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ABSTRACT

Most wavelet transforms used in practice are based on integer sampling factors. Wavelet transforms based on
rational sampling factors offer in principle the potential for time-scale signal representations having a finer
frequency resolution. Previous work on rational wavelet transforms and filter banks includes filter design
methods and frequency domain implementations. We present several specific examples of Daubechies-type
filters for a discrete orthonormal rational wavelet transform (FIR filters having a maximum number of
vanishing moments) obtained using Grobner bases. We also present the design of overcomplete rational
wavelet transforms (tight frames) with FIR filters obtained using polynomial matrix spectral factorization.
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1. INTRODUCTION

In this paper we discuss the design of orthonormal and overcomplete rational discrete wavelet transforms
(DWTs) based on the critically-sampled filter bank (FB) illustrated in Fig. 1 and on the overcomplete FB
illustrated in Fig. 8. The frequency decomposition typical of the dyadic DWT is illustrated in the top panel
of Fig. 2. Using different filters for the dyadic DWT yields different frequency responses but does not alter
the Q-factor of the frequency decomposition. If a different Q-factor is desired,* %9 13,1427 the rational FB
in Fig. 1, can be used. The frequency decomposition typical of an orthonormal rational (2/3) DWT, based
on the FB in Fig. 1 is illustrated in the center panel of Fig. 2. In this paper we also develop an overcomplete
rational (2/3) DWT, the frequency decomposition of which, is illustrated in the bottom panel of Fig. 2. The
overcomplete DWT constitutes a ‘tight frame’, as the synthesis filters are obtained by time-reversing the
analysis filters. For many applications, performance can be enhanced by using a frame (a data-expansive
transform) in place of a critically-sampled transform.'® In this case, using tight frames, we are able to
choose the low-pass filter more freely, as compared to the orthonormal case. This freedom of choice allows
us to eliminate the undesirable side lobes apparent in the center panel of Fig. 2. In addition, the rational
wavelet frame is approximately shift invariant. For convenience of notation, we consider the case (2/3) shown
in Fig. 1 but the results can be generalized to other sampling factors.

As is well-known, dyadic orthonormal 2-band DWTs (or in general, regular M-band DWTs) with van-
ishing moments can be designed by performing spectral factorization on a corresponding half-band (M*h
band for M-band DWTs?°) autocorrelation sequence, where closed-form expressions for the autocorrelation
sequence are available. However, this method is not applicable to rational FBs, because in this case, the
PR conditions can not be expressed solely in terms of an autocorrelation sequence. In this paper we present
some minimal-length filters designed using Grébner basis methods (see Ref. 24 for a background on these
methods, Ref. 11 for Grobner bases in general, and Refs. 1,7, 20,25, 26,28, 32,33 for rational FB design).
Using these methods, we are able to compute the shortest filters yielding orthonormal rational FBs with a
number of vanishing moments. However, Grobner basis methods are computationally expensive, and only a
few examples can be obtained.

In the second part of this paper, we consider the design of tight wavelet frames based on a rational
sampling factor (2/3). Like the double-density DWT,?? such a frame samples the time-frequency plane
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Figure 1. A rational filter bank.

more densely than a critically-sampled orthonormal wavelet transform, and can be approximately shift-
invariant. Moreover, for frames the restrictions on the low-pass filters can be greatly reduced; it turns
out that the design of rational tight frames with polynomial approximation properties can be carried out
more easily than the design of rational orthonormal bases. We demonstrate the design of rational tight
frames using ‘polynomial matrix spectral factorization’. Of the many algorithms to perform matrix spectral
factorization,* also referred to as the matrix-valued Riesz lemma,'% 7 we used the algorithm described in
Ref. 21 because it most closely parallels the polynomial root finding approach for the spectral factorization
of univariate polynomials®® and likewise can provide non-mimimum-phase factorizations. A concise survey
of methods and references for matrix spectral factorization are given in Ref. 22 (also see Ref. 16 for 2 x 2
factorization where each factor is itself symmetric).

