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Abstract—Classification of nonlinearly separable data by non-
linear support vector machines (SVMs) is often a difficult task,
particularly due to the necessity of choosing a convenient kernel
type. Moreover, in order to get the optimum classification per-
formance with the nonlinear SVM, a kernel and its parameters
should be determined in advance. In this paper, we propose a
new classification method called support vector selection and
adaptation (SVSA) which is applicable to both linearly and non-
linearly separable data without choosing any kernel type. The
method consists of two steps: selection and adaptation. In the
selection step, first, the support vectors are obtained by a linear
SVM. Then, these support vectors are classified by using the
K-nearest neighbor method, and some of them are rejected if they
are misclassified. In the adaptation step, the remaining support
vectors are iteratively adapted with respect to the training data
to generate the reference vectors. Afterward, classification of the
test data is carried out by 1-nearest neighbor with the reference
vectors. The SVSA method was applied to some synthetic data,
multisource Colorado data, post-earthquake remote sensing data,
and hyperspectral data. The experimental results showed that the
SVSA is competitive with the traditional SVM with both linearly
and nonlinearly separable data.

Index Terms—Classification of multisource, hyperspectral and
multispectral images, support vector machines (SVMs), support
vector selection and adaptation (SVSA).

I. INTRODUCTION

R ECENTLY, particular attention has been dedicated to
support vector machines (SVMs) for the classification of

multispectral and hyperspectral remote sensing images [1]–[3].
SVMs have often been found to provide higher classification
accuracies than other widely used pattern recognition tech-
niques, such as maximum likelihood or multilayer perceptron
classifiers [4]. SVMs are also competitive with other kernel-
based methods such as radial basis function (RBF) neural
networks and kernel Fisher discriminant analysis at a lower
computational cost [5].
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There have been numerous different research studies that use
the SVM model in the classification problem. The classification
of multisensor data sets, consisting of multitemporal synthetic
aperture radar data and optical imagery, was addressed in [6].
The original outputs of each SVM discriminant function were
used in the subsequent fusion process, and it was shown that the
SVM-based fusion approach significantly improved the results
of a single SVM. In [7], two semisupervised one-class SVM
classifiers for remote sensing applications were presented. The
first proposed algorithm was based on modifying the one-class
SVM kernel by modeling the data marginal distribution. The
second one was based on a simple modification of the standard
SVM cost function.

A linear SVM (LSVM) is based on determining an optimum
hyperplane that separates the data into two classes with the
maximum margin [8]. The LSVM typically has high clas-
sification accuracy for linearly separable data. However, for
nonlinearly separable data, LSVM has poor performance. For
this type of data, a nonlinear SVM (NSVM) is preferred. The
NSVM transforms the input data using a nonlinear kernel fol-
lowed by the LSVM. Although the NSVM can achieve higher
classification performance, it requires high computation time
to map the input to a higher dimensional space by a nonlinear
kernel function which is usually a fully dense matrix [9]. The
computational complexity of the NSVM grows with the cube
of the total number of training data.

It is well known that the major task of the NSVM approach
lies in the selection of its kernel. Choosing different kernel
functions produces different SVMs and may result in different
performances [10]–[12]. Therefore, exploration of new tech-
niques and systematic methodology to construct an efficient
kernel function for designing SVMs in a specific application
is an important research direction [13], [14]. It is also desirable
to have a classifier model with both the efficiency of LSVM
and the power of the NSVM. For this purpose, a mixture model
combining LSVMs for the classification of nonlinear data based
on divide-and-conquer strategy that partitions the input space
into hyperspherical regions was proposed in [15]. The SVM-
based binary decision tree classifier is another approach for
this purpose [16]. Another classification algorithm for remote
sensing images was developed to detect border vectors deter-
mined by using class centers and misclassified training samples,
followed by their adaptation with a technique similar to the
learning vector quantization (LVQ) [17].

After the selection of the kernel for the NSVM, the kernel
parameters have to be adjusted for optimal performance. These
parameters have a regularization effect on the cost function
minimized during the training process. They may decrease the
overall classification performance if they are not well chosen.
Selection of the kernel parameters is empirically done by trying
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a finite number of values and keeping those that provide the
highest classification accuracy. This procedure requires a grid
search process over the space of the parameter values. It may
not be easy to locate the grid interval without prior knowledge
of the problem. Since the optimal parameter value varies from
kernel to kernel as well, kernel parameter selection might be a
challenging task.

