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ABSTRACT

This paper investigates the validity of the analytical
framework for bias and variance in kinetic parameter es-
timations. Analytical computation of bias and variance is
compared against Monte Carlo simulations for two different
compartment models at different noise levels. Difference be-
tween the estimated and measured variance increases with the
level of noise and complexity of the compartment model. The
standard deviation of the computed variance also increases
with the increasing noise-level and model complexity. The
difference between the estimated (from the formulation) and
measured variance (from Monte Carlo simulations) is less
than 1.5% for 1-tissue (1T) compartment model and less than
15% for 2-tissue (2T) compartment model at all noise levels.
In addition, the standard deviation in the computed variance
is less than 1% for 1T compartment model and less than 10%
for 2T compartment model at all noise levels. These results
indicate that the proposed framework for the variance in the
kinetic parameter estimations can be used for 1-T and 2-T
compartment models even in the existence of high noise.

Index Terms— dynamic PET imaging, compartment
models, kinetic parameter estimation

1. INTRODUCTION

In compartment models, physically or chemically distinct
states of the tracer are used as separate compartments. The
tracer exchange between these compartments are modelled
using exchange rate coefficients. These coefficients are the
parameters of the compartment model, and these parameters
are generally referred as kinetic parameters. The tracer dy-
namics between the compartments are formulated using first
order differential equations (ODE) whose coefficients are the
kinetic parameters. Kinetic parameters are estimated from
the measured time-activity curves (TAC). The TACs are ex-
tracted from the reconstructed emission images. The kinetic
parameters that can predict the measured TAC are selected as
the model parameter estimates. There are different methods
for the kinetic parameter estimation [1].
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The accuracy and reliability of the estimated kinetic pa-
rameters are very important. Fessler showed that it is possible
to approximate the bias and variance with implicit estimator
functions, and applied this idea to conventional tomographic
reconstruction [2]. In addition, effect of spatial regularization
on bias and variance is investigated. Later, the same idea was
extended to region-of-interest (ROI) analysis of emission to-
mography (PET and SPECT) by Qi et al [3]. The effect of
penalized maximum likelihood (PML) reconstruction on bias
and variance of ROI analysis was investigated [4]. The same
formulation was then adapted for dynamic PET reconstruc-
tion and effects of bias and variance on ROI analysis of dy-
namic PET was investigated with different amounts of spatial
regularization (or penalization for spatial variance) [5].

The bias and variance computation of kinetic parameter
estimations was introduced by Wang et al. [5], and it was
validated by other studies [6]. In [5], the bias and variance
computations for the kinetic parameter estimations were vali-
dated on a single noise level and a single compartment model.
The primary focus was the effects of spatial regularization in
the emission image reconstruction on the bias and variance of
kinetic parameter estimations. In [6], the bias and variance
of estimated parameters were investigated at different noise
levels. However, the range of noise was quite low, and the
regular (physiologically important) kinetic parameters were
not used.

2. COMPARTMENT MODELS

In this paper, two different compartment models (shown in
Figs. 1 and 2) are investigated. These models are commonly
used, and they can model many of the tracers. The models are
generally named using the number of compartments within
tissue (which excludes the plasma compartment) such as N-
tissue compartment model.

2.1. One-Tissue Compartment Model

One-tissue compartment model is the simplest model. In
1-tissue (1T) compartment model, there is only one compart-
ment other than the plasma compartment. Therefore, it can
model tracers, that has a single chemical state inside the tissue
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Fig. 1. 1-tissue compartment model with 2 kinetic parame-
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Fig. 2. 2-tissue compartment model with 4 kinetic parame-
ters.

and no interactions other than the plasma. Typically, blood
flow measurements using water labelled with O isotope
([*50] — H20) can be modelled using 1-tissue compartment
model, as water can only move from the plasma to tissue and
back with no further chemical states or interactions. One-
tissue compartment model is shown in Fig. 1. The tracer
dynamics of 1-tissue compartment model can be described
as:

d
£CT1(t) = k;le(t) — k}QCTl(t) . (1)

2.2. Two-Tissue Compartment Model

For more complicated physiological processes, 2-tissue com-
partment model can be used. In this model, there are two com-
partments that represent the tracer inside the tissue (shown in
Fig. 2). Therefore, this model can be used for tracers that
have two distinct chemical states within the tissue. The 2-
tissue compartment model can be used for the most com-
monly used tracer in PET imaging, 2-deoxy-2-(18F)fluoro-D-
glucose (FDG). This tracer is basically glucose labelled using
18 . and commonly used in oncology imaging.

