such as  GE,  Hologic  and  Siemens.  They have  been  investigated  by  

several  research  groups  [49,60,62,70,71]. 

Substantial effort has been made to improve breast tomosynthesis systems by 

different research groups and companies. Recently, different techniques have been 

designed and performed manually and automatically to implement and optimize 

imaging configurations and image reconstruction algorithms, as well as to help 

identify the best tomosynthesis acquisition strategy.                                                 

The designs of most up-to-date breast tomosynthesis scanners are based on a full-

field digital mammography (FFDM) system,and are similar to each other. A 

conventional  x-ray  tube  got  on  a  rotating  arm  drifts an arc above the compressed 

breast with a partial isocentric  motion to  generate a series  of  projection  images 

with the  limited  angle. The path of the x-ray tube is located on the plane which is 

parallel to the detector plane. To ensure that the x-ray tube rotates automatically with 

regard the rotation center, mechanical design, related control software, and an 

accurate angle measurement device are used. Also, they are necessary to record 

exactly angular location of the x-ray tube for each projection view.  A  typical  

tomosynthesis  scan  takes  approximately  20  seconds. The time depends on the 

number of views acquired. Recently, the U.S.  Food  and  Drug  Administration  

approved  the  commercialization  of  a  breast  tomosynthesis device,  Selenia  

Dimensions  made  by  Hologic,  Inc., one of the leading  manufacturers  of  

premium  diagnostic  products. This system upgrades the full-field digital 

mammography (FFDM) system to provide the rotation of x-ray tube along an arc 

above the digital detector [6]. 

Tomosynthesis acquires a series of images obtained from projecting a compressed 

breast at different angles during a limited scan. The images are reconstructed into a 

3D series of slices. Considering a total dose required for standard screening 

mammography, the individual slices decrease structural noise and tissue overlap 

related to standard 2D projection mammography. Advantages of the digital 

tomosynthesis device are the reduced breast compression, improved 3D lesion 
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localization, diagnostic and screening accuracy, and contrast enhanced 3D imaging. 

In Figure 1.2, the two objects independently attenuate x-rays passing through them 

on the way to the detector, but the detected signal shows their total attenuation. In 

mammography, which is a 2D imaging modality, lesions of interest are more difficult 

to represent due to the mess of signals from objects above and below. Tomosynthesis 

can decrease this tissue overlap effect because  of 3D imaging method.  

 

Figure 1.2:  The signal on the detector with mammography depends on the  

                             summation of attenuation of all the tissues [2].                         

The the logic behind tomosynthesis acquisition theory is showed in Figure 1.3. While 

the breast is held, several images are obtained at different angles. In Figure 1.3, the 

objects at different heights in the body like breast tissues are projected in the 

different views. Although the two objects (ellipse and star) are added up when the x-

ray tube is at 0º in this example, acquisitions between +15º and -15º displace the 

shadows of the objects related to one another in the projections. However, 

conventional mammography acquires only the central image.  

In the tomosynthesis procedure the final strep is the reconstruction of the data to 

obtain 3D information. In Figure 1.3, on the right side of the figure, after the 

projection images are summed, shifting one related to another in a specific way 

reinforces the ellipsoidal object and reduces the contrast of the starred object by 

blurring it out. Also, on the left side of the figure, the same objects can be 

reconstructed by using different shifts of the projection data in order to reinforce the 

star object and blur the ellipse. The images are generated by using appropriate 

shifting of the projections in this method. The reconstruction process computes high-
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resolution images whose planes are parallel to the breast support in spite of at a lower 

dose, and if desired, these can be viewed as well. 

 

Figure 1.3:  The images are obtained from different view separating  structures    

                          at differing heights in tomosynthesis imaging [2]. 