Since choosing kernel parameters is critical to the perfor-
mance of the NSVM, other methodologies have also been
introduced in the literature. One of them discusses an analytical
criterion that is a proxy of Vapnik–Chervonenkis (VC) dimen-
sion known as the radius–margin bound. This criterion is a
quadratic function of the support vector multipliers. In [18],
an automatic minimization algorithm was proposed for deter-
mining the best kernel parameters. Another paper discusses an
SVM model selection criterion based on the minimization of an
empirical error estimate so that generalization error can drasti-
cally be reduced. The SVM hyperparameters can be adequately
chosen based on this empirical error criterion [19].

In the area of hyperspectral remote sensing image classifica-
tion, an optimal SVM classification system was also proposed
to detect the best discriminative features and to estimate the
best SVM parameters with radius-margin bound minimization
by means of a genetic optimization framework [20].

In this paper, in order to overcome the mentioned drawbacks
of the NSVM, a new method called support vector selection
and adaptation (SVSA) is introduced with competitive perfor-
mance to the NSVM [21], [22]. The proposed method has
some advantages over the NSVM. In the training stage, the
SVSA requires less computation time compared to NSVM,
and no kernels are needed. With nonlinearly separable data,
classification performance of the SVSA is competitive with
NSVM. During the preliminary tests with the SVSA, it was
observed that the SVSA also outperforms LSVM [23], [24].

This paper consists of six sections. The SVSA method
is presented in Section II for the two-class problem. This
is generalized to the multiclass problem in Section III. The
computational complexities for each method in training and
testing stage are presented in Section IV. The results obtained
with synthetic data, multisource data, post-earthquake data, and
hyperspectral remote sensing data are discussed in Section V.
Conclusions are given in Section VI.

II. SVSA

Only the support vectors of the LSVM, which can be con-
sidered as the most important vectors closest to the decision
boundary, are used in the SVSA. Some of the support vectors
are selected based on their contribution to overall classification
accuracy, and they are then called reference vectors. Afterward,
they are adaptively updated by using LVQ with respect to the
training data [25]. At the end of the adaptation process, the
reference vectors are finalized and used in classification during
testing with the 1-nearest neighbor (1NN) method [26].

Let M , N , and J denote the number of training samples,
the number of features, and the number of support vectors,
respectively. Let X = {x1, . . . ,xM} represent the training data
with xi ∈ RN , let Y ∈ RM represent the class labels with
yi ∈ {−1,+1}, and let S ∈ {s1, . . . , sJ} represent the support
vectors with si ∈ RN .

The LSVM is employed to obtain the support vectors (S)
from the training data (X) as follows:

S =
{(

sj , ysj
)
|
(
sj , ysj

)
∈ X, 1 ≤ j ≤ J

}
(1)

where ysj ∈ {−1,+1} is the class label of the jth support
vector. The number of support vectors is data dependent. If the
data are linearly separable, the number of support vectors is
typically 20% of the training data. If not, the number of support
vectors is about 40% of the training data.

The training data set (T ) is next updated to exclude the
support vectors as they are used in the selection stage in order
to choose some support vectors having the most contribution to
classification accuracy

T = {(tk, ytk) | (tk, ytk) ∈ X \ S, k = 1, . . . , N − J} . (2)

The exclusion of support vectors from the training set is
based on the observation that the classification accuracy is
increased by excluding them in the experiments. Moreover,
since the size of the training data is decreased, the computation
time in the selection stage is also decreased.

In the selection stage, the support vectors in the set S are
first classified by using the updated training data set T with
the K-nearest neighbor (KNN) algorithm. The leave-one-out
algorithm is used to determine the size of the neighborhood K
for KNN classification. The result is given by

ypsj = {ytl |l = argmink {‖sj − tk‖} , sj ∈ S, tk ∈ T} (3)

where ypsj is the predicted class label of the jth support vector.
If the original label and the predicted label of a support vector
are different, then this support vector is excluded from the set
of support vectors.

The remaining support vectors are called reference vectors
and constitute the set R

R =
{(

rj , yrj
)
|
(
sj , ysj

)
∈ S and ypsj = ysj

}
. (4)

The reference vectors are iteratively adapted based on the
training data in a way to make them more representative for
classification of data by the nearest neighbor rule. The main
logic of adaptation is that a reference vector causing a wrong
decision should be further away from the current training
vector. Similarly, the nearest reference vector with the correct
decision should be closer to the current training vector.

