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COMPARISON OF ALGEBRAIC RECONSTRUCTION ALGORITHMS
FOR TOMOSYNTHESIS

SUMMARY

Breast cancer is an extremely important health problem worldwide. It's among the
most common form of cancer observed on women. Mammography is a radiographic
examination designed to detect breast cancer. Digital mammography has brought
many advantages to the diagnosis of breast cancer. Film and digital mammography
have equal diagnostic accuracy in screening of breast cancer, but the accuracy of
digital mammography is higher in women less than 40 year-old and having dense
breasts. Digital mammography develops in accordance with computer technology to
produce digital images of the breast. Therefore, it enables to remove physical storage
by means of the possibility of electronic transfer and the storage of images.
Computed tomography (CT) was used for breast imaging in the beginning. The CT
system was not practically used because of poor image quality and taking long
scanning time. Furthermore, the entire chest to be scanned is necessary for the use of
a body scanner in breast imaging. Therefore, it resulted in increased patient dose and
poorer resolution of the reconstructed breast images. Digital Breast Tomosynthesis
(DBT) is an innovative 3D imaging technique implemented using a limited number
of low dose projections, which are taken with the x-ray source moving in a limited
angle of rotation around the breast. Then these low dose projection images should be
processed using mathematical methods, to reconstruct tomographic images, resulting
in a 3D representation of the imaged breast. In tomosynthesis imaging, out-of-focus
slice blur problem arises due to incomplete sampling problem. Several approaches
have been suggested to deal with this problem. The purpose of this work is to
implement from among these approaches Algebraic Reconstruction Technique
(ART) and Multiplicative Algebraic Reconstruction Technique (MART). Former
studies generally offered solutions for 2D tomosynthesis image reconstruction
problem. In this study, a 3D phantom model was used. All of the algorithms and
experiments are programmed with C++. The difference between two reconstruction
algorithms is also investigated by means of comparing root mean square error
(RMSE), contrast to noise ratio (CNR) value, and mean structural similarity
(MSSIM).
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TOMOSENTEZ iCIN CEBIRSEL GERI CATMA ALGORITMALARININ
KARSILASTIRILMASI

OZET

Meme kanseri diinya ¢apinda 6nemli bir saglik sorunudur. Bayanlar arasinda en
cok gozlenilen kanser ¢esididir. Mamografi meme kanserinin tanimlanmasi i¢in 6zel
tasarlanmis radyografik bir incelemedir. Mamografinin film teknolojisinden sayisal
hale gecisi meme kanseri tehsisine bir ¢ok avantaj saglamistir. Tlimoriin erken
teshis rolil sayesinde son on yilda 6liim oranlarinda %20 kadar bir diislis saglamistir.
Ancak teshislerde bazi sinirlamalar1 vardi. Meme kanseri teshisinde neden oldugu
kisitlamalardan dolayr var olan mamografi teknolojileri ilerletilmis ve yenileri
gelistirilmistir. Sayisal mamografi (DM), bilgisayar destekli teshis (CAD), meme
tomosentezi, miknatisli rezonans goriintiileme (MRI) ve ultrason, umut veren meme
goriintliileme yeni teknolojilerinden bazilaridir.

Meme kanserini goriintiileme agisindan sayisal ve film mamografisinin teshis
basarist aynidir, ancak sayisal mamografi 40 yasindan daha geng¢ bayanlarda daha
basarilidir. Sayisal mamografi memenin sayisal goriintiisiinii saglamak i¢in bilgisayar
teknolojisine gore gelisir. Goriintiiler sayisal isaret olarak tutulur, boylece elektronik
transferi ve goriintiilerin depolanmasi miimkiindiir. Bu da filmin gerektirdigi dagitimi
ve fiziksel depolamay1 Onler. Elektronik kopyalama, bilgisayar destekli teshis ve li¢
boyutlu goriintiileme mamografik yorumlamada ilerleme icin ¢ok iyi firsat sunar.
Sayisal mamografi 6nemli derecede diisiik dozda radyasyon gosterdigi ve hatirlatma
ve biopsi oranlarini diisiirdigii icin sayisal mamografiye erisim artmaya devam
edecektir. Ornegin Amerikan meme goriintilleme tesislerinin %60 ° tan fazlasi
sayisal mamografi kullanir ve her yil daha ¢ok dijital servis elde etmektedirler.
Sayisal mamografi sistemleri ekran filmi goriintileme sistemlerinde, Ozellikle
dinamik araliklarda goriintiilemede, sayisal elde edinimde, depolama, gorsellestirme
ve son islemelerde gelisme saglamistir. Sayisal mamografi hala hizli bir sekilde
gelismektedir ve hasta bakiminda etkili olacaktir.

Tomosentez, telemamografi, sayisal goriintii isleme ve CAD gibi yeni uygulamalar
tizerinde hala devam eden gelismeler mevcuttur. Telemamografi az hizmet alan
yerlerde ve cografi agidan uzak olan populasyonlarda en son meme bakimina erisimi
sagladig1 i¢in dijital mamografi ile birlikte ¢ok etkilidir. Mamografi goriintiilerinin
sayisal formati sayesinde sayisal goriintii isleme tekniklerinin kullanilabilir.
Memedeki farkli yapilarin zithgma gore yapilan islemler kanserin belirlenebilirligini
arttirabilir. Ayn1 zamanda, kenar iyilestirme ya da goriintli yumusatma ve siipheli
alan lizerinde yakinlagtirma gibi goriintii igleme teknikleri daha iyi bir goriintiileme
saglar. Diger bir uygulama olan bilgisayar destekli teshis 6nemli bir arastirma
alanidir. Dijital goriintiiler yazilimlar tarafindan incelendikten sonra, daha ileri
gbzlem i¢in radyologlar siipheli bolgelerin iistiinde dururlar. Bu sistemlerin zorlugu
hassasligi ve Ozgiinliigii arasinda uygun bir denge bulmaktir. Ozgiinliik artarsa
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gorlintii lizerinde isaretlenmis ¢ok sayida yanlis pozitifle sonuglanir. Aksine dogru
pozitifler yeterince isaretlenmezse sistem radyologlara yeteri kadar yardimei olamaz.