When the system takes a conventional mammogram under the same compression, the 

tomosynthesis slices and the mammogram are simultaneously formed by completely 

making objects relevant in the two different image sets. Biopsy tissue sampling 

methods can easily be implemented in finding the right coordinates by using the 

tomosynthesis, because the location of an interested lesion in a slice obtained by 

using tomosynthesis completely finds its true 3D coordinate within the breast. If two 

calcifications are observable in the digital mammogram, the distance between the 

microcalcifications can be measured at the tomosynthesis slices. This 3D information 

is not available in normal mammography [2]. 

Breast CT and tomosynthesis are both designed to reduce the overlapping structures 

leading to fewer false positive findings.  In breast CT, multiple 2-D projection 

images are acquired and then reconstructed  to  form  true  three-dimensional  (3-D)  

images, which  can  be  viewed  in  the  transverse,  sagittal,  and  coronal planes. In 

tomosynthesis, a limited angle scan is used to obtain 30–60 mammograms to 

reconstruct thick layer tomographic images in parallel to the detector. Tomosynthesis 

is more similar to digital mammography than breast CT. The similarity to 

mammographic images will likely lead to a shorter learning curve for interpreting 

tomosynthesis images when compared to cone-beam breast CT images.  As  

tomosynthesis  images  are  obtained  with limited angular sampling, concerns have 
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been raised about the  out-of-plane  artifacts  and  the  ability  to  visualize  

calcifications [72,73]. 

Gong et al.  performed a computer simulation study with simulated lesions embedded 

into a 3-D breast model [74]. The authors evaluated lesion detection accuracy with 

digital mammography, tomosynthesis, and breast CT. The same total dose was used 

in the tomosynthesis and the breast CT simulations. A Receiver Operating 

Characteristic (ROC) study was performed with five physicist observers. The 

average area under the ROC curves  was  0.76  for  digital  mammography,  0.93  for  

tomosynthesis,  and  0.94  for  breast  CT.  Both tomosynthesis and cone-beam breast 

CT provided statistically significant higher lesion detectability than digital 

mammography.  The  improved  performance of breast CT and tomosynthesis 

compared to digital mammography  may  be  based on the decreased  image  clutter,  

which resulted in improved tumor visibility. Lesion detectabilities for tomosynthesis 

and cone-beam CT were not statistically significantly different from each other. It 

should also be noted that in the study by Gong et al. breast compression was used in 

digital mammography and tomosynthesis but not generally in breast CT [74].  

Without compression, higher kVp settings were needed, resulting in lower subjective 

breast tumor contrast [6]. 

1.6 Hypothesis 

Detecting tumor is hard in breast tomography because of properties of breast tissues. 

A number of images are obtained at different views in tomosynthesis. The objects at 

different heights in the substances like breast tissues are projected differently in the 

different projections. Therefore, it is effective for screening lesion. Algebraic 

reconstruction techniques are generally used for reconstruciton of the projections in 

tomosynthesis. The purpose of this work is to implement Algebraic reconstruction 

technique (ART) and Multiplicative Algebraic reconstruction technique (MART). In 

this study, two 3D phantom models were used.   The original purpose  of  this  thesis  

is  to  find an  efficient  algebraic reconsturction technique  for out-of-focus slice blur 

problem in tomosynthesis imaging.  Each implementation is inserted in Siddon’s 

algorithm to take projections from using 3D phantoms and the coding is performed in 

C++. 
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2. METHODS 

2.1 Siddon’s Algorithm 

In 1985, Siddon formulated a fast and accurate algorithm for 3D object to calculate 

the length while the ray goes from x-ray source through the image array.  The 

principle is simple, but it requires high computation time. The computation time 

depends on the number of the planes of the 3D image array instead of the number of 

voxels of the 3D image [9]. 

The radiological path is represented as; 

              ),,(),,( kjipkjild
i j k

               (2.1) 

where  p(i,j,k) is the voxel density (attenuation coefficient) and the length  parameter, 

l(i,j,k), is the length of a line included by  this voxel.  

 

Figure 2.1: Geometric illustration of a ray on image grid [9]. 