Adaptation is achieved by the LVQ algorithm. The main idea
of LVQ is to adapt the prototypes so that they more optimally
represent the classes, thereby diminishing misclassification er-
rors [27]. These prototypes result from an update procedure
based on the training data set. The learning procedure consists
of iteration over the training data and updating the prototypes
in order to describe the optimal class boundaries.

It is assumed that rj(t) is the nearest reference vector to tk
with label yrw . The adaptation is applied as follows:

rj(t+ 1) =

{
rj(t)− η(t) (tk − rj(t)) , if ytk �= yrj
rj(t) + η(t) (tk − rj(t)) , if ytk = yrj .

(5)

It means that if the class label of the reference vector rj
(reference vector winner) matches the class label of the training
sample tk, then the reference vector is moved toward tk.
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Otherwise, it is moved away from the input sample, where 0 ≤
η(t) ≤ 1 is the corresponding learning rate parameter given by

η(t) = η0

(
1− t

T

)
(6)

where η0 is the initial value of η and T is the total number
of learning iterations. In this step, the LVQ1 algorithm, being
one of the improved algorithms of LVQ, was used [25]. In
LVQ1, a single set of best matching prototypes is selected and
moved closer or further away from each data vector per iteration
according to whether the classification decision is correct or
wrong, respectively.

The adaptation is an iterative process resulting in the refer-
ence vectors to be used for classification of the test data by the
nearest neighbor rule. In the classification of test data, unseen
instances are classified by using 1NN with the finalized refer-
ence vectors. Since the SVSA represents the feature space by
using a small number of reference vectors, the nearest reference
vectors typically have different class labels, causing K > 1 to
yield worse results [17]. In all the experiments done, the highest
classification accuracy by the SVSA was obtained with K = 1.

The proposed algorithm replaces the use of kernel functions
by the following steps: a selection step to choose the most
significant linear support vectors for classification, subsequent
adaptation of the chosen linear support vectors for optimal clas-
sification performance by using the LVQ adaptation scheme,
and, finally, the one nearest neighbor rule for final classifica-
tion. It is known that the LVQ adaptation also maximizes the
hypothesis margin, and also the sample margin since the sample
margin is larger than the hypothesis margin [28]. The step of
choosing the most significant linear support vectors reduces
the number of reference vectors. Such reduction is also known
to result in better generalization performance [29]. The SVSA
also keeps the step of determining the LSVM support vectors
the same. These support vectors are based on structural risk
minimization and VC dimension for an LSVM.

III. SVSA: MULTICLASS STRATEGIES

The original SVM method was designed for two-class prob-
lems. Since the SVSA requires support vectors obtained by
LSVM, the algorithm is also based on binary classification.
However, the classification of multispectral and hyperspectral
remote sensing data usually involves more than two classes. In
this paper, one-against-one (OAO) strategy is used to generalize
the SVSA to classify multiclass data [30].

The OAO strategy, also known as “pairwise coupling,” con-
sists of constructing one SVSA for each pair of classes. Thus,
for a problem with c classes, c(c− 1)/2 SVSAs are trained
to distinguish the samples of one class from the samples of
another class. The final decision in the OAO strategy is based
on the “winner-takes-all” rule. In other words, reference vectors
obtained by training of each pairwise class give one vote to the
winning class, and the sample is labeled with the class having
the most votes.

In the classification of test data, all the data are classified
by the reference vectors by all c(c− 1)/2 SVSA models ob-
tained during the OAO approach in the learning process, and
c(c− 1)/2 labels are predicted for each test data. The final

label is obtained by determining the winning class between the
predicted classes with the majority rule.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In order to compare the computation time between the al-
gorithms, all the codes used in the experiments have to be
implemented with the same programming language because
the language can affect the computational time. Otherwise,
the computation time between different algorithms could lead
to a wrong decision. Moreover, the code optimization is also
required, which means removing the redundant script from the
code, for the time comparison.

Hence, in order to make a fair comparison between the
algorithms, it is necessary to either rewrite all the codes in
the same language or give the computational complexity of
the algorithms. Thus, instead, we present the computational
complexities for the SVSA and the SVM methods.

During training, SVM needs to solve a quadratic program-
ming (QP) problem in order to find a separation hyperplane,
which has high computational complexity. In order to speed
up the SVM, some decomposition methods faster than QP are
introduced in the literature [31], [32]. In this way, the large QP
problem is broken into a series of smaller QP problems.