Bilgisayarli tomografi baslarda meme goriintiillemede kullanilmistir. Sistemin
gelismesi ve ticari olarak kullaniminin artmasiyla viicut goriintillemede de
kullanilmistir. Diisiik goriintiilleme kalitesi ve uzun tarama zamanindan dolayr bu
sistem pratik olarak ¢ok kullanilmamaktadir. Buna ek olarak, bu sistem i¢in meme
goriintiilemede biitiin gogsiin taranmasi gerekmektedir. Teknolojik kisitlardan dolay1
2000’ lerin basinda bu tarama teknigi onemsiz hale gelmistir. Genel radyografi ve
mamografi uygulamalar i¢in ¢esitli diiz panel ekran detektorler gelistirilmistir. Bu
detektorler, 1990’ larda sayisal x-151n sistemlerini olusturmak i¢in kullanilmistir.
Detektorlerin - akademik birimlerde kullanilabilirliginin  arttirilmasi i¢in  bazi
algoritmalar gelistirilmistir. Meme anatomisinin ve yumusak meme dokularinin
gosterilmesi ve bulunmasi agisindan bilgisayarli meme tomografi goriintiilerinin
mamogramdan daha ¢ok tercih edilmesi i¢in gilincel hasta c¢aligmalar1 yapilmistir.
Ancak, bu gorintiler kiigiik kireglenmelerin  gosteriminde kisith  kalmustir.
Yinelemeli algoritmalar, son zamanlarda x-1sin dozunda azalma saglamis olmalarina
ragmen, bu algoritmalar genellikle geri catmayir tamamlamak ig¢in ¢ok zaman
harcalar.

Tomosentez 3 boyutlu mamografinin bir uygulanma tiiriidiir. X-151n dozu neredeyse
geleneksel 2 boyutlu mamografi ile aynidir. Tomosentez goriintiileme gogiis, eklem,
dis ve meme goriintiileme gibi bircok uygulamada arastirma alanina sahiptir. Bu
konu tlizerinde arastirmaci ve tretici firma birgcok arastirma ve ¢alisma yapilmistir,
yeni teknikler gelistirilmistir. Cogu {liretici firma aleni satis icin ticari tomosentez
cithazi saglamada aktif rol oynamaktadir. Birgcok meme tomosentez tarayicilar1i GE,
Hologic, Siemens ve Philips gibi ticari saticilar tarafindan saglanmaktadir.
Anatomik yapmin ist lste gelerek olusturdugu nesnelerin ayirt edilmesi ig¢in
gelistirilen 3 boyutlu goriintilleme teknikleri girisimleri 20. yiizyilin baglara
dayanir.

Radon, 2 boyutlu izdiisim verisinden nesnenin diizlemlerini olusturmay1
matematiksel olarak tanimladi. Ziednes des Plantes de geleneksel dogrusal tomografi
izerine ¢aligmalar yapti ve Ernest Twining de klinik denemeler yapti. Baglangicta
tomografi sisteminde, bir odak noktasi olusturmak i¢in film algilayicisi ve x-igin
tiipliniin dogrusal bir hareketi gerekliydi. Birden fazla odak noktasi istenirse bu islem
tekrarlanacaktir. Bu da hastalarin yiiksek dozda radyasyona maruz kalmasina neden
olacaktir. Diger bir dezavantaj ise odak dis1 dilim bulnakligi yeterli bir sekilde
onlenemez. Sayisal x-151n elde edinim teknolojisindeki ilerlemeler sayesinde 1990
larin basinda bir dizi izdiistim goriintlisi memenin derinligini elde etmek i¢in farklh
agilardan alinarak elde edilmistir.

Son zamanlarin meme tomosentez tarayicilarinin tasarimlari tam alan sayisal
mamografi sistemi temellidir ve birbirlerine ¢cok benzerler. Geleneksel x-1sin tiipii
sikistirtlmis meme tizerinde sinirli izomerkezsel bir donme hareketi yaparak sinirl
acida bir dizi izdiisiim goriintiileri elde eder. Izlenen bu yol detektore paraleldir. X-
1510 tiipliniin donme merkezi gbz Oniline alinarak otomatik olarak dondiigiinden emin
olabilmek i¢in mekanik tasarim, yazilim ve tam bir a¢1 dlgen cihaz kullanilir. Ayni
zamanda her bir izdlislim goriintiisli i¢in x-151n tiipiiniin agisal olarak tam konumunun
kaydedilmesi gereklidir. Tipik bir tomosentez taramasi yaklasik 20 saniye siirer. Bu
siire bakis agis1 sayisina baghdir. Son zamanlarda Amerikan gida ve ilag kurumu
sadece bir meme tomosentez cihazinin ticaretini onaylanmistir, o da ilk teshis
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trlinlerinin lider iireticilerinden biri olan Hologic tarafindan yapilmis Selenia
Dimensions’dir.

Dijital tomosentez meme goriintiileme ve teshis sisteminin yeni bir tirtdiir. Her bir
memenin ¢oklu X-is1n goriintiileri farkli agilardan alinarak elde edilir. Meme,
geleneksel mamografideki gibi konumlanir, ama sadece ¢ok kiiciik bir baski
uygulanir. Bu baski, islem boyunca memenin sabit bir pozisyonda tutulmasini
saglayacak kadardir. X- 1sin tiipli meme etrafinda yay ¢izer ve meme ile ilgili
odaklanmis 3 boyutlu goriintiileri net bir sekilde elde etmek i¢in islem boyunca
alinan bilgiler bilgisayara gonderilir. Bu ¢alisma goriintiilleme mamografideki dozla
basarilabilir. Projeksiyon goriintiilerinde tomografik goriintiilerin gerigatilmasi i¢in
matematiksel yontemler kullanilarak memenin li¢ boyutlu goriintiisii elde edilir.

