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COMPARISON OF TWO DIFFERENT RAY TRACING ALGORITHMS 
FOR TOMOSYNTHESIS  

SUMMARY 

Breast cancer is a major health problem worlwide which comes in the first rank as a 
cause of death in women. In breast cancer diagnosis, the transition of mammography 
from screen-film to digital form has made many advantages available. Especially 
with the introduction of new digital flat panel detectors, new algorithms which 
improves image quality became available. The objective of this study is to form a 
new ray tracing algorithm for image reconstruction and compare the reconstructed 
image quality with the results of known ray tracing model of Siddon. Tomographic 
reconstruction is modelled with simultaneous algebraic reconstruction technique 
which is a way of reconstruction in tomosynthesis. The experiments are applied to 
two dimensional images and also the algorithm is designed in the form that it can be 
easily modified to three dimensional detection. The whole project is firstly inspired 
by limited view of angle which is one of the main problems in breast tomosynthesis. 
Thus the experiments also consider the results of limited angle of view projection 
case. All of the algorithms and experiments are programmed and simulated with 
Matlab. Although efficacious results are obtained with both of the algorithms, a 
drawback with the newly developed model is the lack of contrast in low frequencies. 
In addition it is realized that even the ray tracing algorithms are fast, the iterative 
property of algebraic reconstruction technique makes the process ever time 
consuming which does not let to work with images in larger size.   
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TOMOSENTEZ ĐÇĐN ĐKĐ FARKLI IŞIN ĐZLEME ALGORĐTMASININ 

KARŞILAŞTIRILMASI  

ÖZET 

Meme kanseri dünya çapında önemli bir sağlık sorunudur. Kadınlarda ölüm 
nedenleri arasında ilk sırada yer alır. Mamografinin film teknolojisinden sayısal hale 
geçişi meme kanseri teşhisine bir çok avantaj sağlamıştır. Özellikle yeni sayısal 
panel algılayıcıların ortaya çıkması ile görüntü kalitesini artıracak gibi yeni 
algoritmaların uygulanabilmesi mümkün hale gelmiştir. Bu çalışmanın amacı 
görüntü elde etmede yeni bir ışın izleme algoritması oluşturmak ve sonuçlarını 
Siddon’un bilinen ışın izleme modeli ile karşılaştırmaktır. Deneyler iki boyutlu 
görüntüler için  uygulanmıştır ve oluşturulan algoritmalar üç boyutlu görüntülere de 
kolaylıkla uyarlanabilecek şekilde tasarlanmıştır. Tüm bu proje ilk olarak meme 
tomosentezinde temel problemlerden biri olan sınırlı açı projeksiyonundan ilham 
almıştır. Bu nedenle deneyler sınırlı açı projeksiyon koşulunun sonuçlarını da kapsar. 
Tüm algoritmalar ve deneyler Matlab ile programlanmış ve gerçeklenmiştir. Etkili 
sonuçlar elde edilmesine rağmen yeni geliştirilen algoritmanın yüksek frekanslarda 
görüntünün kontrastını azalttığı gözlemlenmiştir.  Aynı zamanda, ışın izleme 
algoritmaları hızlı işlem yapacak şekilde tasarlanmış olmasına rağmen kullanılan 
cebirsel görüntü elde etme algoritmasının tekrarlı yapısının işlemin toplam süresini 
büyük boyutlu görüntüler ile kolay çalışamayacak şekilde uzattığı gözlemlenmiştir.  
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1.  INTRODUCTION 

1.1 Breast Cancer  

Breast cancer named as carcinoma is the most encountered type of cancer among 

women in Turkey, ranking the first place (41.6), followed by colorectal (15.3), 

thyroid (13.5) and uterine-corpus (8.7) cancer (per 100 thousand) in 2008 as shown 

in Table 1.1.  According to the data retrieved from Ministry of Health Department of 

Cancer Control, although breast cancer does not take place in the top ten cancer types 

of men, it is stated in the fourth rank with 17,96 per 100 thousand in the frequent 

cancer types in Turkey.  Also it ranks the 8th with a ratio of 2.1 % within 20 diseases 

which most frequently result in death in females. The rate of age-standardized case 

studies show that women older than the age of 45 has a higher risk of breast cancer, 

constituting 87% of all the age groups [1, 2].  In Yılmaz et al it is reported that in 

2005, 22% of the population of Turkey was above 45 and it is estimated that this 

ratio will rise to 32% in 2030 [3]. Hence, breast cancer will maintain its importance 

in coming years.  World Health Organization provides the statistics of deaths by age, 

gender and cause for the year 2004 shows breast cancer is the first cause of death in 

cancer types for women above 30 in the world. The remarkable point is, while the 

ratio of deaths caused by breast cancer is 31%  in high income countries, it is 69% in 

the rest as estimated in  2004. On the contrary, incidence of breast cancer is not very 

different (44% in high income, 56% lower income) [4]. Therefore, it is obvious that 

the early detection of breast cancer with mammography screening supported by the 

goverment to get the treatment affordable and easy to access decreases mortality. 

This is the reason for the women in western Europe, America and Australia, to 

survive with the breast cancer by the health regulations on this issue starting from 

1970s. With the positive effects of the latest regularities on free breast cancer 

screening in Turkey in 2005, number of mammography examinations performed is 

increased 59%  in between 2007 and 2009 [2]. 
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The early detections by these regulations have made the incidence statistics more 

clear and reduced the cost of treatment. Moreover and most important result is an 

increase in the life quality of women.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 1.1: Incidence of the Most Common 10 Types of Cancer in Women, (per   

100.000, World Standard Population), Turkey, 2006-2008. 
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1.2 Breast Cancer Diagnosis: History and Evolution  

Mammography is one of the most common, reliable and demanding radiological 

techniques in non palpable breast cancer detection. However the breast is one of the 

most radiosensitive parts of the body. Therefore, the detection must be done at the 

lowest radiation dose with the optimal image quality. There are several physical 

factors affecting the image quality of mammogram such as scattered radiation, 

motion artefacts and compression of the breast.  Besides, breast tumors at younger 

ages may not be distinguishable because of the dense structure of the breast tissue 

caused by active milk glands. Image processing algorithms and detector electronics 

are the main research areas to overcome these factors and to obtain better image 

quality [5]. 

