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ABSTRACT

Segmentation of dynamic PET images is an important prepro-
cessing step for kinetic parameter estimation. The time activity
curve (TAC) of individual pixels have very low signal-to-noise ratio
(SNR). Therefore, the kinetic parameters estimated from these indi-
vidual pixel TACs are not accurate, and these estimations may have
very high spatial variance. To alleviate this problem, the pixels with
similar kinetic characteristics are clustered into regions, and TACs
of pixels within each region are averaged to increase the SNR. It
is recently shown that it is better to cluster dynamic PET images in
the sinogram domain than to cluster them in the reconstructed image
domain [1]. In that study, the sinograms are assumed to have Pois-
son distribution. The clusters and TACs of the clusters are then cho-
sen to maximize posterior probability of the measured sinograms.
Although the raw sinogram data is Poisson distributed, the sino-
gram data that is corrected for scatter, randoms, attenuation etc. is
not Poisson distributed anymore. The corrected sinogram data can
be better described using Gaussian distribution. In this paper, we
describe how to cluster dynamic PET images on the sinogram do-
main when the sinograms are Gaussian distributed.

1. INTRODUCTION

Positron emission tomography (PET) images generally have low
signal-to-noise ratio (SNR) and the time activity curve (TAC) ex-
tracted from a single pixel may be very noisy. To improve the
SNR, the TACs obtained from the physiologically similar pixels are
averaged, and a single TAC is obtained for each group of pixels.
Therefore, clustering physiologically similar pixels is an important
preprocessing step. However, this is not a trivial task because of
the low SNR and the partial volume effect of the PET images. In
many PET studies, clustering is performed manually by an opera-
tor. Manual clustering is an operator dependent and time consuming
process. For improved reproducibility and faster clustering various
automatic clustering algorithms are developed.

Ashburner et al. [2] proposed a modified mixture model algo-
rithm. This algorithm computes the likelihood of each pixel TAC
being in a cluster and iteratively maximizes this likelihood. Wong
et al. [3] proposed a distance based clustering algorithm. Weighted
distance between the pixel TACs within each cluster is minimized.
This algorithm is further described in section 3.1. Chen et al. [4]
used an expectation maximization (EM) based clustering algorithm
with Markov random field (MRF) models. Brankov et al. [5] pro-
posed a new distance metric between the pixel TACs and iteratively
minimizes this distance within the pixel TACs of each cluster. Au-
tomatic clustering can also be integrated into kinetic parameter es-
timation algorithms [6]. In some studies, segmentation is used to
estimate the plasma input function from the PET images without
arterial sampling [7, 8].

These clustering algorithms generally use pixel TACs as their
feature vectors, which require reconstructed dynamic PET images.
Sinogram data acquired with PET scanners are reconstructed using
conventional tomographic reconstruction algorithms and TACs are
extracted from these reconstructed images. In this paper, we extend
our Poisson distributed sinogram domain clustering algorithm for
the Gaussian distributed sinograms.

2. UNSUPERVISED CLUSTERING ON PROJECTION
DOMAIN

This section describes the unsupervised clustering algorithm on the
projection domain. We introduce some notation, give some brief in-
formation on the scanner model, and then describe our MAP frame-
work.

Assume that the data is collected at K time frames, and there
are L clusters in the image. Each cluster has an associated TAC
and a set of pixels that belongs to this cluster. For cluster l, let
µl = [µl0, · · · ,µl(K−1)] denote the TAC of the cluster, and let Ωl
denote the set of pixels that belongs to this cluster. Let µ denote
L×K matrix formed as µ = [µ0,µ1, · · · ,µL−1]T where superscript
T denotes the matrix transpose. Let Ω denote the label image, ie.
Ω = {Ω0, · · · ,ΩL−1} .

Given the sinogram measurements, denoted by Y , the MAP es-
timates of µ and Ω are

(µ ,Ω)← argmax p(µ ,Ω|Y ) , (1)

where p(·) denotes the probability.
In the following sections, we formulate p(Y |µ ,Ω) when Y is

Gaussian distributed and then we describe how to estimate (µ,Ω)
iteratively and efficiently.

2.1 Scanner Model
Let Ymk denote the sinogram measurement for projection 0≤m < M
and time frame 0≤ k < K, and let Y be the M×K matrix of indepen-
dently distributed Poisson random variables that form the sinogram
measurements. Furthermore, let A be the forward projection matrix,
with elements Ams. Ams denotes the probability of an emission from
pixel s being detected by the mth detector pair. Then, the expected
number of counts for each measurement at a given time, tk is given
by

E[Ymk|µ ,Ω] =
L−1

∑
l=0

∑
s∈Ωl

Amsµlk . (2)

For simplicity of notation let’s define

Qml(Ω) = ∑
s∈Ωl

Ams , (3)

Qm(Ω) = [Qm0, · · · ,Qm(L−1)] , (4)

and

Q(Ω) =




Q0
...