fleri izdiisim almak icin Siddon’ nun algoritmasi kullanilir. Isin x-151n tiipiinden
cikip goriintii dizilerinde yol izlerken 3 boyutlu nesnenin i¢inden gegtigi uzunlugu
hesaplamada hizli ve dogru bir algoritmadir. Elde edilen izdiisiim goriintiilerinin
gericatilmasi i¢in kullanilan tekniklerden biri de Cebirsel Gericatma Teknigidir. Ilk
olarak Kaczmarz tarafindan tasarlanmistir. Daha sonra Gordon ve arkadaslari bu
teknigi goriintiilerin geri ¢atilmasinda kullanmistir. Bu teknik, istenilen nesneyi geri
catmak ic¢in izdiisiim goriintiileri kullanarak satirlar {izerinde bir c¢alisan bir
algoritmadir. Ayrica, sinirh agida geri catma problemine alternatif bir ¢oziimdiir.
Asimetric nesnelerde kolayca c¢alisabilir ve sinirli agida detaylar tiretebilir. Diger bir
geri ¢atma teknigi de Carpimsal Cebirsel Gericatma Teknigidir. CT goriintiilerinin
geri ¢atilmasinda dogrusal olmayan yinelemeli bir algoritmadir. Formiiliindeki tissel
degisken olan gevsetme katsayisi i¢in ¢esitli oneriler bulunmaktadir. Bu algoritma,
karanlik arka plandaki yiliksek zitlikli nesnelerin tomografik geri catma problemine
bir ¢ozlim saglayabilir. Diger algoritmalarla karsilastirildiginda, bu teknik dncesinde
bahsedilen problem tarzina daha iyi bir sonug verir. Bu teknik, diger algoritmalarla
karsilagtirildiginda az yineleme ile daha i1yi geri catma kalitesine sahip olmasina
ragmen daha uzun hesaplama zamani alir ve daha c¢ok hafiza kaplar.

Tomosentez goriintiilerinde, tamamlanmamis 6rnekleme probleminden dolayr odak
dis1 dilim bulanikligini olusmaktadir. Bu problemin ¢oziimii i¢in birgok yaklagim
mevcuttur. Bu ¢aligmanin amaci bu yaklagimlardan olan Cebirsel Gerigatma Teknigi
ve Carpimsal Cebirsel Gerigatma Teknigi gerceklemektir. Onceki ¢alismalar
genellikle iki boyutlu tomosentez goriintiilerinde gerigatma problemine ¢oziim
getirmiglerdir. Bu c¢alismada ise ii¢ boyutlu fantom modeli kullanilmigtir. Tiim
algoritmalar ve deneyler C++ ile programlanmi ve gergeklenmistir. Ele alinan iki
gericatma algoritmas1 arasindaki fark ortalama karesel hata ve zithik giiriiltii oranmi
degerlerinin karsilastirilmasiyla bulunur.
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1. INTRODUCTION

1.1 Breast Cancer

Breast cancer is one of the most common form of cancer among females. The
mortality rate of breast cancer takes the second place after lung cancer in the U.S, but
especially for women, with an age range 40-55, breast cancer is the leading cause of
death. In 2005, almost 40,410 women died of breast cancer [2]. In U.S. the incidence
and mortality rate of breast cancer generally raise in parallel with age 95% of new
cases and 97% of deaths from breast cancer in 40 year-old women as shown Figure
1.1[1].

Incidence: African American

Rate per 100,000

Mortality: Non-Hispanic White

20-24 25-29 30-34 35-39 AD-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 BO-84 B5+

Age

Figure 1.1: Female breast cancer incidence according to ages and (2004-2008)
mortality rates (2003-2007) [1].

Since the causes of breast cancer are not completely known, early diagnosis is
required in decreasing the death rate. Mammography is the most effective method for
early detection of breast cancer at this time [3, 4], and microcalcifications, which are
tiny calcium deposits appearing on the mammograms as bright spots, are important

signal of early stage of breast cancer [5].



1.2 Mammography

Mammography is a radiographic examination designed to detect breast cancer.
Mammography played a vital role in decreasing the death rate by 20% via early
tumor detection in the last decade. Although mammography is determined as the
most effective method for early detection of breast cancer, the modality has the
limitations. It has 20% false-negative rates, where the modality fails to detect cancers
and 12% false-positive rates, which is noticed a cancer though there is none.
Moreover, though it detects almost 90% of tumors in women over the age of 50, it
can detect only 60% of tumors in women under the age of 50 because of dense breast
tissue. The other limitation is that the modality lacks of specificity, where
mammography cannot identify between malignant and benign breast lesions. Due to
these limitations of mammography, new solutions and technologies in breast imaging
including computer-aided detection (CAD), digital mammography (DM), and breast

tomosynthesis have been proposed [2].

1.3 Digital Mammography

Digital mammography is currently the most effective diagnostic and screening
device for early detection of breast cancer. Film and digital mammography have
equal diagnostic accuracy in screening of breast cancer, but the accuracy of digital
mammography is higher in women less than 40 year-old and having dense breasts
[26].

Flat panel x-ray detectors can present very high quantum efficiency and high
resolution. These digital detectors allow reducing dose while improving image
quality, and therefore, help the development of new imaging techniques like
tomosynthesis. Furthermore, the essential detector properties of digital
mammography are geometrical characteristics, quantum efficiency, sensitivity,
spatial resolution, noise characteristics, dynamic range, uniformity, and acquisition
speed. The rate where sequential images obtained is also crucial for dynamic studies

such as tomosynthesis.

Digital mammography develops in accordance with computer technology to produce
digital images of the breast. Therefore, it enables to remove physical storage by

means of the possibility of electronic transfer and the storage of images. Digital



systems offer a wide dynamic variety of operation and a successful visualization of
the breast. For optimizing contrast for each imaging task, the digital format allows
gray scale adjustment. Additionally, Computer-aided diagnosis, three-dimensional
imaging, and softcopy reading provide great opportunities for advancement in

mammographic interpretation [6].

In mammography, image quality depends on the shape, the dimensions, and the
anatomic structure related to x-ray absorption of region to be scanned. In addition,
x-ray beam quality, the resolution, and the noise properties of the imaging system
are important [27].

As digital mammography has indicated significantly lower radiation dose and
reduced the recall and biopsy rates, accessing to digital mammography will likely
continue to increase. More than 60% of U.S. companies on breast imaging provide
digital mammography and are acquiring more digital services every year. Also,
digital mammography systems suggest improvements on screen film imaging
systems, particularly in imaging dynamic range, digital acquisition, storage, display
and post processing. Digital mammaography is still improving rapidly and will mean

more effective and efficient patient care [6].