A final point should be mentioned regarding the multiresolution analysis (MRA) framework. An MRA
with a rational dilation factor was defined by Auscher,? sharing the properties of an MRA with an integer
dilation factor. Moreover, a fast algorithm to analyze the approximation coefficients into the detail and
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Figure 2. Typical frequency decompositions performed by a dyadic orthonormal DWT, a rational (2/3) orthonormal
DWT (Fig. 1), and a rational (2/3) tight-frame DWT (Fig. 8).



coarse level approximation coefficients (and synthesize back), like the DWT was derived (and shown to be
equivalent to a rational FB) by Baussard et al.> However, an MRA with rational dilation factor does
not allow compactly supported bases, in contrast to the integer dilation factor case,? and does not allow
FIR filters in the analysis and synthesis FBs.>'? Nevertheless, Blu shows that, like the dyadic case, the
basis functions associated with an iterated rational FIR FB can be made smooth with compact support.®
Although these functions do not satisfy the shift-invariance property required by an MRA, nor are related
to an MRA as defined in Ref. 2 (see Ref. 12, section 10.4 for related discussion), the iterated rational filter
bank does generate a basis (or frame) for [2(Z) because it is an invertible discrete transform. We call the
basis (frame) a wavelet basis (frame) as it is constructed/implemented via an iterated low-pass/high-pass
frequency decomposition. We use the term ‘DWT’ here in this sense — an iterated low-pass/high-pass
frequency decomposition, iterated on the lowpass branch.

2. ORTHONORMAL RATIONAL FILTER BANKS

In this section, we consider orthonormal rational filter banks and their design using Grébner basis methods.
We first derive the perfect reconstruction conditions for the FB in Fig. 1, provide minimal-length solutions
for some special cases, and discuss their properties.

Referring to Fig. 3, we have
X(2) = X(2%) H(z), (1)

where X (z) = > x(n) 2™, etc. Then, defining W := 727/,

n

X(2) = é [X()+ X (W) + X (z072)] @)
= % [X(2*) H(z) + X (2°W?) H(zW) + X (W) H(zW?)] (3)
and therefore,
Yi(z) = % [ X(21/2)H (=12 + X(—ZW)H(—z*W)}
- é [X(Z)H(zl/2) + X (W2 H(2W) + X(zW)H(zl/2W2)] H(2~1/?)
- % [X(z)H(—zl/2) + X(WHH(—22W) + X(zW)H(—z1/2W2)} H(—z"1?) "
_ % [HG)HE2) + B2 H(-)] X(2)
+ é [H(zl/QW)H<z—1/2) + H(—zl/QW)H(—z—1/2>] X (zW?)
+ é [HG2W2)H () (=22 W2)H(—2 )] X ().
Similarly,
Ya(z) = % [G(2)G(" )X (2) + GEW)G (=X (2W) + GEWHG ()X (2W?)] . (5)
So that the perfect reconstruction equations are (replacing z by z2):
% [H(z) H(z"") + H(—2) H(—="1)] + % G(2) G2 =1, (6)
% [H(=W?) H(z"Y) + H(—=W?) H(—="Y)] + é G2W)G(=2) = 0, (7)
% [H(=W) H(=") + H(—=W) H(—=Y)] + é G=2W?) G(=~2) = 0. (8)
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Figure 3. The low-pass and high-pass branches of a rational filter bank.

Modulating this set of equations by W and W2, we can write,

H(z) H(-z) V2G(2?) H(z! H(z7'W) H(z7'W?)
H(zW?) H(—zW?) V2G(z*W) H(—z"! H(—z7'W) H(—z"'W?) | =61 (9)
HEW)  H(—2W) V2G(z2W?)) \V2G(z7%) V2G(z72W?) V2G(z7*W)
Switching the two matrices in (9), we obtain,
H(z™1) H(z='W) H(z7'W?) H(z) H(-z) V2G(2?)
H(—z1 H(—z7'W) H(—z"'W?) | | HW?) H(-zW?) V2G(*W) | =61  (10)
V2G(272) V2G(z72W?) V2G(z72W) H(zW) H(—2zW) V2G(z*°W?)
Due primarily to the existence of the complex terms containing W, we will not use (10) for Grébner basis
computations. However, (10) will be useful for investigating properties of orthonormal rational filter banks.
2.1. Equations for Grobner basis Computation

In this subsection, we replace (6), (7), (8) by equivalent equations, which are more suitable for Grobner basis
computation. The new set of equations can be extended to more general sampling factors straightforwardly.