Equation (2.1) is evaluated as an algorithm scaling with the number of terms 

according to the number of voxels in 3D space. Instead of considering them as 

independent elements, the  voxels  are  assumed to be  intersection  volumes  of  

equidistant parallel planes. The intersection points of the ray with  the planes are 

calculated with the information  of  the  intersection point of the ray with the first  

plane. Other intersection points of that ray with all the others are generated by 
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recursion. In Figure 2.1, the 2D version of the method is illustrated to understand 

simply. The pixels are considered as the intersection areas of equally spaced parallel 

planes in the figure. 

Figure 2.1 shows that intersection points are the union of two sets. One of the sets 

includes the intersections of the ray with the horizontal lines (open circles) and the 

other with the vertical lines (closed circles). It is obvious that the intersections with 

the pixels are a subset of intersections with the lines. The subset provides to 

determine the radiological path.  

In Siddon’s algorithm, a ray from the start point located on (x1, y1, z1) to the end point 

located on (x2, y2, z2) is symbolized linearly by; 
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                                   (2.2) 

where the parameter α is zero at start point and unity at end point. An α parameter in 

the range of (αmin , αmax) is used in evaluating each intersection.  Even if start point or 

end point lie on outside of the image array, the  first  and  last  intersection  points  

will  take  the  parameters αmin and αmax  respectively.  

For  a (Nx -1,Ny -1,Nz -1) voxels  image  array,  the  orthogonal  sets  of  equidistant 

parallel planes are written as; 
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               (2.3) 

where dx, dy and dz  are the distances between the planes. They are also the size of the 

voxel. The maximum and minimum values  for  the α  parameter  are  evaluated  with 

intersecting the ray with the sides of the image array. The parametric values of the 

sides are calculated from Equations (2.2) and (2.3) as follows; 

 If (X2-X1) ≠ 0, 

             
 
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Equations for y and z directions are similar. Minimum and maximum values of  α 

(αmin, αmax) depend on the location of the start and end point. The values are 

computed by merging the sets as in Equation (2.5), 

        

     
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
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         (2.5) 

The ray does not intersect the  image  array if αmax is less than or equal to αmin,. The  

range  of  indices (imin,imax), (jmin,jmax), and (kmin,kmax) intersected planes having 

parametric values in the range  (αmin, αmax) are achieved as follows; 

If (X2-X1) ≥ 0, 
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If (X2-X1) ≤0,           

 
  xline

xxlinex
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

 

with similar equations hold for jmax, jmin, kmin and kmax. 

The sets of parametric values represent the intersections of the ray with all the 

planes. The sets can be given including the indice data using the notation for {αx} 

and with similar notations for {αy} , {αz}; 

   ;)(),...,( maxmin iaiaa xxx    012  XX  

   ;)(),...,( minmax xxxx iaiaa    012  XX              (2.7) 

where 

                     )/()()( 121 XXXiXia linex                          (2.8) 

               ,)/()1( 12 XXdia xx   

The  definite  intersection  points  are  obtained  by  merging  the  sets {αx}, {αy} and 

{αz} into one set. The minimum and maximum values are also added to the merged 

set as the first and last elements respectively. 
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                       ;),}{ and }{ },{, maxmin  zyxx mergeaa                         (2.9) 

                           )(),...,0( n  

where index n is given as ; 

)1()1()1( minmaxminmaxminmax  kkjjiin            (2.10) 

For two intersections m and m-1, the intersection length of the voxel is defined as; 

 ,)1()()( 12  mmdml     ),...,1( nm             (2.11) 

The mid point of the two adjacent intersections, m and m-1,  is calculated the voxel 

indices [ i(m), j(m ), k(m)] by the following equation; 

  xplanemid dXXXXmi /)1()(1)( 121    

  yplanemid dYYYYmj /)1()(1)( 121                        (2.12) 

  zplanemid dZZZZmk /)1()(1)( 121    

where αmid  is given by 

     2/)1()(  mmmid               (2.13) 

In Equation (2.1) the radiological path can be finally written as; 
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where   p(i,j,k) defines the voxel intensity. The main advantage of this algorithm is  

its computation time that is scaled with the number of the planes (N) instead of  

the number of voxels (N
3
) [9].  