History of mammography dates back to 1913 when Albert Salomon, a surgeon, 

reported his studies on using radiography on mastectomy specimens to demonstrate 

the spread of the tumor on auxillary lymph nodes. He also showed that highly 

infiltrating carcinoma could be radiographically distinguished from circumscribed 

carcinoma. After decades, in 1930, Stafford L. Warren, a radiologist’s report on the 

use of stereoscopic technique for in vivo mammography using a device with higher 

technology which had a moving grid to diminish scattered radiation.  

During 1930s, several studies about imaging and differentiating the benign breast 

lesions from carcinoma were reported. These studies suggest that a considerable 

improvement of the roentgen method would be necessary before it can be regarded as 

a superseding diagnostic aid in early stages of breast pathology.  Untill 1940s 

surgeons were active on trials of breast imaging with x-ray which started the first 

ideas of mammography and this stage is considered as the first period in the history 

of developing mammography. 

Oncoming 1950s the physical factors that affect the image contrast came in sight and 

in 1953 Paul Leborgne recognized the importance of breast compression on image 

quality.  Different methods were tried to obtain adequate exposure of thinner and 

thicker tissues in breast. Although roentgen has been known since 1895, there was no 

specific knowledge of the mammography technique which was described as simple 

soft tissue roentgenography of the breast until 1960s.    
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In 1960 Robert L. Egan described a high mili-ampere, low kilo-voltage 

mammographic technique that used industrial film which was easily reproducible. 

In May 1963, mammography is accepted as a useful and reproducible technique 

developed by Egan, which could enable differentiation between benign and 

malignant lesions and could be used to screen for cancer in asymptomatic women at 

a conference supported by Cancer Control Program of the U.S. Public Health 

Service. The years between 1940 and 1970 is known as second stage as the 

radiologists were joined to the process of mammography developing after surgeons.  

In the third stage which ends with the last quarter of the 20th century was the stage of 

fast improvements especially on detector and film side.  Besides radiologists, the 

private companies were joined to the development and it was DuPont who became 

the first company to market a dedicated screen-film mammography system and a 

device for creating a vacuum to hold the screen and film together. Eastman Kodak 

followed with its own screen-film mammography unit and introduced a vacuum 

cassette mammography in 1970’s. In Sweden and USA, mammography devices 

began to be used for public health with mammography screening vans and it showed 

that early detection decreased the mortality rate [6, 7].  

Screen-film mammography (SFM), which uses a flourocent screen that absorbs X-

Rays and converts them to light that is recorded on photographic film, is to be a 

reference for breast imaging quality today. However, the increased development in 

digital X-Ray radiography superseded SFM with digital mammography (DM) which 

avoids limited sensitivity in breast cancer detection. Actually, X-ray examination of 

the breast has been the last area of roentgenology at the transition between analog to 

digital imaging [8].  

The computerization of image acquisition, display and storage, thus enabling better 

communication capabilities are the first advantages of the DM. Within the last 10 

years, comparative studies [9-12] investigated that, DM performs as well as or better 

than SFM and accepted it as a valid alternative. Compared to standard SFM, DM has 

a higher cancer detection rate, a significantly lower recall rate, a significantly higher 

positive predictive value, and uses lower average glandular dose. In Gennaro’s study 

it is stated that average grandular dose is reduced 27% of digital over SFM [13]. The 

dose savings are about 15%  for thin and thick breasts and it is between 30% and 

40% for intermediate thickness. This reduction is admitted by higher efficiency of 
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digital detector which can be exposed at higher energy spectra than SFM and by the 

separation between acquisition and displaying process.  In the  Digital 

Mammographic Imaging Screening Trial conducted by the American College of 

Radiology Imaging Network has confirmed previous results that digital 

mammography was significantly better than conventional film mammography at 

detecting breast cancer in young women, premenopausal and perimenopausal 

women, and women with dense breasts. There was no significant difference in 

diagnostic accuracy between digital and film mammography in the population as a 

whole or in other predefined subgroups. However, digital mammography offers other 

advantages over film mammography , namely, easier access to images and computer-

assisted diagnosis; improved means of transmission, retrieval, and storage of images; 

and the use of a lower average dose of radiation without a compromise in diagnostic 

accuracy [14]. 

SFM has limitations on its efficiency by its dynamic range, low contrast resolution, 

film noise, dose-inefficient scatter reduction, and film processing artifacts [15].  DM 

enables the separation of image acquisition, processing and display and most 

advantageous part is it allows optimization of each of these steps. In addition, 

advanced applications such as computer aided detection/diagnosis (CAD) can be 

easily implemented to the digital mammography [16]. 

 

1.3 Physical Factors That Affects Image Quality in Mammography 

Mammographic image is required to have excellent spatial resolution and contrast 

sensitivity to make microcalcifications and subtle lesions visible. The limitation is 

the radiosensitivity of the breast which is very high and this shackles more dose 

application. There are some physical factors that effect the quality of image in 

mammography. The most important factors are scattered radiation, noise, and 

compression of breast. Image processing algorithms are also important in terms of 

image quality and radiation dose. 

The effect of scattered radiation can be explained with the change in contrast. 