1.4 Breast CT

Computed tomography (CT) was used for breast imaging in the beginning. After
computed tomography (CT) was developed and commercialized and involved the use
of a specially designed CT system [28-31] as well as a conventional body scanner
[33,34], the efforts to develop breast CT (BCT) began. Because image quality was
poor and it took long scanning time, the CT system was not practically used.
Furthermore, the entire chest to be scanned is necessary for the use of a body scanner
in breast imaging. Therefore, it resulted in increased patient dose and poorer
resolution of the reconstructed breast images. The notion of a devoted BCT scanner
was unimportant until the early 2000s because of technological limitations.

Several flat panel detectors were developed for general radiography as well as
mammography applications; and they were used to construct digital x-ray systems
in the 1990s. Cone beam computed tomography (CBCT) techniques were developed
with the availability of these detectors in academic institutions. Boone et al. at the

University of California and Davis and Ning et al. at the University of Rochester
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independently used CBCT techniques for BCT [35-40]. For clinical evaluation, the
first patient imager was generated by the former. The latter’s efforts led to
commercialize the BCT technology. Patient studies conducted up-to-date have
indicated that BCT images are preferable to mammography in terms of finding and
displaying breast anatomy and soft tissue masses. However, the images are more
restricted in visualizing small micro calcifications. Although iterative algorithms
have recently been shown to have the potential advantage of dose reduction, they

generally take much longer time to complete the reconstruction [6].

1.5 Digital Breast Tomosynthesis

Attempts for developing three-dimensional imaging methods to discriminate objects
from overlying anatomical structure date back to the early 20" century [41]. In 1917,
Radon suggested the famous Radon transformation of tomography. He described the
mathematics of generating internal object planes from two-dimensional projection
data [42]. In 1932, Ziedses des Plantes led to study the conventional linear
tomography and Ernest Twining launched the clinical trials [41,43]. Early
tomography systems required a linear, against motion of the x-ray tube and the film
receptor to generate a focal plane. If more than one focal plane was needed, the
process had to be repeated. As a result, this led to give high dose to the patients.
Secondly, suppressing out-of-plane blur is not sufficiently prevented in this modality
[41]. Inthe late 1990s, a sequence of projection images are obtanined from different
views to be retained the depth of breast due to the improvement of digital x-ray
acquisition technology [41,44].

Tomosynthesis is a type of implementing 3D mammaography. Its doses are identical
to conventional 2D x-ray mammography. Tomosynthesis imaging has already
been researched on many applications such as chest imaging, joint imaging,
angiography, dental imaging, and breast imaging [45-60]. A few researches and
studies have been made by several research groups and manufacturers. For instance,
in 1997 Niklason and colleagues published a tomosynthesis method with the x-ray
tube moved in an arc above the stationary breast and detector [61]. Also, in 2003
Wu et al. has a report about the maximum likelihood iterative algorithm
(MLEM) to reconstruct the three-dimensional distribution of x-ray attenuation in

the breast [62], matrix inversion tomosynthesis (MITS) technique in breast
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tomosynthesis [63], filtered back-projection (FBP) [45,64-69], algebraic
reconstruction techniques (ART) [49], etc. Major manufacturers are actively
involved in providing commercial tomosynthesis devices for public sale. Several
prototype breast tomosynthesis scanners have been produced by commercial
sellers such as GE, Hologic and Siemens. They have been investigated by
several research groups [49,60,62,70,71].

Substantial effort has been made to improve breast tomosynthesis systems by
different research groups and companies. Recently, different techniques have been
designed and performed manually and automatically to implement and optimize
imaging configurations and image reconstruction algorithms, as well as to help

identify the best tomosynthesis acquisition strategy.

The designs of most up-to-date breast tomosynthesis scanners are based on a full-
field digital mammography (FFDM) system,and are similar to each other. A
conventional x-ray tube got on a rotating arm drifts an arc above the compressed
breast with a partial isocentric motion to generate a series of projection images
with the limited angle. The path of the x-ray tube is located on the plane which is
parallel to the detector plane. To ensure that the x-ray tube rotates automatically with
regard the rotation center, mechanical design, related control software, and an
accurate angle measurement device are used. Also, they are necessary to record
exactly angular location of the x-ray tube for each projection view. A typical
tomosynthesis scan takes approximately 20 seconds. The time depends on the
number of views acquired. Recently, the U.S. Food and Drug Administration
approved the commercialization of a breast tomosynthesis device, Selenia
Dimensions made by Hologic, Inc., one of the leading manufacturers of
premium  diagnostic  products. This system upgrades the full-field digital
mammography (FFDM) system to provide the rotation of x-ray tube along an arc
above the digital detector [6].

Tomosynthesis acquires a series of images obtained from projecting a compressed
breast at different angles during a limited scan. The images are reconstructed into a
3D series of slices. Considering a total dose required for standard screening
mammography, the individual slices decrease structural noise and tissue overlap
related to standard 2D projection mammography. Advantages of the digital
tomosynthesis device are the reduced breast compression, improved 3D lesion

5



localization, diagnostic and screening accuracy, and contrast enhanced 3D imaging.
In Figure 1.2, the two objects independently attenuate x-rays passing through them
on the way to the detector, but the detected signal shows their total attenuation. In
mammography, which is a 2D imaging modality, lesions of interest are more difficult
to represent due to the mess of signals from objects above and below. Tomosynthesis
can decrease this tissue overlap effect because of 3D imaging method.

Incident X-rays

il

Objects

Image as seen on
casselte or
digital detector

Figure 1.2: The signal on the detector with mammography depends on the
summation of attenuation of all the tissues [2].

The the logic behind tomosynthesis acquisition theory is showed in Figure 1.3. While
the breast is held, several images are obtained at different angles. In Figure 1.3, the
objects at different heights in the body like breast tissues are projected in the
different views. Although the two objects (ellipse and star) are added up when the x-
ray tube is at 0° in this example, acquisitions between +15° and -15° displace the
shadows of the objects related to one another in the projections. However,

conventional mammography acquires only the central image.

