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ABSTRACT

In this paper, we propose a new machine learning algorithm
that we named Support Vector Selection and Adaptation
(SVSA). Our aim is to achieve the classification performance
of the nonlinear support vector machines (SVM) by using
only the support vectors of the linear SVM. The proposed
method does not require any type of kernels, and requires
less computation time compared to the nonlinear SVM. The
SVSA algorithm has two steps: selection and adaptation.
In the first step, some of the support vectors obtained from
linear SVM are selected. Then the selected support vectors
are adapted iteratively in the traning algorithm. The pro-
posed method are compared against the linear and nonlinear
SVM on sythetic and real remote sensing data. The results
show that the proposed SVSA algorithm achieves very close
performance to nonlinear SVM without any kernels in less
computation time.

Index Terms— Support Vector Machines, Support Vector
Selection and Adaptation, Classification of Earthquake Im-
ages

1. INTRODUCTION

Linear support vector machine (SVM) is based on determin-
ing an optimum hyperplane that separates the data into two
classes with the maximum margin [1, 2]. Linear SVM typi-
cally have high classification accuracy for linearly separable
data. However, for nonlinearly seperable data linear SVM has
poor performance. For this type of data, nonlinear SVMs are
preferred. Nonlinear SVMs transform input data using a non-
linear kernel followed by regular SVM.

Although nonlinear SVM can achieve higher classifica-
tion performance, it requires high computation time to map
the input to a higher dimensional space by a nonlinear ker-
nel function which is a fully dense matrix [3]. Computational
complexity of nonlinear SVM grows with the cube of the to-
tal number of training data, O(n3), whereas it is O(n2) for

∗Thanks to The Scientific and Technological Research Council of Turkey
(TUBITAK) for funding.

linear SVM. Furthermore, the selection of this nonlinear ker-
nel requires some apriori information about the structure of
the data. In many applications, the structure of the data is not
known. Therefore, kernel selection might be a challenging
task. After the selection of the kernel for nonlinear SVM, the
kernel parameters have to be adjusted for maximum perfor-
mance. The optimal kernel parameters can be found by cross
validation procedures. In summary, the kernel selection and
kernel parameters are critical for the nonlinear SVM perfor-
mance.

Support Vector Selection and Adaptation (SVSA) was in-
troduced to overcome the mentioned drawbacks of nonlin-
ear SVM without a significant performance loss [4]. SVSA
method has some advantages over linear and nonlinear SVM.
It requires less computation time compared to nonlinear SVM
and no kernels are needed. On the nonlinearly separable data,
classification performance of SVSA is very close to nonlinear
SVM.

2. SUPPORT VECTOR SELECTION AND
ADAPTATION

The SVSA method consists of two stages: Selection of sup-
port vectors from the training data and adaptation of the se-
lected support vectors. In the selection stage, some of the sup-
port vectors are eliminated as they are not sufficiently useful
for classification. After the elimination, the remaining sup-
port vectors are adapted and used as reference vectors for
classification. In this way, nonlinear classification is achieved
without need for a kernel.

Let M , N , and J denote the number of training samples,
the number of features, and number of support vectors respec-
tively. Let X = {x1, . . . ,xM} represent the training data
with xi ∈ RN , Y ∈ RM represent the class labels with
yi ∈ {−1,+1}, and S ∈ {s1, . . . , sJ} represent the support
vectors with si ∈ RN . Then, the linear SVM is employed to
obtain the support vectors (S) from the training data (X) as
follows:

S =
{
(sj , ysj

)
∣∣ (sj , ysj

) ∈ X 1 ≤ j ≤ J
}

(1)



where ysj ∈ {−1,+1} is the class label of the jth support
vector.

The training dataset (T ) is updated to exclude the selected
support vectors:

T =
{
(tk, ytk)

∣∣ (tk, ytk) ∈ X\S, k = 1, . . . , N − J
}

(2)

In the selection stage, the labels of the support vectors in the
set S are reassigned with respect to the set, T , by using the
K-Nearest Neighbor (KNN) algorithm [5].

ypsj
=
{
ytl
∣∣ l = arg mink {‖sj − tk‖} , sj ∈ S, tk ∈ T

}
where ypsj

is the predicted class label of the jth support vector.
If the original label and the predicted label of a support vector
are different, then this support vector is eliminated. The re-
maining support vectors are called reference vectors and con-
stitute the set R:

R =
{

(rj , yrj
)
∣∣ (sj , ysj

) ∈ S and ypsj
= ysj

}
(3)

The aim of the selection process is to select the support vec-
tors which best describe the classes in the training set.

The reference vectors are iteratively adapted based on the
training data in a way to increase the distance between neigh-
boring reference vectors with different class labels [6]. The
main idea of the adaptation is that a reference vector causing a
wrong decision should be further away from the current train-
ing vector, and the nearest reference vector with the correct
class should be closer to the current training vector. Adapta-
tion is achieved by using a method that has some similarities
to the Learning Vector Quantization (LVQ) algorithm [7].

Let xj be one of the training samples with label yj . As-
sume that rw(t) is the nearest reference vector to xj with
label yrw . The adaptation is applied as follows:

rw(t + 1) =
{

rw(t)− η(t)(xj − rw(t)) if yj 6= yrw

rw(t) + η(t)(xj − rw(t)) if yj = yrw

(4)
where η(t) is a descending function of time called the learning
rate. It is also adapted in time by

η(t) = η0e
−t/τ (5)

where η0 is the initial value of η and τ is a time constant.
The adaptation is an iterative process and finds the ref-

erence vectors to be used for classification of the data. The
iteration is terminated when the learning rate is less than a
predetermined value.