2.2 Algebraic Reconstruction Technique  

The  Algebraic  Reconstruction  Technique  (ART)  is  an iterative  image  

reconstruction  with  a  long  history  and  rich literature. Firstly, Kaczmarz designed 

it in 1937 [17]. It  was  independently  used  by  Gordon  et  al.  in  image 

reconstruction  [18].  ART  is  a  row-action  reconstruction algorithm  that  uses  a  
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set  of  projections  to  reconstruct  the desired object [19-21]. The technique is 

accepted as an alternative solution to the limited angle reconstruction problem. It 

works readily for asymmetric objects and produces the detail of such objects with 

limited views. The term ray-sum can be used instead of the line integral in transform-

based methods. The ray-sum, pi , measured with the ith ray, is expressed as; 
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1   ),...,2,1(

),...,2,1(
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Mi





            (2.15) 

where wik is the weighting parameter which stands for the influence of kth cell on the 

ith ray line integral,  fi  is the constant intensity value of the kth cell and M is the total 

number of rays. 

Finding  the  solution  via  subsequent  projections is known  as  the method. A  

linear  imaging  problem  such  as  tomography  can  be shown as below,  

                                          Y = AX,                                            (2.16)  

where  Y  represents  observations,  A  represents  an  M×N system matrix and X 

shows the unknowns. ART method works with updating in each iteration. An initial 

guess is necessary for the implementation of the technique.  ⃗⃗ (0) 
is projected on the 

first plane in Equation (2.15) giving  ⃗⃗ (1)
. Then   ⃗⃗ (1) 

is projected on  the  second  plane  

giving  ⃗⃗ (2)
,  and  so  on.  This procedure can be formulated as projection of  ⃗⃗ (i-1)

 on 

ith plane yields  ⃗⃗ (i) 
; 

           

      
),...,2,1(

),...,2,1(

Nj

Mi




          (2.17) 

 

Equation (2.17) states that the previous intensity values of the estimated image,   ⃗⃗ j
(i-1)
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2.3 Multiplicative Algebraic Reconstruction Technique 

MART (multiplicative algebraic reconstruction technique) is a nonlinear iterative 

algorithm for CT image reconstruction [75]. It has two features: the first one is 

relative to the solution of underdetermined set of linear CT equations causing 

entropy [76-78], and the second one is about the limitation of the reconstruction to 

the convex hull of the object [10,79-81]. In the MART,  a multiplicative correction is 

required for the voxel intensity in each iteration k , based on the ratio of the recorded 

pi to the projected  j

k

jik fw pixel intensity, expressed as 
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where i is the iteration number and µ is a relaxation parameter typically chosen 

between 0 and 2 [75] and for the stability, less than one is preferred [82]. In addition, 

µwij  is represented as power (p) in this study. 

Until the iteration is completed, the intensity of each voxel is corrected. By means of 

this method, the entropy solution-focused information is converged [12]. While the 

MART is considered appropriate for the first estimations, as Elsinga et al. [13] 

demostrate, this algorithm have the precedence over that of additive algebraic 

reconstruction technique (ART) [11].  

The algorithm provides solution for the problem of tomographic reconstruction of 

high-contrast objects on a dark background, such as the diffraction-limited particle 

images. When compared to the other algebraic reconstruction techniques, the MART 

suggests the most useful solutions in the reconstruction of sparse distributions 

involving high spatial frequencies such as those of the diffraction-limited particle 

images Elsinga et al. introduces the main factors effecting the accuracy of the 

reconstruction process; the first is  the number of viewing cameras, and the second is  

the image source density [13]. The other elements effecting the accuracy of 

reconstruction are the viewing angle, the width and intensity distribution of the 

illuminated domain and the amount of background and spurious light [15]. 
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Although the performance of MART algorithm  in the  reconstruction quality in 

fewer iterations is better than the other algebraic reconstruction techniques, the long 

reconstruction times and large computer memory allocations must be taken into 

consideration [11,16]. 
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3. RESULTS 

 

In  this  thesis  3D  image reconstruction  with a ray-tracing algorithm which is 

Siddon’s method, evaluating the radiological path of a ray through a 3D object, is 

studied in algebraic reconstruction techniques. The projection images are obtained 

from different angles [9] and reconstructed by using algebraic reconstruction 

technique (ART) and multiplicative algebraic reconstruction technique (MART).  