Contrast is defined as the change in the initial x-ray attenuation due to a difference 

structure inside the tissue which is explained by Figure 1.1.  
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                               (a)                                                        (b) 

Figure 1.2: Illustration of contrast derivation (a) in case of no scatter or noise  (b) in 

presence of scattered radiation. 

In Figure 1.1 (a) the effects of scattered radiation is ignored so the detected radiation 

signal is directly the initial one or the attenuated one itself.  In this case the contrast 

is calculated as follows; 

 

                                     2 1 2 1
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− −
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                                        (1) 

where I0 is the initial radiation, I is the total radiation, P is the primary radiation 

signal and S is the uniform scatter intensity. 

 

In Figure 1.1 (b) shows how to determine the contrast in presence of scattered 

radiation. The contrast decreases as it is obvious with the following formula; 
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The scattered radiation cancels in the numerator but adds in the denumerator which 

reduces the contrast of the image. This effect is larger when the object is thicker so 

that the compression became a compulsory process during breast imaging.  

Noise is also an important factor that effects the image quality and may cause the 

fluctuation of the detected x-rays and makes image less reliable. A solution to this 

problem is to increase the number of detected x-rays. It is possible with improved 

detectors which are the receptors with high quantum efficiency with the detectors 

who have slow receptors which needs more quanta to form the image.  

Compression of the breast is another factor incfluencing image quality. Compression 

makes the atomic structures spread out and breast becomes thinner  and more 

uniform in attenuation. Thus superposition of shadows decreases and perceptability 

of sturctures increases. Despite these benefits, compression is unfavorable because it 

is at first uncomfortable for the patient and also it causes misalignments in 3D 

acqusition [17]. 

1.4 Digital Mammography 

 

Physics of digital mammography (DM) shows no difference from SFM but the 

detector part. In Figure 1.2, basic components of mammography system are 

illustrated schematically.  A divergent beam of  X-ray photons are generated from 

the source which has a  focal spot and anode that are situated above the chest wall of 

the patient. The small focal spot size and the large distance from X-ray source to 

breast, mean that it is reasonable to model the source as an infinitesimal spot.  and 

the beam is directed to the compressed breast. This beam is filtered with aliminium 

or equivalent filters to remove low energy photons, thus reduces unnecessary 

exposures to the patient. The beam is focused to the area of interest with the 

collimator. Breast compression is the major source causes patient discomfort but 

brings advantages on image like more uniform breast thickness resulting in better 

film latitude or dynamic range, prevents motion artifacts, reduces scattered radiation 

that improves contrast sensitivity, better visualization of the tissue near the chest wall 
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and reduces radiation dose. A gridding operation is usually applied to the X-ray 

photons leaving the breast before they reach the digital detector to eliminate scattered 

photons [18-20] . 

Various types of detector mechanisms that are being used in todays DM systems can 

be grouped in five different types: flat-panel phosphor system, scanning phosphor 

charge-coupled device (CCD) system, computed radiaography system, selenium flat-

panel system and newly developed photon counting detectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 1.3: Basic components of a digital mammography system. 

 

 

In flat-panel phosphor detector system, x-rays are absorbed by a CsI(T1) phosphor 

layer. An array of photodiodes which is formed on an amorphous silicon plate are 

used to record the light emitted by the phosphor. Each photodiode is connected to 
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thin-film transistor (TFT) that is connected to a series of control lines. Senographe 

2000D (GE Medical Systems) is an example for this class.  This type of detector can 

perform rapid-sequence imaging but has the disadvantages on the cost and the 

difficulty in further reducing detector element.  

In scanning phosphor CCD system, (SenoScan system -Fischer Medical Imaging), x-

ray beam is detected by a slot shaped detector which uses CsI(Tl) phosphor. The 

phosphor is coupled through a fiberoptic plate to a CCD where the light is converted 

into electrical signal. The fiberoptics protects the CCD from radiation damage. With 

the slot shaped detector scatter rejection with high efficiency is possible so grid is not 

required. In addition to its advantages, dose reduction is possible and due to the 

fewer elements it is less expensive. However, it requires a longer total image 

acquisition time-approximately 6 seconds- than that needed by the area detector and 

the x-ray tube heat loading is greater.   

Computed radiography system manufactured by Fuji, employs a photo-stimulable 

phosphor plate, which is very similar in operation to the detectors that have been 

used for computed radiography. With the absorption of  X-rays, electronic charges 

are stored in in the crystalline material of the phosphor. After exposure, the phosphor 

plate is removed and is read out by scanning with a fine helium–neon laser beam. 

The red light from the laser causes emission of the blue light and it is collected with a 

photo-multiplier tube then digitized. Main advantages of the system are small 

detector size and ease of having multiple plate size. The scattering of laser light 

during read-out causes loss of spatial resolution and addition of noise during the low 

collection efficiency of emitted light are the disadvantages.  

Selenium flat-panel system, manifactured by Hologic, has the difference in absorbing 

x-ray with amorphous selenium instead of phosphor. When x-ray photons are 

absorbed electron-hole pairs are formed and electric charge is released from this 

matter. Simple electrode pads collect the charge. The advantages of this system are 

the high modulation transfer function and detective quantum efficiency that can be 

achieved. The need for a high biasing voltage and the high cost of the detector are the 

main problems. 
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Photon counting technology is introduced in 2003 by Sectra Mamea with MicroDose 

Mammography system. In this system, x-ray beam is collimated to equidistant  line 

beams that removes scatter radiation efficiently.  Photon counting Si-strip detectors 

are designed to match the line beams. The strips are like a separate reversed bias 

PIN-diodes, depleted by a bias voltage, and no current  flows unless photons interact 

in the sensor and create electron-hole pairs. Electrons and holes drift to the opposite 

sides of the detector. This drifting motion induces current and the counters which is 

bonded to strips are incremented if the pulse is above a threshold level. The main 

advantage of this counting system is the possibility  to set the electronic threshold to 

eliminate the noise from the electronics [18-22]. 