In the tomosynthesis procedure the final strep is the reconstruction of the data to
obtain 3D information. In Figure 1.3, on the right side of the figure, after the
projection images are summed, shifting one related to another in a specific way
reinforces the ellipsoidal object and reduces the contrast of the starred object by
blurring it out. Also, on the left side of the figure, the same objects can be
reconstructed by using different shifts of the projection data in order to reinforce the
star object and blur the ellipse. The images are generated by using appropriate

shifting of the projections in this method. The reconstruction process computes high-



resolution images whose planes are parallel to the breast support in spite of at a lower

Hiy

dose, and if desired, these can be viewed as well.

T

Incident X-rays

Objects

Image as seen on
cassette or
digital detector

Figure 1.3: The images are obtained from different view separating structures
at differing heights in tomosynthesis imaging [2].
When the system takes a conventional mammogram under the same compression, the
tomosynthesis slices and the mammogram are simultaneously formed by completely
making objects relevant in the two different image sets. Biopsy tissue sampling
methods can easily be implemented in finding the right coordinates by using the
tomosynthesis, because the location of an interested lesion in a slice obtained by
using tomosynthesis completely finds its true 3D coordinate within the breast. If two
calcifications are observable in the digital mammogram, the distance between the
microcalcifications can be measured at the tomosynthesis slices. This 3D information

is not available in normal mammography [2].

Breast CT and tomosynthesis are both designed to reduce the overlapping structures
leading to fewer false positive findings. In breast CT, multiple 2-D projection
images are acquired and then reconstructed to form true three-dimensional (3-D)
images, which can be viewed in the transverse, sagittal, and coronal planes. In
tomosynthesis, a limited angle scan is used to obtain 30-60 mammograms to
reconstruct thick layer tomographic images in parallel to the detector. Tomosynthesis
is more similar to digital mammography than breast CT. The similarity to
mammographic images will likely lead to a shorter learning curve for interpreting
tomosynthesis images when compared to cone-beam breast CT images. As

tomosynthesis images are obtained with limited angular sampling, concerns have



been raised about the out-of-plane artifacts and the ability to visualize
calcifications [72,73].

Gong et al. performed a computer simulation study with simulated lesions embedded
into a 3-D breast model [74]. The authors evaluated lesion detection accuracy with
digital mammography, tomosynthesis, and breast CT. The same total dose was used
in the tomosynthesis and the breast CT simulations. A Receiver Operating
Characteristic (ROC) study was performed with five physicist observers. The
average area under the ROC curves was 0.76 for digital mammography, 0.93 for
tomosynthesis, and 0.94 for breast CT. Both tomosynthesis and cone-beam breast
CT provided statistically significant higher lesion detectability than digital
mammography. The improved performance of breast CT and tomosynthesis
compared to digital mammography may be based on the decreased image clutter,
which resulted in improved tumor visibility. Lesion detectabilities for tomosynthesis
and cone-beam CT were not statistically significantly different from each other. It
should also be noted that in the study by Gong et al. breast compression was used in
digital mammography and tomosynthesis but not generally in breast CT [74].
Without compression, higher kVp settings were needed, resulting in lower subjective

breast tumor contrast [6].

1.6 Hypothesis

Detecting tumor is hard in breast tomography because of properties of breast tissues.
A number of images are obtained at different views in tomosynthesis. The objects at
different heights in the substances like breast tissues are projected differently in the
different projections. Therefore, it is effective for screening lesion. Algebraic
reconstruction techniques are generally used for reconstruciton of the projections in
tomosynthesis. The purpose of this work is to implement Algebraic reconstruction
technique (ART) and Multiplicative Algebraic reconstruction technique (MART). In
this study, two 3D phantom models were used. The original purpose of this thesis
is to find an efficient algebraic reconsturction technique for out-of-focus slice blur
problem in tomosynthesis imaging. Each implementation is inserted in Siddon’s
algorithm to take projections from using 3D phantoms and the coding is performed in

C++.



2. METHODS

2.1 Siddon’s Algorithm

In 1985, Siddon formulated a fast and accurate algorithm for 3D object to calculate
the length while the ray goes from x-ray source through the image array. The
principle is simple, but it requires high computation time. The computation time
depends on the number of the planes of the 3D image array instead of the number of
voxels of the 3D image [9].

The radiological path is represented as;

d :ZZZI(i,j,k)p(i,j,k) (2.1)

where p(i,j,K) is the voxel density (attenuation coefficient) and the length parameter,
I(i,j,k), is the length of a line included by this voxel.

S

1

—

7. 3

Figure 2.1: Geometric illustration of a ray on image grid [9].

Equation (2.1) is evaluated as an algorithm scaling with the number of terms
according to the number of voxels in 3D space. Instead of considering them as
independent elements, the voxels are assumed to be intersection volumes of
equidistant parallel planes. The intersection points of the ray with the planes are
calculated with the information of the intersection point of the ray with the first

plane. Other intersection points of that ray with all the others are generated by



recursion. In Figure 2.1, the 2D version of the method is illustrated to understand
simply. The pixels are considered as the intersection areas of equally spaced parallel

planes in the figure.

Figure 2.1 shows that intersection points are the union of two sets. One of the sets
includes the intersections of the ray with the horizontal lines (open circles) and the
other with the vertical lines (closed circles). It is obvious that the intersections with
the pixels are a subset of intersections with the lines. The subset provides to

determine the radiological path.

In Siddon’s algorithm, a ray from the start point located on (X3, y1 Z1) to the end point

located on (X2, Y2, Z2) is symbolized linearly by;

X (@)= X, +a(X, - X,),
Y(@) =Y, +a(Y,-Y,), 2.2)
Z(@)=2,+a(Z,-7,),

where the parameter « is zero at start point and unity at end point. An o parameter in
the range of (amin , max) IS USed in evaluating each intersection. Even if start point or
end point lie on outside of the image array, the first and last intersection points

will take the parameters amin and amax respectively.