A 3-D phantom that is Shepp–Logan phantom was selected to test the performance 

of the reconstruction algorithms of tomosynthesis imaging system. The Shepp–

Logan phantom is a standard test image created by Larry Shepp and Benjamin F. 

Logan and serves as the model of a human head in the development and testing of 

image reconstruction algorithms. Phantom data sets consist of two ellipsoids with a 

low attenuation coefficient (µ=1,73472×10
-12

) at the lower part of the phantom. 

Forward projection is done between -25 and +25 degrees with 11 exposures that 

happen in each 5 degrees. The projection files were created by forward projecting, 

which are used as generated projection images to do the reconstruction using ART 

and MART. Equation (3.1) is used to rotate x-ray source and detector coordinates. 



























cos0sin

010

sin0cos

)(yR                        (3.1) 

where   is the given rotation angle. The time needed to perform a simulation study 

depends on the complexity of the chosen sets of source, detector and objects. The 

average time ranges in turn are as followed: 36ms for completing one projection , 

5.587 s for displaying 11 projection images, 479ms for reconstruction of the 

tomosynthesis system. 

Another 3-D phantom was designed more complex than the other to test the 

performance of the reconstruction algorithms. Phantom data sets consist of three 

objects which are rectangular prism with low attenuation coefficient at the lower part 

of the phantom and three ellipsoid in the upper part of the phantom with high 

attenuation coefficient. Attenuation coefficients are scaled between 0 and 15. It must 
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be taken into account that the small object is obscured with the larger object in the 

phantom. Forward projection is done between -25 and +25 degrees with 11 

exposures that happen in each 5 degrees. Parameters of phantoms are shown in Table 

3.1 below. 

Table 3.1: Phantoms parameters. 

Parameter Name Value 

PHANTOM I PHANTOM II 

Number of layers (z-axis) 51 16 

Dimensions on x-y axis 64×64 128×128 

Dimensions of detector 160×160 160×160 

Coordinates of detector  (0,0,-100) (0,0,-100) 

Coordinates of x-ray 

source  

(0,0,200) (0,0,200) 

Objects in phantoms 2 Ellipsoids 3 Rectangular Prisms and 

3 Ellipsoids 

Figure of Phantom          

            
 

Firstly, different exponents µ = {0.5, 1} are assumed as the µ of MART, called as 

method I. Secondly, the other method called method II is defined by multiplied by 

maximum of all ikw and ikw . Parameters of MART are shown in Table 3.2 below. 

Table 3.2: MART parameters. 

Method No Power (p) 

Method I {0.5* ikw , 1* ikw } 

Method II 1/max { ikw | i=1,…,I, j=1,..,J} 

 

The images of LOI of phantom I and phantom II are shown in Figure 3.1 and Figure 

3.2, respectively to compare each image obtained by implementing the 

reconstruction algorithms. 



 

 

19 

 

 

Figure 3.1: LOI image of phantom I. 

 

Figure 3.2: LOI image of phantom II. 

Root mean square error (RMSE), Contrast to Noise Ratio (CNR) and Mean 

Structural SIMilarity (MSSIM) are calculated as in Equation (3.2), (3.3) and (3.6) 

and are used to compare each reconstructed image. 