The computational complexity of the SVM can change de-
pending on linear or nonlinear kernel used in training of the
SVM. The complexity degree of NSVM is higher than that of
the LSVM due to the use of kernel function. The computational
complexity of the LSVM is O(N2), where N is the training
set size. In NSVM, the computational complexity is O(N3)
because of computing the kernel function values [33].

The computational complexity of the SVSA in training is
analyzed for selection and adaptation parts of the algorithm step
by step as follows:

1) O(N2) for obtaining support vectors by LSVM;
2) O(N2logN) for selection of support vectors by

KNN [34];
3) O(N ′logN ′) for adaptation part in order to find the near-

est reference vector to the training data randomly selected,
where N ′ is the number of reference vectors and N ′ < N .

The step number 3) is repeated k times, which is the number
of iterations, so the worst case computational complexity for
this process is O(kNlogN). Including all the processes, the
computational complexity of the SVSA is O(N2logN), which
is much smaller than the complexity of an NSVM and is equal
to O(N3).

During testing, the computational complexities for both
LSVM and NSVM are O(N). Since the SVSA requires sorting
the distances from the reference vectors to an unclassified
vector in order to find the nearest reference vector, the compu-
tational complexity of the SVSA during testing is O(NlogN).

Therefore, it can be stated that the SVSA takes a longer
time than the LSVM in terms of speed performance in the
training stage because of selection and adaptation of support
vectors in addition to obtaining support vectors. On the other
hand, it requires less time than NSVM since the method does
not contain time-consuming kernel processes. The advantage
of the SVSA method is that the classification performance
of the NSVM can be reached with faster calculations during
training. In testing, the SVSA takes a bit longer time compared
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to LSVM and NSVM because of sorting the 1-NN process
during classification.

V. EXPERIMENTAL DATA SETS AND RESULTS

Both synthetic data and remote sensing data were used to
test and to compare the proposed algorithm with the conven-
tional SVM in terms of classification accuracy. For comparison,
LSVM, NSVM with RBF kernel, and NSVM with polynomial
function kernel were used. The SVMs were computed using the
Library SVM (LIBSVM) library [35].

In the synthetic data experiments, synthetic data with two or
more classes were created. For binary classification, four differ-
ent types of synthetic data with different types of nonlinearity
were generated to analyze the proposed algorithm.

In the remote sensing experiments, three different types of
data were used. In the first experiment, it was of interest to see
how well the SVSA method works in the classification of multi-
source data. For this purpose, the Colorado data set consisting
of ten classes and seven features was used for classification. In
the second experiment, a post-earthquake satellite image taken
from Iran, Bam, was used to classify buildings as damaged and
undamaged. In the third experiment, a hyperspectral image was
classified by using the proposed algorithm, and the user’s and
producer’s accuracies of the SVSA were compared to SVM’s
accuracies in order to check the effectiveness of the proposed
approach in a high-dimensional space.

A. Choice of Parameters

The parameters of the LSVM related to the cost C and
slack variable σ were chosen as the default parameters of the
LIBSVM tool since these parameters were not so sensitive
to the results obtained with all the experiments. The values
of C and σ were selected as 1 and 1/(number of features),
respectively.

For NSVM with RBF kernel, two parameters have to be
estimated while using RBF kernels: kernel parameter γ and
penalty parameter C. In order to provide the best parameters for
the kernel, tenfold cross-validation was utilized in the model se-
lection with a grid search strategy. The potential combinations
of C and γ were tested in a user-defined range, where C = 2−5

to 215 and γ = 2−15 to 23, and the best combinations for C and
γ were selected based on the results of cross-validation.

The initial value of learning rate parameter η0 for the adap-
tation part of SVSA was determined by using the tenfold cross-
validation as well. The training data were randomly divided into
ten groups of equal size. Then, each of the ten groups served as
a validation set in turn, and the remaining data of the original
training served as a new training set. Validations were carried
out on these tenfold to examine the classification accuracies
associated with a number of values of initial values of learning
rate parameter, α0 = 0.1−1.0, with 0.1 steps, and performed
for the SVSA [36].

In terms of classification performance and computational
cost, scaling of data is an important preprocessing step for SVM
and SVSA. Therefore, each feature of a data vector was scaled
to the range between −1 and +1 before using the algorithms.
The same method was used to scale both training and testing
data [37].