For a (Nx -1,Ny -1,N; -1) voxels image array, the orthogonal sets of equidistant

parallel planes are written as;

Xplane(i) = Xplane(1)+(i_1)dx’ (l =1'2""7Nx)
Yplane(j) =Yplane(:l-) + (J _1)dy1 (J =1!2!"'1 Ny) (23)
Zplane(k) = Zplane(l) + (k _1)d27 (k = 1’2""! Nz)

where dy, dy and d, are the distances between the planes. They are also the size of the
voxel. The maximum and minimum values for the o parameter are evaluated with
intersecting the ray with the sides of the image array. The parametric values of the

sides are calculated from Equations (2.2) and (2.3) as follows;

If (Xo-X1) £0,

8,(0) = | X jiane@® — X, [/(X, = X,),

2.4
ax(Nx)z[Xplane(Nx)_Xl]/(XZ_Xl)’ @4
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Equations for y and z directions are similar. Minimum and maximum values of o
(oamin, amax) depend on the location of the start and end point. The values are

computed by merging the sets as in Equation (2.5),

iy = max{0, minfe, (N, )] min|e, (1), &, (N,) | min[er, @), &, (N,)]}

8, = Min{L, max[er, (N,)] max|er, @), @, (N,)} max[er, @), @, (N,)]} 25)

The ray does not intersect the image array if omax is less than or equal to omin,. The
range of indices (iminimax); (JminJmax), and (Kmin,Kmax) intersected planes having

parametric values in the range (omin, 0max) are achieved as follows;

If (X2-X1) >0,

imin :Nx_[xline(Nx)_a (XZ_XI)_Xl]dx
imax :1+[Xl +amax(x2 - Xl)_ Xline(l)]/dx

min

(2.6)

If (Xz-Xl) <0,

imin = Nx _[Xline(Nx)_amax (XZ - xl)_ xl]dx

imax :1+[X1 +amin (XZ - Xl)_ Xline(l)]/dx

with similar equations hold for jmax, jmin, Kmin @nd Kmax.

The sets of parametric values represent the intersections of the ray with all the
planes. The sets can be given including the indice data using the notation for {ox}

and with similar notations for {ay} , {o.};

{a, }={a, (imn ) (i) X,—=X,>0
{a, } ={a, (e s @ (imin) X,—-X,<0 (2.7)
where
a, (i) = [ X, () = X, JI(X, = X,) (2.8)

=a (i-1)+[d (X, -X)]

The definite intersection points are obtained by merging the sets {ox}, {ay} and
{0z} into one set. The minimum and maximum values are also added to the merged

set as the first and last elements respectively.
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{8} = {8, mergel{er } {, yand {a.}| @) (2.9)
={(0),...,a(n)}
where index n is given as ;
N=0 iy D+ Upex = Jirin 7D+ Koo —Kiinn +1) (2.10)
For two intersections m and m-1, the intersection length of the voxel is defined as;
I(m) = d,,[e(m) —a(m-1)] (m=1,...,n) (2.11)

The mid point of the two adjacent intersections, m and m-1, is calculated the voxel

indices [ i(m), j(m ), k(m)] by the following equation;
i(M) =1+ X, + &g (X, = X)) = X @ |/ 0,
(M) =1+ Y, + g (Y, = Yy) =Y e ]/ (2.12)
k(M) =1+|Z, + @a (Z, —Z,) = Z @ |/ 0,

where amig 1S given by

Qg = (M) + a(m-1)]/2 (2.13)

In Equation (2.1) the radiological path can be finally written as;

d = Y 1m)plim), j(m), k(m)] 2.1

=,y [ar(m) + a(m - ]pfi(m), j(m) k()]

where p(i,j,k) defines the voxel intensity. The main advantage of this algorithm is
its computation time that is scaled with the number of the planes (N) instead of

the number of voxels (N°) [9].

2.2 Algebraic Reconstruction Technique

The Algebraic Reconstruction Technique (ART) is an iterative image
reconstruction with a long history and rich literature. Firstly, Kaczmarz designed
it in 1937 [17]. It was independently used by Gordon et al. in image

reconstruction [18]. ART is a row-action reconstruction algorithm that uses a
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set of projections to reconstruct the desired object [19-21]. The technique is
accepted as an alternative solution to the limited angle reconstruction problem. It
works readily for asymmetric objects and produces the detail of such objects with
limited views. The term ray-sum can be used instead of the line integral in transform-

based methods. The ray-sum, p;, measured with the ith ray, is expressed as;

N i (i=12,..,M)
Zwik'fi =P (k=12,...,N)

k=1

(2.15)

where wi is the weighting parameter which stands for the influence of kth cell on the
ith ray line integral, f; is the constant intensity value of the kth cell and M is the total

number of rays.

Finding the solution via subsequent projections is known as the method. A

linear imaging problem such as tomography can be shown as below,
Y = AX, (2.16)

where Y represents observations, A represents an MxN system matrix and X
shows the unknowns. ART method works with updating in each iteration. An initial

guess is necessary for the implementation of the technique. £© is projected on the
first plane in Equation (2.15) giving f®. Then f®is projected on the second plane
giving %, and so on. This procedure can be formulated as projection of £0V on
ith plane yields f©;

N

(i-1)
0 i Pi _kZ:;, fk Wi (i =12,..., |\/|)
fl=f""7+ W, .
j j N ij (j=12,...,N)

(2.17)
w2
" ik

LN

Equation (2.17) states that the previous intensity values of the estimated image, ]_C)j(i_l)

are updated by adding an error parameter Af". The parameter is obtained by

calculating the difference between measured ray-sum, p;, and the computed ray-
N i .. . N .

sum, ) fi "W, - normalizing the difference by > wj . Update process is
k=1 k=1

repeated until all the projections and iterations are done [7, 8].
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2.3 Multiplicative Algebraic Reconstruction Technique

MART (multiplicative algebraic reconstruction technique) is a nonlinear iterative
algorithm for CT image reconstruction [75]. It has two features: the first one is
relative to the solution of underdetermined set of linear CT equations causing
entropy [76-78], and the second one is about the limitation of the reconstruction to
the convex hull of the object [10,79-81]. In the MART, a multiplicative correction is

required for the voxel intensity in each iteration k , based on the ratio of the recorded

pi to the projected Zj w, f J.k pixel intensity, expressed as

A

N | (i=12...M)
I ] - C (2.18)
>w,f, (j=12...N)

where i is the iteration number and u is a relaxation parameter typically chosen
between 0 and 2 [75] and for the stability, less than one is preferred [82]. In addition,

uwij is represented as power (p) in this study.