                                      


N

i ii
N

RMSE
1

2)ˆ(
1

                                      (3.2) 

where  and ̂  are original and estimated coefficient of attenuation for voxels, 

respectively and N is number of pixel. 
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                                  (3.3) 

 

where  ,  , and ̂  are background of original, background of estimated, and 

estimated coefficient of attenuation for voxels, respectively and N is number of pixel.  
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The root mean square error (RMSE) is generally used for measuring the image 

quality. It has a common usage because of being simple for calculating clear physical 

meaning. However, RMSE is not an appropriate metric to exhibit the visual quality 

of the images [22-24].  Human visual system characteristics are used by several 

quality assessment methods. SSIM is one of the well-known measurement methods 

of them. It compares local patterns of pixel values of images which are normalized 

for amount of contrast and luminance [25]. 

The SSIM index is shown as: 

               (   )  
(        )(      )

(  
    

    )(  
    

    )
            (3.4) 

where    and     refer  to  mean  of  the  intensities  of  signals  x and y, respectively 

and     and    are the standard deviation of them.     and     are given below, 

   (   )  (     )                           (3.5) 

where  L  is  the  dynamic  range  of  the  pixel  values  and  K1<<1 and K2<<1 are 

small constants. 

A single quality measurement of the whole  image is practically necessary.  The  

mean  SSIM  (MSSIM) index is used for evaluating the image quality 

                  (   )  
 

 
∑     (     )

 
                (3.6) 

where  X  and  Y  relate  to  original  and  reconstructed  image, respectively;    and   

   are the image values at the ith pixel and M is the number of pixels in the image. 

3.1 Results of Phantom I 

The study was implemented by performing projections and reconstruction tasks to 

exhibit reconstructed layer of interest. The reconstructed images of 29
th

 layer of the 

phantom are obtained using ART and MART with different power values.  The 

difference among the results in Figure 3.3 is not clear. For comparison of the images, 

RMSE and MSSIM values are calculated. CNR value is not evaluated because of the 

complexity of Phantom I.  
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Figure 3.3:  Images of the LOI (29
th

 layer of the phantom) upper row from left to      

right shows the reconstructed LOI image using MART (p= 0.5, 

method I), using MART (p= 1, method I), and bottom row from left to 

right shows using MART (method II), using ART. 

Figure 3.4 shows the comparison of the root mean square error (RMSE) values  in 

MART with the different parameters and ART after 15 iterations. RMSE value 

decreases while the iteration number increases. Although ART has less RMSE value 

than the others in the beginning of iterations, MART method I (p=1) and method II 

have the minimum RMSE value after 15 iterations.  

As shown in Figure 3.5, increasing the number of iterations leads to the  increase in 

the MSSIM value. During the period MSSIM, the value of ART is almost steady and 

high value. MSSIM values of MART with different parameters rapidly increase in 

the beginning of the iterations. After 5 iterations, MSSIM value has slight increase. 

Especially, MSSIM values of MART method I (p=1) and MART method II reached 

the value obtained by using ART. In addition, as shown in Figure 3.4 and Figure 3.5, 

MART method I (p=1) and MART method II are almost identical. 
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Figure 3.4: RMSE value comparison of MART (p=0.5, method I), (p=1, method I),  

 (method II), and ART for phantom I. 

 

Figure 3.5: MSSIM value comparison of MART (p=0.5,method I), (p=1,method I),  

(method II), and ART for phantom I. 
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3.2 Results of Phantom II 

ART and MART with two methods are implemented in Phantom II. It is done 

between -25 and +25 degrees with 11 exposures that happen in each 5 degrees. 

Reconstructed images of 11
th

 layer of the phantom are obtained using ART and 

MART with different power values.  As shown Figure 3.6, image reconstructed by 

using ART is more similar to original than the others.    

 

 

Figure 3.6:  Images of the LOI (11
th

 layer of the phantom) upper row from left to      

right shows the reconstructed LOI image using MART (p= 0.5, 

method I), using MART (p= 1, method I), and bottom row from left to 

right shows using MART (method II), using ART. 

Figure 3.7 shows the comparison of the root mean square error (RMSE) values  in 

MART with the different parameters and ART after 15 iterations for phantom II. 