Fig. 1. Synthetic data types used in the binary classification with two features.

B. Synthetic Data Implementations

In these experiments, synthetic data with two and more
classes and two features were created [38]. In binary classifi-
cation, four different types of data with different nonlinearities
were created. In the classification of multiclass problem, the
data with two features and eight classes were generated. A
number of data sets were generated to do averaging of the
results to minimize the variance of the results and increase
certainty of conclusions. For all the synthetic data implemen-
tations, training and test data were randomly created with ten
realizations with random Gaussian noise.

The performance of the SVSA method was compared to those
of LSVM, NSVM with radial basis kernel function (NSVM-1),
and NSVM with polynomial kernel function (NSVM-2) meth-
ods in terms of class by class and overall classification accuracy
(OA). The standard deviations for each method were also
calculated and averaged over ten random realizations.

1) Binary Classification: For binary classification, four dif-
ferent types of synthetic data with different types of nonlinear-
ity generated to analyze the proposed algorithm are visualized
in Fig. 1.

With all these data, two features and two classes were used.
The numbers of training and test data were also the same.
Some 40% and 60% of 4000 samples for each data type were
randomly grouped as training and test data, respectively. For
each data type, ten realizations with random Gaussian noise
were generated. All the algorithms were used to classify these
ten realizations for each data type, and the classification perfor-
mance of each method was based on the average classification
accuracy as in Table I.

According to the experimental results provided in Table I,
it is observed that the SVSA usually has better classification
accuracy than the LSVM. The SVSA is also competitive with
the NSVM with RBF kernel and even better than the NSVM
with polynomial function kernel. Moreover, it is noted that the
NSVM with different types of kernels gives different classifi-
cation performances, and hence, it is required to know which
type of kernel is supposed to be chosen during learning. The
standard deviations of the SVSA for each data set show that the
SVSA is a robust method in the classification of these data sets.
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TABLE I
CLASSIFICATION OF TEST ACCURACIES FOR SYNTHETIC DATA WITH

TWO FEATURES AND TWO CLASSES. OA AND STD REFER TO

OVERALL ACCURACY AND STANDARD DEVIATION, RESPECTIVELY

Fig. 2. Multiclass data with different type of nonlinearities.

In terms of computational time, since the training and test
data were not so large, the computational time spent during
classification of test data for all the methods was less than 1 s.
Moreover, the computational time during learning for the SVSA
is less compared to that of NSVM due to estimation of opti-
mized kernel function parameters.

In these experiments, learning rate parameter and maximum
number of iterations for the SVSA were determined as 0.5 and
40.000 for all the Lithuanian, Higleyman, and Banana shaped
data, and 0.8 and 40.000 for the circular data. The optimized
kernel parameters of NSVM-1 for Lithuanian, Higleyman, Cir-
cular, and Banana data set were estimated as [C, γ] = [8, 4],
[C, γ] = [64, 8], [C, γ] = [0.125, 0.125], and [C, γ] = [0.03, 8],
respectively.

2) Multiclass Problem: For multiclass classification, a syn-
thetic data set with eight classes and two features created from
the same data used in binary classification is visualized as
in Fig. 2.

The way of generating training and test data in multiclass
classification is the same as in binary classification. The number
of samples for training and test data used for each class is
tabulated in Table II.

The average classification accuracies of all the methods on
multiclass data are listed in Table III. The average standard

TABLE II
NUMBER OF SAMPLES FOR TRAINING AND TEST DATA

FOR EIGHT CLASS DATA WITH TWO FEATURES

TABLE III
TEST ACCURACIES FOR CLASSIFICATION OF MULTICLASS DATA.

OA AND STD REFER TO OVERALL ACCURACY AND

STANDARD DEVIATION, RESPECTIVELY

deviation and the computational time in seconds during the
classification of test data were also tabulated for each method.

In terms of overall classification performance, the SVSA
yields better classification accuracy than LSVM and NSVM
with RBF and polynomial function kernels in classification of
the given multiclass data. The SVSA also has considerably less
standard deviation compared to the NSVM-1.

We also note that LSVM classifications are done with respect
to the hyperplane, whereas SVSA classifications are done with
reference vectors using 1-NN. Hence, the two methods do not
need to give the same accuracy even with a linear classification
application.

The learning rate parameter and the maximum number of
iterations for the adaptation part of the SVSA were determined
as 0.5 and 40.000, respectively. The kernel parameters of
NSVM-1, C and γ, were estimated as 1024 and 4, respectively.