The ODEs that describe the tracer dynamics for this
model are:

d
&CTl(t) = lep(t) — (kz + kg)CTl(t) + k4CT2(t) 2)

d
ZCra(t) = ksCra () — kaCrat) 3)

2.3. Kinetic Parameter Estimation

The activity measured from PET originates partially from the
plasma compartment and from the compartments within the
tissue:

N
Crotat(t) = foCp(t)+(11,) {Z cm)} Sac . (@)

In this equation, f, denotes the fraction of plasma within the
tissue, S 4 denotes the initial specific activity of the tracer (ie.
efficiency of radioactive labelling), and A denotes the decay
constant for the radioactive isotope.

Lets denote the kinetic parameters of the compartment
model using 6 = [k1, k2, , kp] (0 € RP). Furthermore, let
f(6,t) denote the forward model that models Cotq;(t) with
given 6 and ¢. In practice, the TAC measurements are made
at discrete times. Let x = [z1, 22, - , X ] denote the vector
of TAC measurements that are taken at K discrete times at
t = (t1,t2, -+ ,tK),ie. o = Cropar(tr).

Although there are many kinetic parameter estimation
technique in the literature, the most commonly used method
is to find the set of kinetic parameters that minimizes the
weighted squared error between the measurements (x) and
the model output f(ea t) = [f(gv tl)v f(97 tQ)a T 7f(07 tK)]'
In this method the kinetic parameters are estimated as:

- . _ 2
0= argrenzlgl Ix f(&,t)”w ®)

where  is the estimated kinetic parameter, W is the diagonal
weighting matrix, ||a||%, = a” Wa, and superscript 7" denotes
matrix transpose.

3. COMPUTATION OF VARIANCE IN KINETIC
PARAMETER ESTIMATES

The kinetic parameters of a compartment model are estimated
using (5), which means there is no explicit estimator such as:

0= h(x). (6)

In literature, it has been shown that there is no need to know
h(.) for the computation the bias and variance in kinetic pa-
rameter estimates [2]. In fact, the derivatives of this function
with respect to TAC points are sufficient for this purpose.

3.1. Analytical Computation of Variance for Kinetic Pa-
rameter Estimates

First, computation of the estimation bias will be derived. This
derivation will then be extended to computation of estimation
variance.

For bias derivation, first order Taylor expansion is used for
the implicit function (A(.)) around the correct TAC values:

6 = h(z)
~ h(z") + Vh(z")(z — z*) (7N

where 2! denotes the correct TAC values, and Vh(z") denotes
the value of function derivative at 2*. The higher order terms
are ignored.

If it is assumed that the implicit estimator will give the
correct kinetic parameters for the correct TAC, then (7) be-
comes:

0 — 0" ~ Vh(z")(z — z'). (8)



In some models, the kinetic parameters may not be iden-
tifiable. This means that different sets of kinetic parameters
give the same (or very close) TAC output. If the kinetic pa-
rameters of a model are not identifiable, (7) cannot be written
as (8) as 0 # h(x!).

By taking the expected value of both sides in (7), we ob-
tain:

by &~ Vh(z')b, ©)

where b, and by denote the bias in the TAC and bias in the
kinetic parameter estimates respectively. Similarly, the co-
variance of the kinetic parameter estimates can be computed
as:

Covg ~ Vh(z")Cov, Vh(z)T (10)
where Cov, denotes the covariance matrix of the measured
TAC.

3.2. Estimation of Derivative of Implicit Function (VA(.))

The derivative of the implicit function A (.) is required for the
computation of both bias and variance. Furthermore, it is suf-
ficient to know the derivative only at the correct TAC val-
ues. Derivation of the implicit function (VA(.)) was derived
in [2, 5] as:

Vhizt) = (STwS)~tsTwT | 1)

where S is the sensitivity matrix defined as:

go [00010) 050N  0f(0'.)
| Okt 7 Oke 7 Okp

4. RESULTS FOR VALIDATION OF VARIANCE
COMPUTATION

The framework for analytical computation of variance in ki-
netic parameter estimations is validated using Monte Carlo
simulations. Comkat software library (version 3.2) is used to
estimate the kinetic parameters for the compartment models
[7]. 1

Monte Carlo simulations are performed to validate the
computed variance of kinetic parameter estimates. The ki-
netic parameters used in the 1T and 2T compartment models
are listed in Table 4. Total 110 min. of data is divided into 28
time frames: 4 x 0.5 min., 4 x 2 min., and 20 X 5 min.