RMSE value decreases while the iteration number increases. ART has the minimum 

RMSE value in all iterations. RMSE values obtained from MART method I (p=1) 

and method II exceed that of MART method I (p=0.5) for the first iteration, but since 

then there has been steady decline in RMSE value from MART method I (p=1) and 

method II. 
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Figure 3.7: RMSE value comparison of MART (p=0.5,method I), (p=1,method I),  

(method II), and ART for phantom II. 

In Figure 3.8 there has been a gradual increase in CNR value of MART 

(p=0.5,method I)  during the period. In 8
th

 iteration, CNR values of MART method I 

(p=1) and method II exceed that of ART. After that, there has been a steady increase 

in CNR values of MART method I (p=1) and method II, which seems to continue. 

MSSIM value of ART has the highest value over the period as shown Figure 3.9. 

MSSIM values obtained from MART method I (p=1) and method II exceed that of 

MART method I (p=0.5) for the first iteration. Therefore, there has been gradual 

increase in MSSIM value from MART method I (p=1) and method II. 
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Figure 3.8: CNR value comparison of MART (p=0.5,method I), (p=1,method I),  

(method II), and ART for phantom II. 

 

Figure 3.9: MSSIM value comparison of MART (p=0.5,method I), (p=1,method I),  

(method II), and ART for phantom II. 
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3.  DISCUSSION 

Obtained projection images by using Siddon algorithm were reconstructed into 3D 

phantom by using ART and MART with different exponents. In the results of 

Phantom I, MART gives better result compared to RMSE value, but ART has better 

result than MART algorithm for MSSIM value. Atkinson and Soria (2007) supposed 

that the MART method I (p=1) and method II algorithms have better reconstruction 

quality in fewer iterations when the algorithms were compared with ART. It is really 

true that MART quickly converges almost the same result of ART. Although it is 

thought that MART requires long times for reconstruction and large memory 

allocations on computer, computation times of both algorithms are almost identical, 

approximately 13 minutes. In addition, for phantom II ART has better RMSE and 

MSSIM values than MART with different power parameters. On the other hand, 

CNR values of the MART method I (p=1) and method II are better than that of ART 

for Phantom II. The difference between the results of both phantoms may be 

explained by using different µ in equation of MART, but it is difficult to decide 

optimum power parameter for any phantom. 

Applying  different exponents in MART affected the reconstructed images. MART 

method I (p=1) and method II have better result than the other MART method. The 

power parameter can be optimized for any tomosynthesis system. For a better result, 

the number of iterations can be increased in the implementation of algorithms. Also, 

ART and MART are applied two different designed phantoms. The algorithms can 

be applied on more different phantoms to investigate their behaviours. Phantoms 

were designed  with respect to be considered as breast tissues. Moreover, real breast 

phantoms should be used for showing the applicability of algorithms in real. 
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4.  CONCLUSION 

Breast cancer is the most common cancer type among female diseases all over the 

world. Early diagnosis and treatment is especially important in reducing the death 

rate since the causes of breast cancer are unknown. Tomosynthesis, whichis a 

method of 3D imaging, can reduce the tissue overlap effect. Advantages of the digital 

tomosynthesis device includes the possibility of reduced breast compression, 

improved diagnostic and screening accuracy, 3D lesion localization, and the contrast 

enhanced 3D imaging. Also, the coordinates of suspicious tissues are found because 

the location of a lesion in a tomosynthesis slice completely finds its true 3D 

coordinate within the breast. In this study, Siddon algorithm is used for the projection 

of designed 3D phantoms such as breast. Obtained from the projections of phantoms 

are reconstructed into ART and MART with diffent power parameters. The out of 

focus blur in the reconstructed image using ART and MART was reduced for limited 

scan angle tomosynthesis. RMSE, CNR and MSSIM values were used to decide 

which method is the best. MART gives better result according to RMSE value for 

phantom I. On the other hand, ART has better RMSE and MSSIM values than that of 

MART with the best parameters for phantom II. In addition, computation times of 

both algorithms are almost identical. 
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