QM−1


 (5)

Then equation (2) can be compactly expressed in the matrix nota-
tion as

E[Y |µ,Ω] = Q(Ω)µ . (6)

If we assume that the sinogram data is composed of inde-
pendent Poisson distributed measurements, the probability density
function for the measured sinogram is

p(Y |µ,Ω) =
K−1

∏
k=0

M−1

∏
m=0

(Qm(Ω)µ∗k)Ymk e−(Qm(Ω)µ∗k)

Ymk!
(7)
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where µ∗k is the kth column of µ .
However, if the sinogram is corrected for scatter, randoms, at-

tenuation etc., then the sinogram data can better described using
Gaussian distribution. In this case, the probability density function
for the measured sinogram becomes

p(Y |µ ,Ω) =
K−1

∏
k=0

M−1

∏
m=0

1√
2πσmk

exp

{
−1

2πσ2
mk

(Ymk−Qm(Ω)µ∗k)2

}

(8)
where σmk is the standard deviation of Ymk.

2.2 Estimation Framework
A cost function can be formed by negating the logarithm of the
probability density function given in (8) and adding a regularization
function, S(Ω).

C(Y |µ,Ω) =−ln (p(Y |µ ,Ω))+S(Ω) (9)

The regularization function penalizes the local label changes and
therefore it controls the spatial continuity of pixel labels. This type
of regularizaton function was used by Besag [9] for image cluster-
ing.

The regularization function can be obtained from an assumed
prior distribution of the label image. In this work, we model the la-
bel image as a Markov random field (MRF) with Gibbs distribution.
The likelihood of a particular label image, Ω is then

p(Ω) =
1
Z

exp

{
−β ∑

s,r∈N

gs−r(1−δ (ωs,ωr))

}
, (10)

where Z is the normalization constant, N is the set of all spatially
neighboring pixel pairs in Ω, gs−r is the coefficient linking pixels
s and r, β is a constant that controls the spatial smoothness of the
label image, and δ (·, ·) denotes the Kronecker delta function.

In this paper, N is formed by 8-point spatial neighborhood. We
choose the negative logarithm of (10) as our regularization function,
ie.

S(Ω) = β ∑
s,r∈N

gs−r(1−δ (ωs,ωr)) . (11)

Note that with this regularization function, high values of the regu-
larization parameter, β , will correspond to spatially smoother label
images. We can similarly add another regularization function for
the temporal smoothness of the cluster TACs.

The labels and region TACs are assigned to minimize the cost
function given in (9)

Ω,µ ← argminC(Y |Ω,µ) . (12)

2.3 Clustering with Iterative Coordinate Descent Clustering
(CICD)
An iterative coordinate-descent minimization technique is used to
minimize (9). This algorithm is named as ”clustering with iterative
coordinate descent (CICD). A CICD iteration has two steps; first
the cluster TACs are fixed and pixel labels are sequentially updated
to minimize the cost function. When all pixel labels are updated,
the cluster TACs are updated to minimize the cost function. There-
fore, with each CICD iteration, the cost function monotonically de-
creases.

2.3.1 Pixel Label Update

First, all cluster TACs are fixed and pixel labels are updated. Let ωs
denote the current label of pixel s, and we want to change it to be ω̃s
in this iteration so that the change in the cost function is minimized.
If we change the label of pixel s from ωs to ω̃s, the change in the
cost function is

∆C(Y |ωs, ω̃s) = C(Y |ωs)−C(Y |ω̃s) (13)
= ln(p(Y |ω̃s))− ln(p(Y |ωs))

+β ∑
r∈∂ s

gs−r(1−δ (ω̃s,ωr))

where

ln(p(Y |ω̃s)− ln(p(Y |ωs)) =
K−1

∑
k=0

M−1

∑
m=0

Ams(−2(Ymk−Qm(Ω))+Ams(µω̃sk−µωsk))
σ2

mk
(14)

and ∂ s denotes the set of pixels that are neighbors of pixel s. Since
A is a sparse matrix, there will be few nonzero terms in (14).

Then the label of each pixel is updated as

ω̃s ← argmin∆C(Y |ωs, ω̃s) (15)

This minimization is performed by simply searching through all
possible (L) values of w̃s. For efficient implementation, {Qml}L−1

l=0
can be stored in the memory. Whenever a pixel label is updated
{Qml}L−1

l=0 can also be updated as follows

Qmωs ← Qmωs −Ams (16)
Qmω̃s ← Qmω̃s +Ams for m = 0 · · ·M−1 .