For validation of variance computation, Gaussian noise
is added to the correct TAC. The standard deviation of the
Gaussian noise is 0 = [01, 02, ,0k]: 0k = B/ a2k /Aty ,
where oy, is the standard deviation of the Gaussian noise for
activity at time tj, and 3 is a constant that determines the
noise level [8].

'Comkat software library is available at http://comkat.case.edu.

Table 1. Kinetic parameter values that are used the simula-
tions.

1-T model 2-T model
k1 0.1020 0.1020
ko 0.1300 0.1300
ks - 0.0620
k4 - 0.0068

Monte Carlo simulations are performed at 15 different
noise levels from § = 0.1 up to 5 = 1.5 by increments of
0.1. The noise level can be divided into three regions: low-
level noise (8 < 0.5), medium-level noise (0.5 < § < 1.1),
and high-level noise (1.1 < ). Low-level noise is typically
obtained in region-of-interest (ROI) analysis where TACs of
pixels within a uniform tissue are averaged. Medium-level
noise is the case where pixel-level TAC is used to estimate the
kinetic parameters. High-level noise is typically seen when
low (dose) concentration of tracer is used.

For each noise level, 1000 realizations of independent and
identically distributed (iid) Gaussian noise are added to the
correct TAC.

In order to compare the results of the estimated (com-
puted) variance using the framework against the measured
variance from Monte Carlo simulations, the ratio of standard
deviation to the correct value of the kinetic parameter is used.
The ratio of standard deviation to true kinetic parameter for
Monte Carlo simulations is estimated as:

N 7 7
MC \/Nl—l Zi:l(kig) - k;l’)2
Ry = 5 : (12)
p

where k,, denotes the average value for kinetic parameter k,
estimated from all noise realizations. The ratio of standard de-
viation to true kinetic parameters is computed for each noise
realization, and the mean and standard deviation of this ratio
is computed: f ky = / k , where U,(C ) is the standard devi-
ation of kinetic parameter P for noise realization . Mean and
standard deviation of &, are compared to £ at different
noise levels.

Fig. 3 illustrates the results of variance of kinetic pa-
rameter estimations measured from Monte Carlo simulations
(6MC by solid line) and estimated variance (dashed line) for
1T compartment model. In this figure, markers in the dashed
line shows the mean of &y, (57) and the vertical line around
the marker shows its standard deviation (Uﬁk ). Comparisons
for k1 and k- are shown in Fig. 3(a) and Fig. 3(b) respectively.

Fig. 4 compares the results of variance of kinetic pa-
rameter estimations measured from Monte Carlo simulations
(€M by solid line) and estimated variance (dashed line) for
2T compartment model. Similar to 1T compartment model,
the standard deviation of estimated variances increase with
the level of noise. Compared to 1T compartment model, the
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Fig. 3. The estimated and measured variances of kinetic pa-
rameters of 1T model for different noise levels /3.
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Fig. 4. The estimated and measured variances of kinetic pa-
rameters of 2T model for different noise levels /3.

difference between the mean of the estimated variance and
measured variance increase.

5. CONCLUSIONS

Analytical framework developed for the variance of the ki-
netic parameter estimation is validated using 1T compartment
model with 2 parameters and 2T compartment model with 4
parameters on different noise levels.

Difference between the estimated (from the formulation)
and measured variance (from Monte Carlo simulations) is in-
creasing with the level of noise. Similarly, the standard devi-
ation of the computed variance increases with the increasing
noise-level. In addition, the difference between the estimated
and measured variance is higher for 2T compartment model
compared to 1T compartment model.

The difference between the estimated (from the formula-
tion) and measured variance (from Monte Carlo simulations)
is less than 1.5% for 1-tissue (1T) compartment model and
less than 15% for 2-tissue (2T) compartment model at all
noise levels. In addition, the standard deviation in the com-
puted variance is less than 1% for 1T compartment model and
less than 10% for 2T compartment model at all noise levels.
These results indicate that the proposed framework for the
variance in the kinetic parameter estimations can be used for
1-T and 2-T compartment models even in the existence of
high noise.
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