C. Remote Sensing Data Implementations

Three different types of data sets were used in the remote
sensing experiments, which are Colorado data set; Iran, Bam,
post-earthquake image; and Washington DC mall hyperspectral
image.

1) Colorado Data Experiment: Classification was per-
formed with the Colorado data set consisting of the following
four data sources [39]:

1) Landsat MSS data (four spectral data channels);
2) elevation data (one data channel);
3) slope data (one data channel);
4) aspect data (one data channel).
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TABLE IV
TRAINING AND TEST SAMPLES OF THE COLORADO

DATA SET WITH SEVEN FEATURES

TABLE V
TEST ACCURACIES FOR CLASSIFICATION OF COLORADO DATA. PA AND

UA REFER TO PRODUCER’S AND USER’S ACCURACIES, RESPECTIVELY

Each channel comprises an image of 135 rows and
131 columns, and all channels are spatially coregistered. There
are ten ground-cover classes listed in Table IV.

One class is water; the others are forest types. It is very diffic-
ult to distinguish among the forest types using Landsat MSS
data alone since the forest classes show very similar spectral
responses.

The Colorado data were classified by multiclass SVSA,
LSVM, and NSVM with radial basis and polynomial function
kernels. The user’s and producer’s accuracies for each class and
overall classification accuracies based on producer’s accuracies
for all the methods are listed in Table V.

According to the results in Table V, the overall classifica-
tion performance is generally quite low for all methods since
the Colorado data set represents a very difficult classification
problem. The overall classification accuracy of the SVSA is
better than those of all the other methods. In addition, it gives

Fig. 3. Pre- and post-earthquake pansharpened images for area of interest.
(a) September 30, 2003. (b) January 3, 2004.

TABLE VI
NUMBER OF TRAINING AND TEST SAMPLES

WITH RESPECT TO THE CLASSES

Fig. 4. Classification accuracies of the methods over the 100 realizations.

Fig. 5. Thematic map of the classes obtained by the SVSA algorithm.
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Fig. 6. (a) Seven classes were selected in hyperspectral image of Washington DC Mall. (b) The thematic map of DC Mall image obtained by SVSA.

higher classification accuracy for many classes individually in
comparison to NSVMs. The computational time spent during
testing is less than 1 s for all the methods due to a bit number
of testing data.

The learning rate parameter and the number of maximum
iterations for the adaptation part of the SVSA were determined
as 0.5 and 40.000, respectively. The optimized parameters of
NSVM, C and γ, with RBF were determined as 2 and 8,
respectively.

2) Extraction of Damage in Iran Bam Earthquake: Quick-
bird satellite images of the city of Bam acquired on September
30, 2003 preearthquake and January 03, 2004 post-earthquake
were obtained, and only a post-earthquake multispectral image
having four spectral bands (RGB and near infrared) was used
to distinguish damage patterns.

All the algorithms were evaluated using a small area of the
city, approximately 8 ha in size. Since there is no ground truth
available, pansharpened images with 0.6-m spectral resolution
for pre- and post-earthquake images were obtained and consid-
ered as the ground-truth data (Fig. 3).

In order to obtain the pansharpened images, principle com-
ponent resolution merge method using a bilinear interpolation
resampling technique was used. Since the pansharpened image
has high resolution as compared to the multispectral image, it
was used as ground truth.

For the thematic classification, four classes were identified:
damage, buildings, vegetation, and open ground. Training and
test data were visually selected from the multispectral image
after being verified with pansharpened pre- and post-earthquake
images. The number of training and test samples for each class
is tabulated in Table VI.

In the experiments, a multispectral image with 2.4-m spectral
resolution was used for classification. During classification,
100 realizations with random Gaussian data added as noise
were generated with data split as 40% training and 60% test
data. All the methods were used to identify the four classes over
the 100 samples, and the overall classification performances
of each method were compared. The geometric average of
classification accuracies for the algorithms and their standard
deviations are shown in Fig. 4.

In this figure, it is observed that the SVSA gives the highest
overall classification accuracy compared to both LSVM and
NSVM. The standard deviation of the SVSA algorithm is also
the smallest among all the classification algorithms, indicating
the stability of the SVSA as a robust method.