From Fig. 4, it is seen that the polyphase components of H(z), defined through
H(z) = Ho(2") + 2% Hi(2%), (11)

form two channels of a 3-channel FB. (Note that this is different from the usual definition of H;(z) by a
delay of 2 samples.) It follows that,

[13] {Ho(2) Ho(="1)} =1, (12)
[13] {Hi(2) Hi(z"")} = 1, (13)
[13] {Ho(z) Hi(z~")} = 0. (14)

Noting that,

Ho(2%) H(z™Y) = Ho(2*)[Ho(272) + 22 H (272)] = Ho(2?) Ho(272) + 23[Ho(2?) Hi(272)],
we have, by (12) and (14),

[13] {Ho(z*) H(="")} = 1. (15)
Appending the unit energy constraint for the second band as well,

> hin) =1 (16)

it is seen that, (15), (16) imply (12), (13), (14). Alternatively, for the sake of generalizability, we can consider
instead of (16),

[13] {z_SHl(zQ) H(z_l)} =1 (17)



Figure 4. The transformation of the low-pass branch of a rational (2/3) filter bank into two channels of a three-
channel filter bank. The polyphase components of H(z) are defined through (11).

which can be derived similar to (15).

Now we can show the equivalence of (15), (17) to (10). Rewriting (15),

13] (o) H)) = 18] { 5HG) + HE- G =1, (18)

Rewriting (17),

03] (= ) HG) = 113 {510() - B2l G =1 (19)
Adding and subtracting these two equations, we get respectively,

[13] {H(z)H(="")} =2 (20)

13 {H(~2) H(z")} = 0. (21)

But these are exactly the two equations obtained from (10) (rowl X columnl = 1, rowl X column2 = 0.)

Summarizing, for Grobner basis calculation, the equations used are (15), (16) and the vanishing moment
conditions (26) (for K vanishing moments) which can be expressed equivalently as:

rem (H(2),(z* + 2 +1)*) = 0. (22)

where ‘rem’ denotes the remainder after polynomial division.

For a length 11 filter with 2 vanishing moments, the equations are as follows:



Table 1. Minimal-length filters for orthonormal (2/3) rational filter bank having K vanishing moments; K = 1,2, 3.
The low-pass filter is given by H(z) = Q(2)[(1 + z + 2%)(1 + 2)]*. The filters are illustrated in Fig. 5.

K=1 K=2 K=3
q(n) g(n) q(n) g(n) q(n) g(n)

0.258819045102 0 -0.010386345297  0.002349103722  0.000507538600  0.056703525040

0.298858490722 0  0.041545381190 -0.051342646308 -0.003045231599  -0.002448165403

-0.149429245361  -0.577350269189  0.143916009556  -0.214529595761  0.009113781904 -0.435710813865
0  0.788675134594 -0.142711551606  0.731437203991 -0.033792694376  0.754817090467

0 -0.211324865405  0.035677887901 -0.625660554077  0.117029410284 -0.476122043329

0  0.157746488433 -0.125281778857  0.102436385629

0.056171045203  0.000627178746

-0.009361840867  -0.000386952702

0  0.000083795418

0O~ UA WO~ O|S

\\Orthonormality equations

h(0) "2+h(2) "2+h(4) "2+h(6) "2+h(8) "2+h (10) "2-1=0

h(1)~2+h(3) "2+h(5) "2+h(7) "2+h(9) "2-1=0
h(0)*h(3)+h(2)*h(5)+h(4)*h(7)+h(6)*h(9)=0
h(0)*h(6)+h(2)*h(8)+h(4)*h(10)=0

h(0)*h(9)=0

h(1)*h(4)+h(3)*h(6)+h(5)*h(8)+h(7)*h(10)=0 h(1)*h(7)+h(3)*h(9)=0
h(1)*h(10)=0

\\Vanishing Moment Equations
h(0)-h(4)+2xh(5)-h(6)-2*%h(7)+4*h(8)-2%h (9)-3*h (10)=0
h(1)-2xh(4)+3%h(5)-5%h(7)+6%h(8)-8%h (10)=0
h(2)-3%h(4)+4*xh(5)-6xh(7)+7*h(8)-9%h(10)=0
h(8)-2xh(4)+h(5)+2*h(6)-4*h(7)+2xh (8) +3*h (9) -6%h (10) =0

Following Ref. 24, we can replace the first two of the orthonormality equations, with the following two
equations:

h(0)+h(2)+h(4)+h(6)+h(8)+h(10)-1=0
h(1)+h(3)+h(5)+h(7)+h(9)-1=0

This normalization reduces the number of solutions provided by the Grobner bases and thereby reduces the
computational burden. (The quadratic energy normalization is replaced here by a linear normalization.) The
solutions found using this updated set of equations must be normalized taking into account that H (1) = v/6.