 

1.4.1  Advanced applications 

Besides the development of new detector technologies, there are ongoing 

developments on novel applications like tomosynthesis , contrast enhanced 

mammography,  telemammography and CAD which are not possible with SFM.  

Contrast enhanced mammography is a technique that identifies breast lesions by 

identifying abnormal blood vessel formations (angiogenesis) around carcinoma. DM 

is performed after iodinated contrast agent is injected intervenously.  A subtraction 

procedure is applied to the image to get enhanced structures from the surrounding 

tissue [16]. 

The technology of CAD uses computer software to help the radiologist in the 

interpretation of mammographic abnormalities. CAD is commercially used both in 

SFM and DM. The digitization of the image is not required in DM before the 

application of CAD procedure, makes it faster than SFM.  

Telemammography is the transmission of highquality mammographic images in 

digital form to different geographical locations over a telecommunication system 

with variety of methods like high-speed internet, satellite, or wireless links. 

Telemammography enables consultations among clinicians and is a chance for 

patients in underserved areas to have their mammograms interpreted by experts.  

Tomosynthesis, which will be deeply demonstrated in the next section, is a technique 

for producing slice images using methods originated from conventional tomography. 

Tomosynthesis is particularly important as it improves the detection and 

characterization of lesions in overlying dense tissue in breasts  [14, 16, 20].  
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1.5 Tomosynthesis 

After the advent of computed tomography (CT) in 1970s, some of the limitations of  

two-dimensional (2D) radiography are overcome.  The ability to depth localization, 

improved conspicuity and improved contrast of the structures of interest were the 

main facilities of this three-dimensional (3D) imaging technique. The operating 

principle of the tomographic imaging is, as illustrated in Figure 1.3, to obtain the 

image plane of interest by moving x-ray tube above the patient and the detector on 

opposite side, beneath the patient. The image plane is focused by being located at 

fulcrum of this motion.  All other planes other than the plane of interest are acquired 

blurry. This blur from other planes obscures detail in the plane of interest and limits 

the contrast enhancement of the slices. Tomography was accepted to be 

advantageous for diagnostic imaging allowing a 3D orientation of anatomy to be 

understood and  to bring the image plane of interest out from the structures in other 

planes which obstruct clear detection.  However, the acquisition of only one slice at 

one exposure time generated the problem of the excessive patient dose and time 

requirement to image entire volume of data. In addition, the blurring problem 

required complex mechanical motions to adjust the fulcrum like linear, circular and 

even hypocyclodial motion.  Another limitation, collecting image projections over 

360o is not always possible, on account of organ location with C-arm systems, which 

are restricted to 205o rotation.  Limited view methods, such as digital tomosynthesis 

are introduced to overcome these limitations of 3D imaging of conventional 

tomography [22-24]. 

Tomosynthesis is refered to as limited angle CT, a 3D imaging technique which 

allows retrospective reconstruction of  an arbitrary number of tomographic planes in 

a limited angle of view with reduced cost and dose [24, 25]. The system architecture 

is not very different from CT but only the reconstruction methods. X-ray tube moves 

across an arc and enables multiple 2D projections within a limited angle at varying 

orientations of x-ray tube, patient and detector. Generally it is performed using 10 to 

25 projections over an angle of 15o to 50o. The volumetric image is reconstructed 

from the 2D projections using algorithms like “shift and add”. Enhancement of the 

information contained in each plane of interest is provided by varying the amount of 
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shifting. The reconstruction algorithms of tomosynthesis combines the images 

enabling the image information  to be additive, that makes tomosynthesis a low-dose 

imaging technique [24-26]. Tomosynthesis was first introduced by Grant in 1972 

based on the work of conventional tomography [27].  Despite the known advantages 

mentioned above, it became possible to implement the system practically after the 

advent of flat-panel detectors which have large-area, high frame rate and exceptional 

detective quantum efficiency (DQE) and provide low electronic noise and fast-read 

out times thus  enabling rapid acquisition of a large number of low-dose projection 

images, in the last decade.  Research and clinical interest on digital tomosynthesis is 

renewed with the development of various digital detectors [24-25]. 

Tomosynthesis is accepted as a way to decrease mammographic false negatives 

caused by overlapping normal breast tissue obscuring cancers. It allows to improve 

the detection of subtle lesions, and permits the characterization of masses and of 

density asymmetry and the accurate measurement of breast lesion by a better 

delineation of the lesion borders. In addition,  false positives resulting from 

overlapping tissue apear similar to breast lesions may also be reduced. Therefore 

tomosynthesis has the potential to increase sensitivity and specificity with improved 

visibility and improve early breast cancer detection in women with dense breasts  

[22,26,28].  
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                        Figure 1.4: Tomographic geometry 

 

 

 

 

 

 

 

 

                  Figure 1.5: Principle of shift and add tomosynthesis 
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1.5.1 Reconstruction Algorithms used in Tomosynthesis  

Several reconstruction algorithms are being used in tomosynthesis to overcome the 

problems resulted from limited angle of view or deblurring from overlying tissues. 

The main parts of all the algorithms described below depends on geometric 

behaviour of the x-ray system. The earliest and mostly common reconstruction 

method in tomosynthesis is known as shift and add (SAA). It is obvious that in a 

system which the x-ray source and the detector moves synchronously in a parallel 

plane, on detected images, the magnification of the objects at different locations at z-

direction will depend only on their height above the detector. SAA is an algorithm 

uses this fact to bring sharp focus in plane of interest, which generates a set of slice 

images by summation of the projections acquired by different positions of x-ray 

source and detector with predefined amount of shifting as illustrated in Figure 1.4. 