The adapted reference vectors are used for classification
of the training and testing sets. For this purpose, the 1-NN
method is applied to classify the samples with respect to these
reference vectors. The Euclidian distances from the input vec-
tor to the reference vectors are calculated, and classification
is done based on closest reference vector’s label.

3. EXPERIMENTS WITH SYNTHETIC AND
EARTHQUAKE DATA

In the first experiment, we first generated different types of
synthetic data with different types of nonlinearity in order
to compare the classification performance of the proposed
method with the nonlinear SVM [8].

In the second experiment, post-earthquake Quickbird
satellite image with high resolution was used to identify dam-
age patterns in a small area of Bam, Iran during the 2003
earthquake.

3.1. Experiment 1: Synthetic Data

The synthetic data with four different distributions, each of
which has two features and two classes, were produced (Fig.
1). The synthetic data helps us to analyze the classification
performances of all algorithms on data with different distribu-
tions. Ten subsets of training and testing data for each dataset
are randomly chosen by 40 % and 60 % from whole the data,
respectively.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Feature 1

F
e

a
tu

re
 2

DATASET A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Feature 1
F

e
a

tu
re

 2

DATASET B

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Feature 1

F
e
a
tu

re
 2

DATASET D

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Feature 1

F
e
a
tu

re
 2

DATASET C

Fig. 1. Distributions of Synthetic Data.

All algorithms are used to classify these ten subsets of
data for each data distribution. The average classification ac-
curacy of each method is given in Table 1. In Table 1, A, B, C,
and D are the synthetic data with different distributions that
are shown in Fig. 1, and NSVM-1 and NSVM-2 refer to non-
linear SVM with radial basis kernel function and polynomial
kernel function, respectively.

It can be seen from Table 1 that the classification perfor-
mance of the SVSA is better than the linear SVM except in
data type A. In addition, the SVSA has quite close classifica-
tion performance to nonlinear SVM with radial basis kernel



Table 1. The mean and standard deviation of the classification
performance for the synthetic data. NSVM-1 and NSVM-2
refers to nonlinear SVM with radial basis kernel function and
polynomial kernel function, respectively.

Mean

Method
Types of Data

A B C D
SVM 92.69 85.08 50.37 85.82
SVSA 91.83 97.35 85.43 88.32

NSVM-1 92.43 98.13 86.51 88.85
NSVM-2 92.65 80.45 50.12 85.59

Standard Deviation

Method
Types of Data.

A B C D
SVM 0.55 0.82 4.96 0.66
SVSA 0.64 0.45 1.15 0.89

NSVM-1 0.46 0.35 1.71 0.95
NSVM-2 0.39 0.96 4.96 0.65

function, and it has better classification performance than the
nonlinear SVM with polynomial kernel function. It is also
worthwhile to note that the classification by nonlinear SVM
done with different type of kernels yields the different classi-
fication performances. Moroever, the stability of the SVSA is
quite close to NSVM-1.

From the results obtained, it can be inferred that as the
data have more nonlinear distribution, the SVSA performance
gets closer to nonlinear SVM.

3.2. Experiment 2: Earthquake Data

The post earthquake image is used in select the samples to
train and test the algorithms. These samples are classified into
four classes: Damage, buildings, vegetation and open ground
(Fig. 3).
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Fig. 2. The classification accuracies of all the methods over
the one hundred samples.

One hundred samples are randomly chosen by 40 % and
60 % for training and testing. All the methods were used
to classify four classes over the one hundred samples, and
the overall classification performances of each method were
compared.

The average classification performance of the algorithms
and their standard deviations are shown in Fig. 2. From
this figure, SVSA gives the highest classification performance
compared to both linear and nonlinear SVM. The standard de-
viation of the SVSA algorithm is also the smallest amongst all
classification algorithms.

SVSA is used for classification of whole area of interest
over the post earthqauke image (Fig. 2).

Fig. 3. Post earthquake image for area of interest.
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Fig. 4. The thematic map of the classes obtained by the SVSA
algorithm.

All the classes were detected by using the SVSA method
as in Figure 4. The SVSA took less time in comparison to the
nonlinear SVM during the classification.



4. CONCLUSION

In this paper, we proposed a novel support vector selection
and adaptation method which are reliable for both linearly
separable and nonlinearly separable data. The SVSA method
consists of selection of support vectors which most contribute
to the classification accuracy and adaptation of them based on
the class distributions of the data. The proposed algorithm
is tested on synthetic and remote sensing data. The classifi-
cation performance is compared against linear and nonlinear
SVM algorithms. It is shown that the SVSA method gives
better classification results compared to linear SVM on non-
linearly seperable data, and it gives satisfactory classification
performance in comparison to the nonlinear SVM for both
synthetic and real data.
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[4] G. Taşkın Kaya, O. K. Ersoy, “Support vector selec-
tion and adaptation for classification of remote sensing
images,” Purdue University Technical Report, TR-ECE-
09-2, 2008.

[5] T. Cover and P. Hart, “Nearest neighbor pattern classifi-
cation,” IEEE Transactions on Information Theory, vol.
13(1), pp. 21–27, 1967.
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