Minimal-length low-pass filters H(z) and high-pass filters G(z) with 1, 2 and 3 vanishing moments are
obtained by obtaining Grobner bases using the software, SINGULAR.'® In each case, several solutions exist

to the nonlinear design equations (some solutions have poor frequency responses). The best solutions are
tabulated in Table 1 and illustrated in Fig. 5.

2.2. Zeros of H(z) and G(z) at z=—-1and z =1

In the implementation of a rational DWT, we iterate the low-pass filter in Fig. 1. This is equivalent to a
system comprised of an upsampler followed by a filter and a downsampler as shown in Fig. 6, where HU) (z
can be determined using noble identities®!

j—1

HO () =T HE. (23)

k=0
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Figure 5. Minimal-length filters with K vanishing moments for orthonormal (2/3) rational filter bank; K = 1,2, 3.

The coefficients are tabulated in Table 1.
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Figure 6. Iterating a rational filter system can be equivalently represented by the systems above. The iterated
low-pass filter H)(z), defined by the equivalence of the two systems, is given by (23).

For example, H®)(z) = H(z*) H(z%) H(z°). For the minimal-length filters with K vanishing moments
tabulated in Table 1, the iterated low-pass filter H)(z) is illustrated in Fig. 7 (for K = 1,3).

An important difference from the dyadic case arises because of the upsampler. Instead of a single filter,
we now see that the input is fed into 27 different filters and the final output is formed by arranging the
samples from the outputs of each of these filters. If we ask that all of these filters be legitimate low-pass
filters, then H(z) should have factors®® of the form (1 + 27! + 272). In this subsection we investigate the
consequences of these factors. In particular, we show that orthonormality combined with the zeros of H(z)
at z = {W,W?} imply that H(z) has the same number of zeros at z = —1. Using this fact, we further
show that the high-pass filter G(z) has the same number of zeros at z = 1. Taken together, this means
that, similarly as in the dyadic case, if a rational orthonormal system has K vanishing moments, then the
low-pass filter preserves discrete-time polynomial signals of degree K — 1, and the high-pass filter eliminates
polynomial signals of degree K — 1. We start with the zeros of H(z) at z = —1.

Multiplying the first row and the second column of the first and second matrix in (10) gives us,

H(z"YH(—2)+ H(z""W)H(—2W?) + H(z"*W?*)H(—2W) = 0. (24)
Rewriting we have,

H(z"YWH(-2) = —H(z""W)H(—=2W?) — H(z"'W?)H(—2W). (25)
Now if (22 + 2z + 1)¥ is a factor of H(z), we can write,

H(z) = (2> +2+1)50C(2), (26)
which implies,

H(z) = (z—=W)XQ(2), (27)
and

H(z) = (2 = W) " Qa(2), (28)
for some finite order Laurent polynomials C(z), Q1(z) and Q2(z). From (27), we obtain,

H(=2W) = (=W = W)*Q1(2) = (-W)" (2 + 1) Qu1(2), (29)
and from (28) we obtain,

H(=2W?) = (=W = W)X Qs(2) = (W) (2 + 1)¥Qu(2). (30)
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Figure 7. The iterated low-pass filter H (3)(2) for: a minimal-length rational orthonormal DWT with 1 vanishing
moment (left), 2 vanishing moments (center), and the rational tight-frame DWT (right) from Sect. 3.1. Top panel:
impulse response h® (n). Center panel: frequency response |H (3)(ej‘”)|. Lower panel: frequency responses of the 23
polyphase components of H®(z).

Now using (29) and (30), (25) can be written as,
H(z"")H(=2) = —H(z"'W)(=W?)" (2 + 1) Q2(2) — H"'W*)(=W)" (2 + )" Qu(2) (31)
— 2+ DEP(2) (32)

for some finite order polynomial P(z). If we assume that H(1) # 0, we see that the term (z + 1)¥ cannot
be a factor of H(—z). Thus we conclude,

H(z) = (27" + 1)XQ(2). (33)



To see H(1) # 0, consider the following equation (rowl X columnl in (10)):

% (H(z)H(z"") + HEW)H(z"'"W?) + HW?)H(z~'W)) =1, (34)
equivalently,
\HY (W) > + |HY (w — 27/3)|? + |H! (v — 47/3)|* = 6, with H (w) := H(e'*). (35)

Putting z = 1 (equivalently w = 0) and noting that H(W) = H(W?) = 0, we see that H(1) = +/6.