The thematic map generated by the SVSA and the post-
earthquake image are shown in Fig. 5. Although a pixel-based
classification was performed by the SVSA, the land use classes
on the thematic map were considerably identified when it is
visually compared to the post-earthquake image for the area of
interest.

The learning rate parameter and the number of maximum
iterations for the adaptation part of the SVSA were determined
as 0.4 and 40.000, respectively. The kernel parameters of
NSVM-1, C and γ, were estimated as 0.25 and 8, respectively.

3) Hyperspectral Data Implementation: A higher dimen-
sional data set captured by an airborne sensor (HYDICE) over
Washington DC mall was used for exploring the performance of
the SVSA in a high-dimensional space [40]. The original data
set consists of 220 bands across 0.4–2.5 μm, where low signal-
to-noise-ratio bands were discarded, resulting in a data set of
191 bands.

The DC data set is a challenging one to analyze since the
classes are complex. There is a large diversity in the materials
used in constructing rooftops, and consequently, no single
spectral response is representative of the class roofs [41].

A small segment of Washington DC mall data set with 279 ×
305 pixels was selected for evaluating the classification perfor-
mance of the proposed approach [Fig. 6(a)].

The training and test samples shown in Table VII were
collected from a reference data set which was supplied with
the original data. The target land use units were seven classes
used in previous studies with the DC mall data set: roofs, road,
trail, grass, tree, water, and shadow [42].

The proposed method, SVSA, and all the SVM methods were
used in classification of the hyperspectral data. The user’s and
producer’s classification accuracies of all the methods for test
data are tabulated in Table VIII.

According to Table VIII, the SVSA has the highest overall
classification accuracy compared to the SVMs. Particularly for
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TABLE VII
NUMBER OF TRAINING AND TEST SAMPLES

WITH 191 FEATURES AND 7 CLASSES

TABLE VIII
CLASSIFICATION ACCURACIES OF TEST DATA FOR WASHINGTON DC

MALL [%]. PA AND UA REFER TO PRODUCER’S ACCURACY

AND USER’S ACCURACY, RESPECTIVELY

TABLE IX
NUMBER OF REFERENCE VECTORS USED IN CLASSIFICATION

the class trail, which is quite hard to distinguish due to the
small number of training data, the classification accuracy of the
SVSA has the highest performance as well.

In the SVSA, the classification of the hyperspectral image
was carried out with the 45 reference vectors tabulated in
Table IX. These results suggest that the proposed algorithm
is also highly competitive in the classification of hyperspectral
data and does not seem to be affected by the curse of dimen-
sionality [43].

Since the number of reference vectors obtained by the SVSA
is 45, the computational time spent by the SVSA during testing
is less than that spent by all the SVMs.

The thematic map generated by the SVSA is shown in
Fig. 6(b).

According to Fig. 6(b), the land use classes were consider-
ably identified by the SVSA with quite low salt and pepper
classification noise.

The learning rate parameter and the number of maximum
iterations for the adaptation part of the SVSA algorithm were

determined as 0.1 and 40.000, respectively. The parameters of
NSVM, C and γ, were determined as 32 and 0.25, respectively.

VI. CONCLUSION

The NSVM uses kernel functions to model nonlinear deci-
sion boundaries in the original data space. It is known that
the kernel type and the kernel parameters affect the shape of
the decision boundaries as modeled by the NSVM and thus
influence the performance of the NSVM.

In this paper, a novel SVSA method has been proposed
in order to overcome the drawback of NSVM on choosing a
proper kernel type and associated parameters. The proposed
method is reliable for classification of both linearly separable
and nonlinearly separable data without any kernel. The SVSA
method consists of selection and adaptation of support vectors
which most contribute to classification accuracy. Their adap-
tation generates the reference vectors which are next used for
classification of test data by the 1NN method.

The proposed algorithm was tested with synthetic and remote
sensing data with multispectral and hyperspectral channels
in comparison to LSVM and NSVM algorithms. The SVSA
method gave better classification results as compared to LSVM
with nonlinearly separable data. The SVSA performance was
also competitive with and often better than that of NSVM
with both synthetic data and real remote sensing data without
requiring any kernel function.

In terms of computational complexities, the SVSA is faster
than NSVM during training but slightly slower than NSVM
during testing. As a future work, the SVSA method during
testing will be speeded up by using parallel programming.

For the remote sensing data set, it may be better to use the
leave-one-out approach for training and testing since this may
provide better statistics for evaluation of the system. This will
also be explored in the near future.
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