The shifting must be correctly performed to avoid missalignment. Although the 

mechanical systems allows right shifting, the artifacts originated from patient motion 

effects the alignment. In breast tomosynthesis it is avoided by breast compression 

supports. In image reconstruction of tomosynthesis two main challenging problems 

are at issue: superimposition induced blury images and lack of samples resulted from 

limited view of angles. SAA is a simple algorithm but not sufficient to perform full 

contrast images. The focal plane includes blurred out objects from other planes with 

superimposition. 

In this context two deblurring reconstruction algorithms are presented that are matrix 

inversion tomosynthesis (MITS) and filtered backprojection (FB).  Apart from the 

summation and fourier techniques, algebraic methods have particularly important 

role in limited view of angle tomography. The drawback of FB requires sufficient 

projection data with low noise level to recover the 3D images. In this manner, 

iterative reconstruction techniques, like simultaneous algebraic reconstruction 

technique (SART ), are superior to FB with noise removal and less data requirement. 

Nonlinear reqularization methods are also implementable to these techniques as 

comparable to the filters in FB [20].    
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Unblurred objects are obtained solving  matrix algebra by predefining a blurring 

function for all planes except the tomosynthesized one. It performs well in imaging 

mid and high spatial frequency components of the image. FB is simply performed as 

smearing back the detected line integral of attenuation coefficients at each pixel.  It is 

repeated for every projection angle resulting a simple backprojection of the image. 

Due to the limited number of samples of the projected data, a ramp filter is needed to 

be applied to the resulted image. FB has better noise reduction at low frequencies 

than MITS [24].  

Another approach based on reconstruction in fourier domain is ectomography, a 

method of acquiring slices by summing 2D projections of the object filtered 

orthogonally by low pass and high pass filters. In a circular tomographic geometry, 

each projection image is high pass filtered and summed. The signal strength of the 

structures projected along a circular path are weakend enabling deblurring. A low 

pass filter is also applied in orthogonal dimensions with the high pass filter to each 

projection image to get more uniform impulse response in the z direction and to 

make the image plane of interest appear unfiltered [24]. 

 

1.5.1.1 Algebraic Reconstruction Techniques 
 

Algebraic reconstruction techniques (ART) are accepted as an alternative solution to 

the limited angle reconstruction problem where it is not possible to acquire sufficient 

number of or uniformly distributed projections to form the whole 3D image.  

The formulation of ART is based on a grid geometry with N cells as illustrated in 

Figure 1.4. The term ray-sum takes the place of the line integral in transform-based 

methods. The ray-sum, ip , measured with the ith ray, is expressed as; 
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=∑            
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1, 2,...,
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=

=
         (3) 
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where 
i jw  is the weighting parameter which stands for the influence of jth cell on  

the ith ray line integral, if  is the constant intensity value of the jth cell and M is the 

total number of rays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             

 

                                     Figure 1.6: The square grid used in algebraic methods 
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Conventional matrix inversion methods mentioned above, would be usefull to solve 

Equation (3) if M and N were small.  Practical image grid size and required number 

of rays makes 
i jw a large matrix inconvenient to be solved directly with matrix 

inversion or least squares method because of complex computation. Iterative 

methods are introduced for large values of N and M. Expanded form of the 

Equation(3) can be written as, 

                                                                     

                                                                                         (4) 

 

 

 

If there is a uniqe solution to the Equation (4) then the intersections of the planes to 

be defined by these equations are a single point which gives the solution itself. This 

is known as the Kaczmarz method which forms the basis of ART.  

The implementation procedure starts with an initial guess, (0)f
�

, at the solution and 

(0)f
�

 is projected on the first plane in Equation (4) giving (1)f
�

. Then (1)f
�

 is projected 

on the second plane giving (2)f
�

, thus the initial guess is updated so on. This 

procedure can be formulated as projection of  ( 1)if −
�

 on ith plane yields ( )if
�

; 
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i M

=
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Equation (5) states that the previous intensity values of the estimated image, ( 1)i

jf
− , 

are updated by adding an error parameter ( )i
jf∆  which is the difference between 

measured ray-sum, ip , and the computed ray-sum, ( 1)

1

.
N

i

k ik

k

f w−

=
∑ ,  normalized by  

2

1

N

ik

k

w
=
∑ . This process is repeated untill all the projections are considered and all the 

pixel values converge to a solution [29, 30]. 

Different approximations can be proposed to define weighting parameters.  The 

inconsistencies of these approximations can cause computational noise. One solution 

to suffer with the noise is multiplying the error with a relaxation parameter less than 

one, thus the intensity values of the pixels are updated by 
( ). i

jfα ∆ . Relaxation 

parameter can be a constant or may decrease depending on the increase in the 

number of iterations. 

Better image quality can be achieved if the update step is not applied ray by ray but 

after the error parameter is calculated for each ray. This method is called 

simultaneous iterative reconstruction technique (SIRT) which has a slower 

convergence than basic ART.  

Superior results are obtained if the average of the error parameters generated by each 

ray after one iteration are applied to a pixel.  This method is called simultaneous 

algebraic reconstruction technique (SART) and is driven as follows: for one iteration, 

normalized error of the first ray is calculated and stored in a correction array.  The 

normalized error of the second ray is added to the correction array and after this 

procedure is carried out for all rays, the correction array is added to the image array. 