2.3.2 Cluster TAC update

Once all the pixel labels are updated, we can update the cluster
TACs. The cluster TACs are also updated as follows to minimize
the cost function given in (9). Since the cost function is quadratic
in terms of µ , there is a closed form expression for the update of
cluster TACs. The first and second derivative of the cost function
with respect to µlk are

d
dµlk

C(Y |µ) =−2
M−1

∑
m=0

Qml(Ymk−Qm(Ω)µ∗k)
σ2

mk
(17)

and
d2

dµlk
2 C(Y |µ) = 2

M−1

∑
m=0

Q2
ml

σ2
mk

. (18)

If we define the gradient and hessian of the cost function as

∇µl =




d
dµl0

C(Y |µ)
d

dµl1
C(Y |µ)

...
d

dµl(K−1)
C(Y |µ)




(19)

∇2
µl

= diag

{
d2

dµl0
2 C(Y |µ),

d2

dµl1
2 C(Y |µ), · · · , d2

dµl(K−1)
2 C(Y |µ)

}
,

(20)
then the new cluster TAC, µ̃l , can be computed as follows

µ̃l = µl − (∇2
µl

)−1∇µl . (21)

3. IMAGE-DOMAIN CLUSTERING ALGORITHMS

Image domain clustering algorithms use TACs extracted from emis-
sion images. The emission images are reconstructed using conven-
tional PET reconstruction algorithms. Let xsk be the reconstructed
emission rate for pixel s at time frame k, and xs = [xs0, · · · ,xs(K−1)]
be the reconstructed time response of pixel s.

3.1 Weighted Least Squares Clustering (WLS)
This algorithm minimizes the weighted square distance between the
pixel TACs and the cluster TACs, ie.

(µ ,Ω)← argmin
µ,Ω

L−1

∑
l=0

∑
s∈Ωl

‖xs−µl‖2
W , (22)
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where W is a weight matrix, and ‖x‖2
W denotes xTWx. In this work

we used a diagonal weighting matrix formed as W = diag{∆tk}K−1
k=0

where ∆tk is the duration of kth time frame.
This algorithm also iteratively updates the pixel labels and clus-

ter TACs. Each iteration consists of two steps. In the first step,
labels of pixels are sequentially updated. The label of a pixel is
updated as follows

ω̃s ← argmin
l
‖xs−µl‖2

W (23)

After all pixel labels are updated, the cluster TACs are updated as
follows to decrease the weighted distance given in (22).

µl =
1
|Ωl | ∑

s∈Ωl

xs , (24)

where |Ωl | denotes the number of pixels that are labeled as l. Each
WLS iteration monotonically decreases the cost function, and it-
erations are repeated until the stopping (convergence) criteria is
reached.

3.2 Gaussian Mixture Model with Expectation Maximization
(GMM-EM)
It can be assumed that the pixel TACs are Gaussian distributed
around the cluster TACs. Similar to other clustering methods pixel
labels and cluster TACs can be updated iteratively.

Let Rl denote the covariance matrix of cluster l, and πl denote
the probability of cluster l. The posterior probability of a pixel being
in cluster l, given its time response is

p(ωs = l|xs,µl) =

πl

(2π)K/2
|Rl |−1/2 exp

{
−1

2
(xs−µl)T R−1

l (xs−µl)
}

(25)

If the TACs and covariance matrices of the clusters are known, we
can assign pixel labels to maximize the posterior, ie.

ωs ← argmin
l

{
1
2
(xs−µl)T R−1

l (xs−µl)+
1
2

log |Rl |− log(πl)
}

(26)
Once the labels are assigned the cluster TACs and covariance

matrices can be updated using the EM algorithm [10].

4. SIMULATIONS

4.1 Phantom Design
Simulation experiments are based on a phantom of a rat’s head. The
phantom and kinetic parameters for the regions in this phantom are
taken from Kamasak et al [11]. Figure 1 shows a schematic rep-
resentation of the phantom and its regions. The phantom has six
regions including the background. The regional TACs are shown in
figure 2. For further details about the phantom see Kamasak et al
[11]. Time frames of emission images are generated using the phan-
tom and the 2-tissue compartment model equations. The plasma
function, CP(t), is generated using the second model in Wong et al
[12]. The blood contribution to the PET activity is assumed to be
zero, and the tracer is assumed to be raclopride labeled with 11C,
which has a decay constant of λ = 0.034 min−1. Total scan time
is 60 min., divided into 18 time frames with 4×0.5 min, 4×2 min,
and 10×5 min. The phantom resolution is 128×128 with each pixel
having dimensions of (1.2 mm)2. The data is not decay-corrected.