Until the iteration is completed, the intensity of each voxel is corrected. By means of
this method, the entropy solution-focused information is converged [12]. While the
MART is considered appropriate for the first estimations, as Elsinga et al. [13]
demostrate, this algorithm have the precedence over that of additive algebraic
reconstruction technique (ART) [11].

The algorithm provides solution for the problem of tomographic reconstruction of
high-contrast objects on a dark background, such as the diffraction-limited particle
images. When compared to the other algebraic reconstruction techniques, the MART
suggests the most useful solutions in the reconstruction of sparse distributions
involving high spatial frequencies such as those of the diffraction-limited particle
images Elsinga et al. introduces the main factors effecting the accuracy of the
reconstruction process; the first is the number of viewing cameras, and the second is
the image source density [13]. The other elements effecting the accuracy of
reconstruction are the viewing angle, the width and intensity distribution of the

illuminated domain and the amount of background and spurious light [15].
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Although the performance of MART algorithm in the reconstruction quality in
fewer iterations is better than the other algebraic reconstruction techniques, the long
reconstruction times and large computer memory allocations must be taken into
consideration [11,16].
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3. RESULTS

In this thesis 3D image reconstruction with a ray-tracing algorithm which is
Siddon’s method, evaluating the radiological path of a ray through a 3D object, is
studied in algebraic reconstruction techniques. The projection images are obtained
from different angles [9] and reconstructed by using algebraic reconstruction

technique (ART) and multiplicative algebraic reconstruction technique (MART).

A 3-D phantom that is Shepp-Logan phantom was selected to test the performance
of the reconstruction algorithms of tomosynthesis imaging system. The Shepp-
Logan phantom is a standard test image created by Larry Shepp and Benjamin F.
Logan and serves as the model of a human head in the development and testing of
image reconstruction algorithms. Phantom data sets consist of two ellipsoids with a
low attenuation coefficient (u=1,73472x10""%) at the lower part of the phantom.
Forward projection is done between -25 and +25 degrees with 11 exposures that
happen in each 5 degrees. The projection files were created by forward projecting,
which are used as generated projection images to do the reconstruction using ART

and MART. Equation (3.1) is used to rotate x-ray source and detector coordinates.

cosd 0 sind
R, (0) = 0 1 0 0 = [0, ] (3.2)
—sind 0 cosé@

where @ is the given rotation angle. The time needed to perform a simulation study
depends on the complexity of the chosen sets of source, detector and objects. The
average time ranges in turn are as followed: 36ms for completing one projection ,
5.587 s for displaying 11 projection images, 479ms for reconstruction of the

tomosynthesis system.

Another 3-D phantom was designed more complex than the other to test the
performance of the reconstruction algorithms. Phantom data sets consist of three
objects which are rectangular prism with low attenuation coefficient at the lower part
of the phantom and three ellipsoid in the upper part of the phantom with high
attenuation coefficient. Attenuation coefficients are scaled between 0 and 15. It must
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be taken into account that the small object is obscured with the larger object in the
phantom. Forward projection is done between -25 and +25 degrees with 11

exposures that happen in each 5 degrees. Parameters of phantoms are shown in Table

3.1 below.

Table 3.1: Phantoms parameters.

Parameter Name Value
PHANTOM I PHANTOM II
Number of layers (z-axis) 51 16

Dimensions on x-y axis 64x64 128%128
Dimensions of detector 160x160 160x160
Coordinates of detector (0,0,-100) (0,0,-100)

Coordinates of x-ray (0,0,200) (0,0,200)

source
Objects in phantoms 2 Ellipsoids 3 Rectangular Prisms and

3 Ellipsoids

Figure of Phantom

Firstly, different exponents p = {0.5, 1} are assumed as the p of MART, called as
method I. Secondly, the other method called method Il is defined by multiplied by

maximum of allw, and w, . Parameters of MART are shown in Table 3.2 below.

Table 3.2: MART parameters.

Method No Power (p)
Method | {0.5*w,, 1*w, }
Method I 1/max {w, |i=1,....I, j=1,..,J}

The images of LOI of phantom | and phantom Il are shown in Figure 3.1 and Figure
3.2, respectively to compare each image obtained by implementing the

reconstruction algorithms.
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Figure 3.1: LOI image of phantom I.
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Figure 3.2: LOI image of phantom II.

Root mean square error (RMSE), Contrast to Noise Ratio (CNR) and Mean
Structural SIMilarity (MSSIM) are calculated as in Equation (3.2), (3.3) and (3.6)

and are used to compare each reconstructed image.

v = [L 5~ (32)

where pand g are original and estimated coefficient of attenuation for voxels,

respectively and N is number of pixel.

1S p _ 1w 7
CNR=N"T"_ N=" (3.3)
o(f — 1)

where u,uz, andi are background of original, background of estimated, and

estimated coefficient of attenuation for voxels, respectively and N is number of pixel.
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The root mean square error (RMSE) is generally used for measuring the image
quality. It has a common usage because of being simple for calculating clear physical
meaning. However, RMSE is not an appropriate metric to exhibit the visual quality
of the images [22-24]. Human visual system characteristics are used by several
quality assessment methods. SSIM is one of the well-known measurement methods
of them. It compares local patterns of pixel values of images which are normalized
for amount of contrast and luminance [25].

The SSIM index is shown as:

(uxpy+C1)(Oxy+C2)
(u3+u3+C1)(0f+05+C3)

SSIM(x,y) =

(3.4)

where u, and u, refer to mean of the intensities of signals x and y, respectively

and o, and g,, are the standard deviation of them. C; and C, are given below,
Ci = (KiL)Z, (l = 1,2) (35)

where L is the dynamic range of the pixel values and K;<<1 and K,<<1 are

small constants.

A single quality measurement of the whole image is practically necessary. The

mean SSIM (MSSIM) index is used for evaluating the image quality
MSSIM(X,Y) = %I, SSIM(x; + ;) (3.6)

where X and Y relate to original and reconstructed image, respectively; x; and

y; are the image values at the ith pixel and M is the number of pixels in the image.