This method has the rapid convergence of ART and performs well in noise reduction 

like in SIRT. The reconstruction obtained with this method is shown in Equation (6) ; 
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1.6 Hypothesis 

In breast tomography the main constraint is the maximum radiation dose that can be 

given to the breast tissue which leads to a challenge in obtaining an accurate 

reconstruction in a limited angle of view. Tomosynthesis is a way to overcome this 

limitation. Algebraic reconstruction techniques are frequently used in tomosynthesis 

because it is easy to implement and incorporate prior knowledge in. The original 

purpose of this thesis is to develop an efficient ray tracing algorithm for image 

reconstruction from parallel beam projections of the 2D and to compare it with the 

known Siddon’s algorithm with respect to the ray-sum theory of ART: Siddon’s 

algorithm [31] which is a time efficient evolution of the radiological path and 

Gaussian algorithm is developed which enables to squeeze the image in direction of 

exposure and depicted as an alternative for Siddon.  Each implementation is inserted 

in the algorithm of SART that is directly used to reconstruct images from projections 

acquired using analytical phantoms and the coding is performed in Matlab.   
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2.  BACKGROUND 

2.1 Ray Tracing Algorithms 

The idea of ray tracing algorithms is to determine the indices of the voxels which are 

intersected by a given ray path that goes through the image array. This information is 

necessary to define exact weighting parameters for reconstruction of images. Several 

difficulties are associated with approximation of weighting parameters especially 

when enormous number of voxels and rays are in consideration. It seems very simple 

in geometric basis however it requires a significant computing time scales with the 

total number of voxels.  

In 1985, Siddon proposed a fast and accurate algorithm to determine the exact 

radiological path. The computing time depends not on the number of voxels but 

number of the planes of the 3D image array. Therefore the algorithm is efficient and 

particularly straightforward to implement in computer code.  It is preferred in many 

studies in different fields of medical imaging [31,32].  

Another geometric approach in ray tracing is Gaussian model that will be considered 

here. In this method weighting parameters are accepted to be Gaussian parameters 

computed by the distance of the ray line to the center points of the pixels in 2D 

projection images. This method gives oppourtunity to squeeze the image in exposure 

direction with changing the parameter which controls the width in the Gaussian 

function.  

2.1.1 Siddon’s Algorithm 

If Equation (3) is to be redefined, weighting parameter, 
ijw , will be replaced by the 

length parameter, ( , , )l i j k , which is a part of a certain ray-line intersected by a 

voxel. Therefore the ray-sum, in other words the radiological path, is defined by; 

                                                                                                  

                                   ( , , ) ( , , )
i j k

d l i j k p i j k=∑∑∑                                        (7) 

 

where ( , , )p i j k is the voxel density (attenuation coefficient).  
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Evaluation of Equation (7) requires an algorithm that scales with the number of terms 

in the sums which is the number of voxels in 3D space. In this algorithm, the knack 

is that the voxels are thought to be intersection volumes of equidistant parallel 

planes. The intersection points of the ray with the planes are calculated smoothly 

with the knowledge of the intersection point of the ray with the first plane and 

generating other intersection points of that ray with other planes by recursion. The 

2D version of the method is illustrated in Figure 2.1 where the pixels are considered 

as the intersection areas of equally spaced parallel planes.  

                        

 

                   

                    Figure 2.1: Geometric illustration of a ray on image grid  

 

Figure 2.1 shows that intersection points are the union of two sets which includes the 

intersections of the ray with the horizontal lines (open circles) and one set with the 

vertical lines (closed circles). It is clearly seen that the intersections with the pixels 

are a subset of intersections with the lines.  
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In Siddon’s algorithm, a ray from point 1(P1) located on 1 1 1( , , )x y z  to point 2 (P2) 

located on 2 2 2( , , )x y z is defined linearly by; 

 

                             
1 2 1

1 2 1

1 2 1

( ) ( ),

( ) ( ),

( ) ( ),

X X X X

Y Y Y Y

Z Z Z Z

α α

α α

α α

= + −

= + −

= + −

                                          (8) 

 

Where the parameter α is zero at point 1 and unity at point 2. Each intersection has 

an α parameter in the range of min max( , )α α .  If point 1 or point 2 lie on the image 

array the first and last intersection points will take the parameters minα and maxα  

respectively.  

 

For a ( 1, 1, 1)Nx Ny Nz− − − voxels image array, the orthogonal sets of equidistant 

parallel planes are written as; 
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         (9) 

 

where xd , 
yd  and zd are the distances between planes which are the size of the voxel. 

The  maximum and minimum values for the α  parameter are acquired with 

intersecting the ray with the sides of the image array. The parametric values of the 

sides are calculated from Equations (8) and (9) as follows;  

If ( 2 1) 0,X X− ≠   

                       

1 2 1

1 2 1

(1) [ (1) ] /( ),

( ) [ ( ) ] /( ),

x plane

x x plane x

X X X X

N X N X X X

α

α

= − −

= − −
                                 (10) 
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Expressions are similar for y and z directions. Depending on the location of the point 

1 and 2, values for min max( , )α α are computed by merging the sets as in Equation (11), 

 

     

min

max

max{0, min[ ( )],min[ (1), ( )], min[ (1), ( )]}

min{1,max[ ( )], max[ (1), ( )],max[ (1), ( )]}

x x y y y z z z

x x y y y z z z

N N N

N N N

α α α α α α

α α α α α α

=

=
         (11) 

 

If maxα is less than or equal to minα   then it is obvious that the ray does not intersect 

the image array.  The range of indices min max min max( , ), ( , )i i j j and min max( , )k k  

corresponding to the intersected planes which have parametric values in the range 

min max( , )α α  are achieved as follows; 

 

If 2 1( ) 0,X X− ≥  

   

If                                                                                                                            (12) 

 

 

 

with smilar equations hold for jmax, jmin, kmin and kmax. 