The rat phantom image at each time frame is forward projected
into sinograms using a Poisson model for the detected counts. Each
sinogram consists of 180 angles and 200 radial bins per angle. A
triangular point spread function with a 4 mm base width is used in
forward projections.

nonbrain

nonspecific−gray matter

striatum

cortex

white matter

Figure 1: Single-slice rat phantom. Regions of the rat phantom
were derived from a segmented MR image. Different fill patterns
indicate kinetically distinct tissue regions.
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Figure 2: Simulated time-activity curves for 5 distinct tissue regions
in rat brain phantom.

The image-domain clustering algorithms of Section 3 require
that the emission images be reconstructed for each time frame. We
used ICD image reconstruction with a quadratic prior and a regu-
larization parameter for each time frame [13]. The regularization
parameters were chosen to minimize the total mean square error of
the reconstructed emission image frames.

Both the CICD and image-domain clustering algorithms are
stopped when none of the pixels change label during an iteration.

4.2 Performance Evaluation
Clustering algorithms are evaluated based on their performance
of labeling pixels and estimating the cluster TACs. Two seperate
performance measures are used: Misclassification percentage and
RMSE of the cluster TACs.

Misclassification percentage, given in (27), is used to evaluate
the labeling performance of the clustering algorithms. Misclassifi-
cation percentage is computed as

misclassification (%) =
100
N

N

∑
s=1

(1−δ (ωestimated
s ,ωoriginal

s )) .

(27)
In (27), ωestimated

s denotes the label of pixel s assigned by the pro-
posed clustering algorithm, and ωoriginal

s denotes the correct label
of pixel s.

The RMSE, given in (28), is used to evaluate the accuracy of the
cluster TACs estimated by the clustering algorithms. The RMSE of
the TAC estimations is computed as

RMSE =

√√√√ 1
K

L

∑
l=1
‖µestimated

l −µoriginal
l ‖2 . (28)
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(a) Original (b) ICD+WLS

(c) ICD+GMM-EM (d) CICD

Figure 3: Pixel labels assigned by the clustering algorithms.

method misclassification (%)
ICD + WLS 5.41
ICD + GMM 6.23

CICD 0.68

Table 1: Percentage of mislabeled pixels for the clustering algo-
rithms.

In (28), µestimated
l denotes the TAC for cluster l estimated by the

proposed clustering algorithm, and µoriginal
l is the correct TAC for

cluster l.

5. SIMULATION RESULTS

The pixel labels assigned by the image-domain algorithms and the
proposed method, CICD, are shown in figure 3. The images are
clustered into six regions that are shown in figure 1. For these
simulations, the regularization parameter, β , is set to fifty. This
parameter is chosen empirically to minimize the misclassification
percentage.

Visually it can be seen that CICD algorithm results have less
mislabeled pixels than image-domain clustering methods. The per-
centage of mislabeled pixels for these algorithms are computed us-
ing (27) and given in table 1. From this table, it can be seen that
the proposed clustering algorithm has the lowest mislabeled pixel
percentage.

The cluster TACs estimated by the clustering algorithms are
shown in figure 4. The root mean squared error for the cluster TACs
are computed using (28) and listed in table 2. This table shows
that for all regions except the white matter and nonbrain, the pro-
posed algorithm have produced the lowest root mean squared error
(RMSE) between the estimated cluster TACs and the actual cluster
TACs.

The success of the proposed CICD algorithm is due to the re-
duction in the number of estimated parameters. CICD algorithm
assigns N labels and estimates L×K time points for cluster TACs.
However, for image-domain clustering algorithms, the estimation of
additional N×K emission rates for reconstructed emission images
is required.

region WLS GMM-EM CICD
background 0.017 0.022 0.000
nonbrain 0.013 0.007 0.013
nonspecific-gray matter 0.088 0.092 0.022
striatum 0.207 0.239 0.033
cortex 0.059 0.088 0.025
white matter 0.059 0.019 0.838

Table 2: RMSE of the cluster TACs for each region in the rat’s head.

6. CONCLUSION

We proposed a new clustering algorithm that we call clustering with
iterative coordinate descent [1]. CICD clusters the dynamic PET
images directly on the projection domain, and it does not require
the intermediate step of emission reconstruction. The CICD algo-
rithm produces less mislabeled pixels and estimates cluster TACs
generally with lower RMSE than the image-domain clustering al-
gorithms.

In this paper, we extend this algorithm for the case where the
projection data is Gaussian distributed. We obtain similar results to
our CICD algorithm with Poisson distributed sinograms.
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Figure 4: Cluster TACs estimated by the clustering algorithms for each region in the rat head.
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