3.1 Results of Phantom |

The study was implemented by performing projections and reconstruction tasks to
exhibit reconstructed layer of interest. The reconstructed images of 29" layer of the
phantom are obtained using ART and MART with different power values. The
difference among the results in Figure 3.3 is not clear. For comparison of the images,
RMSE and MSSIM values are calculated. CNR value is not evaluated because of the

complexity of Phantom |I.
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Figure 3.3: Images of the LOI (29" layer of the phantom) upper row from left to
right shows the reconstructed LOI image using MART (p= 0.5,
method 1), using MART (p= 1, method I), and bottom row from left to
right shows using MART (method 11), using ART.

Figure 3.4 shows the comparison of the root mean square error (RMSE) values in
MART with the different parameters and ART after 15 iterations. RMSE value
decreases while the iteration number increases. Although ART has less RMSE value
than the others in the beginning of iterations, MART method | (p=1) and method II

have the minimum RMSE value after 15 iterations.

As shown in Figure 3.5, increasing the number of iterations leads to the increase in
the MSSIM value. During the period MSSIM, the value of ART is almost steady and
high value. MSSIM values of MART with different parameters rapidly increase in
the beginning of the iterations. After 5 iterations, MSSIM value has slight increase.
Especially, MSSIM values of MART method I (p=1) and MART method Il reached
the value obtained by using ART. In addition, as shown in Figure 3.4 and Figure 3.5,
MART method I (p=1) and MART method Il are almost identical.
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Figure 3.4: RMSE value comparison of MART (p=0.5, method 1), (p=1, method 1),
(method I1), and ART for phantom 1.
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Figure 3.5: MSSIM value comparison of MART (p=0.5,method I), (p=1,method 1),
(method I1), and ART for phantom 1.
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3.2 Results of Phantom 11

ART and MART with two methods are implemented in Phantom II. It is done
between -25 and +25 degrees with 11 exposures that happen in each 5 degrees.
Reconstructed images of 11™ layer of the phantom are obtained using ART and
MART with different power values. As shown Figure 3.6, image reconstructed by

using ART is more similar to original than the others.

15

n

Figure 3.6: Images of the LOI (11" layer of the phantom) upper row from left to
right shows the reconstructed LOI image using MART (p= 0.5,
method 1), using MART (p= 1, method 1), and bottom row from left to
right shows using MART (method 1), using ART.

Figure 3.7 shows the comparison of the root mean square error (RMSE) values in
MART with the different parameters and ART after 15 iterations for phantom II.
RMSE value decreases while the iteration number increases. ART has the minimum
RMSE value in all iterations. RMSE values obtained from MART method | (p=1)
and method Il exceed that of MART method | (p=0.5) for the first iteration, but since
then there has been steady decline in RMSE value from MART method | (p=1) and
method I1.
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Figure 3.7: RMSE value comparison of MART (p=0.5,method 1), (p=1,method I),
(method I1), and ART for phantom II.

In Figure 3.8 there has been a gradual increase in CNR value of MART
(p=0.5,method 1) during the period. In 8" iteration, CNR values of MART method |
(p=1) and method Il exceed that of ART. After that, there has been a steady increase
in CNR values of MART method I (p=1) and method I, which seems to continue.

MSSIM value of ART has the highest value over the period as shown Figure 3.9.
MSSIM values obtained from MART method | (p=1) and method Il exceed that of
MART method | (p=0.5) for the first iteration. Therefore, there has been gradual
increase in MSSIM value from MART method | (p=1) and method II.
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Figure 3.8: CNR value comparison of MART (p=0.5,method 1), (p=1,method I),
(method I1), and ART for phantom I1.
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Figure 3.9: MSSIM value comparison of MART (p=0.5,method I), (p=1,method 1),
(method I1), and ART for phantom II.
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3. DISCUSSION

Obtained projection images by using Siddon algorithm were reconstructed into 3D
phantom by using ART and MART with different exponents. In the results of
Phantom I, MART gives better result compared to RMSE value, but ART has better
result than MART algorithm for MSSIM value. Atkinson and Soria (2007) supposed
that the MART method | (p=1) and method 1l algorithms have better reconstruction
quality in fewer iterations when the algorithms were compared with ART. It is really
true that MART quickly converges almost the same result of ART. Although it is
thought that MART requires long times for reconstruction and large memory
allocations on computer, computation times of both algorithms are almost identical,
approximately 13 minutes. In addition, for phantom Il ART has better RMSE and
MSSIM values than MART with different power parameters. On the other hand,
CNR values of the MART method | (p=1) and method 11 are better than that of ART
for Phantom II. The difference between the results of both phantoms may be
explained by using different p in equation of MART, but it is difficult to decide

optimum power parameter for any phantom.

Applying different exponents in MART affected the reconstructed images. MART
method | (p=1) and method Il have better result than the other MART method. The
power parameter can be optimized for any tomosynthesis system. For a better result,
the number of iterations can be increased in the implementation of algorithms. Also,
ART and MART are applied two different designed phantoms. The algorithms can
be applied on more different phantoms to investigate their behaviours. Phantoms
were designed with respect to be considered as breast tissues. Moreover, real breast

phantoms should be used for showing the applicability of algorithms in real.
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4. CONCLUSION

Breast cancer is the most common cancer type among female diseases all over the
world. Early diagnosis and treatment is especially important in reducing the death
rate since the causes of breast cancer are unknown. Tomosynthesis, whichis a
method of 3D imaging, can reduce the tissue overlap effect. Advantages of the digital
tomosynthesis device includes the possibility of reduced breast compression,
improved diagnostic and screening accuracy, 3D lesion localization, and the contrast
enhanced 3D imaging. Also, the coordinates of suspicious tissues are found because
the location of a lesion in a tomosynthesis slice completely finds its true 3D
coordinate within the breast. In this study, Siddon algorithm is used for the projection
of designed 3D phantoms such as breast. Obtained from the projections of phantoms
are reconstructed into ART and MART with diffent power parameters. The out of
focus blur in the reconstructed image using ART and MART was reduced for limited
scan angle tomosynthesis. RMSE, CNR and MSSIM values were used to decide
which method is the best. MART gives better result according to RMSE value for
phantom I. On the other hand, ART has better RMSE and MSSIM values than that of
MART with the best parameters for phantom II. In addition, computation times of
both algorithms are almost identical.
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