The sets of parametric values which represent the intersections of the ray with all the 

planes can be written including the indice data using the notation for{ }xα  and with 

similar notations for { },{ }y zα α ; 

 

                            min max{ } { ( ),..., ( )};x x xi iα α α= 2 1( ) 0X X− >                                 (13) 
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The definite intersection points are found by merging the sets { }xα ,{ }yα  

and{ }zα into one set considering the ending points of the ray can be inside the array, 

therefore the maximum and minimum values are also added to the merged set. 

 

           min max{ } { , [{ },{ },{ }, },x y zmergeα α α α α α=                  (14) 

                  { (0),..., ( )}nα α=
 

 

The parameter set consists of n+1 elements where n is given as ; 

 

                            

   max min max max max max( 1) ( 1) ( 1) 1n i i j j k k= − + + − + + − + +           (15) 

 

The intersection length, which means the weighting factor, can be defined in terms of 

the difference between the two adjacent terms in the set of α parameters. For two 

intersections m and m-1, the intersection length of the voxel is defined as; 

              12( ) [ ( ) ( 1)]l m d m mα α= − −  ,               ( 1,..., )m n=                           (16) 

where 12d is the total length of the ray from point 1 to point 2.  

 

                     2 2 2 1/ 2
12 2 1 2 1 2 1[( ) ( ) ( ) ]d X X Y Y Z Z= − + − + −                                (17) 

The mid point of the two adjacent intersections, m and m-1,  define the voxel indices 

[ ( ), ( ), ( )]i m j m k m  as in the following equation; 
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where midα  is given by   

                    [ ( ) ( 1)] / 2mid m mα α α= + −                                      (19) 

 

The radiological path in Equation 6 can be finally written as;  

 

                   
1
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=∑                                 (20) 
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1
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m
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=
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where  ( , , )p i j k  defines the voxel intensity. The main advantage of this algorithm is 

its computation time that is scaled with the number of the planes (3N) instead of 

number of voxels (N3) [31].
 

 

2.1.2 Gaussian Algorithm 

A new ray tracing algorithm is developed to solve the problem of limited data. The 

squared pixels are thought to be Gaussian circles which enable squeezing in the 

direction of projection and also smoother projections can be obtained as in Figure 

2.2.  The algorithm proceeds as follows: The object is assumed to lie on a M N×  

grid same as in previous algorithm. The weighting parameter used to calculate 

Equation (3) is now defined as Gaussian Parameter (GP) which is determined as a 

result of a Gaussian function rather than the intersection length and formed as 

follows, 
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Where   
1

2
A

σ π
= , ix and iy are the coordinates of the center point of the pixel at 

(i,j) and σ is a user defined parameter which controls the standart deviation  of the 

Gaussian curve.  In words, Equation (21) means that the GP of a pixel with the 

indices i and j, 
ijp , is originated from the idea that the square shaped pixels are 

thought as Gaussian circles with the same center points as in the squared grid. The 

distance between the center point of the pixel to the ray line is used to calculate the 

GP.    

If the ray-sum calculation is thought to be in y-direction then the y-directional 

parameters can be ignored because they end with the result of 1. Then Equation (21) 

can be modified as; 

 

                                                  

2

22
cld

ijp Ae σ
−

=                                 (22) 

 

where  cld means the orthogonal distance between the center of the pixel to the ray 

line.  The procedure goes with the calculation of the ray-sums as follows, 

                                          

2

22
cld

k

ij

l Ae σ
−

=∑
                                      (23) 

 

where k defines the number of the ray. 
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                                Figure 2.2: Smoothing with Gaussian form. 
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             Figure 2.3: Geometric representation of the Gaussian algorithm. 
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3.  METHODOLOGY 

Inspired by tomosynthesis, in this thesis 2D image reconstruction with two ray 

tracing algorithms is studied in an iterative reconstruction framework. The first step 

of this study is the implementation part of the two ray-tracing algorithms. Firstly, 

Siddon’s algorithm introduced above is slightly modified for 2D images by 

cancelling the parameters belong to z-direction. Intersection lengths obtained from 

Equation 16 are calculated for each ray at each angular position using a rotation 

matrix, R, to determine the new locations of P1 and P2.  

 

                               
cos( )  -sin( ) 

 R = 
sin( )  cos( )

θ θ

θ θ

 
 
 
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1 1

2 2

_

_

new l l
R

new l l

   
= ×   

                                                       (25) 

 

In Equation (24) θ  is the rotation angle, and in Equation (25) l1 and l2 are the 

locations of initial and final points of the ray respectively. The new locations after 

rotation are defined as new_ l1 and new_ l2.  

The intersection lengths of one ray with the grid pixels are exactly derived and 

located in a matrix of the grid size (length array) . The projections are obtained by 

Equation (1) by replacing the weigthing function with the length array.  
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The second algorithm, the Gaussian method, is implemented in the same manner by a 

squeezing process which is illustrated in Figure 3.1. The parallel X-ray beam is 

squeezed in the direction of the projection with a scale factor applied to the initial 

and final points of the rays such as; 

                                   
P1 P1

P2 P2

y y

y y
scale

   
= ×   

   
                                               (26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                      

 

 

                               Figure 3.1: Squeezing process  
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                                 Figure 3.2: Flow chart of the SART algorithm 
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The distance between the pixel center and the ray line is also calculated including the 

same scale factor so that it is now no longer orthogonal. The scale factor is a user 

defined value between (0-1). A GP array is formed like the length array in Siddon’s 

after the GPs are calculated for each ray an each position.  

The third and most important step is to set up an algorithm for iterative 

reconstruction. SART is adapted to the results of these ray-tracing methods and the 

procedure takes the following steps also it is stated in a flow chart in Figure 3.2.  

Step 1: Estimate an initial guess of the image Xɶ . 

Step 2: Apply forward projection according to the ray-sum theory in Equation(3)    

             using weighting parameters obtained from the ray-tracing methods.  

Step 3: Update the image intensities with a correction array X∆ which is drived with           

             a backward projection using  SART.  

 

                             
( , )

,

( , )[ ( , ) / ]
( , )

( , )
r

r c

r c

e r c LA i j d
X i j

LA i j
∆ =

∑
                          (27) 

             where ( , )e r c is the error between the projection of the estimated image and   

             the projection of the phantom for r’th ray at c’th angle. ( , ) / rLA i j d  gives the  

             proportion of the intersection length of a ray with the pixel, to the total  

             length of the intersection of the ray with the image grid. ( , )
,

( , )r c

r c

LA i j∑   

             refers to the all intersection lengths of all rays that passes through one pixel.  

Step 4: Impose the positivity control to the updated image such as ; 

                                 
( , )

( , )
0

X i j
X i j


= 


ɶ
ɶ ,                                        (28)       

Steps 2 to 4 is repetated untill the convergence is achived. The stopping criteria of 

the iterations is user defined and it is stated as a threshold value, ε , on the flow 

chart. The stopping criteria is based on the error between forward projections of the 

phantom and the estimated image and formulated as follows; 

 

( , ) 0X i j ≥ɶ

( , ) 0X i j <ɶ
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1k k

k

SSE SSE

SSE
ε

+ −
>                                        (29) 

where SSE  refers to the sum of the squared error matrix.  

In addition, a frame application as a substep to Step 4 can be added. Frame 

application means to set the definite apriori intensity values automatically to the 

estimated image at each step so that the reconstructed image appears to be less noisy. 

For instance, if a geometric boundary can be set to the object inside the grid as a field 

of interest, like in Figure 3.3, the pixels outside of this boundary gives zero intensity. 

Thus, there is no need to force the program to recompute these values. Frame 

application takes place in the flow chart as in Figure 3.4. 

 

 

 

 

 

 

 

 

                                              

 

 

 

                                     

 

 

                                           Figure 3.3: Frame application 
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             Figure 3.4  : Flow chart of the SART algorithm with frame application 
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3.1 Results  

For numerical experiments a 2D phantom named ploopgen and 2D Shepp Logan 

phantom of dimension 64 64× is chosen. The projections considering the noise-free 

case are obtained with Siddon’s and Gaussian algorithm, programming in Matlab. 

 

 

 

 

 

 

 

 

               

 

 

 

                            Figure 3.5: Convergence of the two ray tracing algoritm        

 

 



  
35

Firstly in Figure 3.3, Shepp Logan phantom is projected without angle limitation 

with 50 projections -100 rays by two of the algorithms.  It is shown that both of the 

algorithms are converging with SART with an SSE value of 0.001. 

The difference of smoothing between Siddon’s algorithm and newly developed 

Gaussian algorithm can be observed from the projections in Figure 3.6 and the 

following error chart. It is verified that both of the algorithms are working properly 

for full view of angle. Gaussian approach gives smoother results, however it is easily 

detectable by the frequency-based structure of the ploopgen phantom that the 

constrast in high frequencies are lower than the results of Siddon’s algorithm.  

The reconstruction success is determined by root mean square values of the error 

between the phantom and the reconstructed images as shown in Equation (30).  

                          
2(Phantom-Reconstructed Image)

_
RMSE

image size
=∑                (30) 

 

 

 

 

 

 

 

 

       Figure 3.6: Comparison of the two ray tracing algorithms for full angle of view.        
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Table 3.1: RMSE Comparison of the two ray tracing algorithms for full angle of 

view.        

Secondly, Figure 3.7 has the the results of Siddon’s Algorithm for four different 

numbrer of projections and four different angle limitation. Figure 3.8 shows the 

results of Gaussian algorithm for the same conditions.  The crux is reconstructing 

sufficient quality images from limited angle of view projections. It is clear to see that 

the image starts to be detectable at 90 degrees of limitation with 50 projections.  

Third result is the frame application effects. When frame application is performed in 

2D 64x64 Shepp-Logan phantom, the results of Gaussian algorithm with full view 

(π ) show that the frame applied image is more close to the phantom.  

 

                     Figure 3.9: Frame application results for Gaussian algorithm 
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                                          Figure 3.7:  Results of the Siddon Algorithm 
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                               Figure 3.8: Results of the Gaussian Algorithm 
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Table 3.2: Comparison of RMSE values for Siddon and Gaussian algorithms 
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4.  CONCLUSION AND RECOMMENDATIONS 

Breast cancer will keep its importance as women population is getting older. The 

only way to survive with this disease is early detection. The special structure of  the 

breast tissue limits the researchers to get better images for detecting the tumor on 

early stage. Tomosynthesis is has became popular on breast cancer diagnosis since it 

enables to focus on the plane of interest and has advantages on image quality with 

less radiation dose. One type of the reconstruction methods that is frequently used in 

tomosynthesis is the algebraic reconstruction techniques which is used form in this 

thesis.  The major purpose of this research was to develop a new ray tracing 

algorithm and compare it with the known Siddon’s algorithm to be used in 

tomosynthesis. Both of the algorithms could be simulated and it is shown that they 

both converge for higher than 90 degrees range of projections. Gaussian algorithm is 

expected to give smoother results. Although our expectations come through, it is 

observed that this method loose contrast in higher frequencies compared with 

Siddon’s algorithm.  

Due to the iterative property of algebraic reconstruction technique and the computers 

capabilities which is used, the experiments took more than ten minutes each. 

During this study digital mammography, tomosynthesis and image quality principles 

are analysed to explicate the results. The future work is to be on the reconstruction 

algorithm itself to improve limited view of angle projections by methods like 

compressed sensing.  
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