Now we look at the zeros of G(z) at z = 1. Consider (34) again. Now put z = —1. Noting that
H(-1) = 0, we get H(—W)H(—W?2) = 3. Putting z = W in (6), we obtain G(W)G(W?) = 3/2, hence,
G(W) # 0, G(W?2) # 0. Consider (7). Rewriting this, using the facts derived above,

2G(2W)G(27%) = —H(WHH(z™') — H(—2W?)H(—z"1) (36)
=(z-1D)EP(2)Hz + H(—2W?) (2 — 1) Py(2) (37)
= (z=1)"P(2) (38)

Since, G(W) # 0, it follows that the term (z — 1)¥ should belong to G(z~2) (with an additional (z + 1)%
term). This proves that G(z) has a zero of order K at z = 1.

A final remark may be made regarding the influence of vanishing moments on the filters in Fig. 6. As
mentioned previously, the system in Fig. 6 computes the inner product of the discrete-time input signal
with 27 different sub-sequences of h(n) (the 2/ polyphase components of h%)(n)). Ideally, one would like
these sequences to be the same (more accurately, related by a corresponding delay term), but this is too
restrictive. Instead, we can ask for approximate satisfaction of this delay property. Blu observes® that as
the number of vanishing moments increase, the sequences converge to more similar functions (or satisfy the
approximate shift property better). To illustrate this point, we show in Fig. 7, the iterated low-pass filter
h(3 (n) with 1 and 3 vanishing moments. The lower panel of Fig. 7 illustrates the Fourier transform of all
eight sub-sequences of h(®) (n). Notice that A (n) is not smooth for the orthonormal solutions. However,
increasing the number of vanishing moments makes the 27 sub-sequences more similar to each other in
addition to increasing their smoothness. The left column of Fig. 7 illustrates the iterated low-pass filter and
its 8 sub-sequences, for the low-pass filter (45) used for the construction of the tight frame in Section 3.1.
For this case, the iterated low-pass filter is smooth and the 8 sub-sequences are indistinguishable.

3. A RATIONAL TIGHT FRAME

In this section, we consider the design of a rational (2/3) wavelet tight frame based on over-sampled filter
banks (see Fig. 8). Like some other wavelet tight frames,'® the overcomplete transform will be approximately
shift-invariant and will sample the time-frequency plane more densely than a critically-sampled wavelet
transform. The tight frame introduced here is based on the filter bank in Fig. 8, which possesses two
additional high-pass channels (G; and G2 in addition to Gj).

As discussed earlier, the design of an orthonormal rational filter bank (with FIR filters) with vanishing
moments requires the solution of a number of nonlinear equations. In contrast with the M-band case,
the design of the low-pass filter can not be simplified by expressing the design problem in terms of auto-
correlation sequences. However, for the tight frame, the constraints the low-pass filter must satisfy are
significantly relaxed. The high-pass filters that complement the low-pass filter (so as to ‘complete’ the filter
bank) can be obtained via polynomial matrix spectral factorization, for which many algorithms are available.

Consider the system in Fig. 8, where the filters Hy(z) and H;(z) are related to H(z) by (11). Given
Hy(z) and Hy(z), our aim is to find G;(z) so that the resulting filter bank forms a tight frame. Consider the
polyphase decompositions of the filters. For Hy(z), this is:

Ho(Z) = H00(2’3) + Z_1H01 (2’3) + Z_QHOQ(Z?)). (39)

10
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Figure 8. An over-sampled filter bank for implementing a rational wavelet tight frame, and an equivalent system.

Suppose similar notation is used to denote the polyphase components of the remaining filters. The FB is a
tight frame iff

HG) G [gr)| -1 (40)
where
Hoo(z) Hio(z) Goo(z) Gio(z) Gao(2)
H(Z): HOl(Z) H11(Z) 5 G(Z): GOl(Z) Gll(z) Ggl(z) . (41)
Hoz(z) Hiz(z) Go2(2) Gi2(z) Gaa(2)

From (40), we see that,
G(2)GT(z"H=T-H((z)HT(z7"). (42)

Thus we can complete the FB to a tight frame iff the matrix (I — H(z) H”(27!)) is non-negative definite
on the unit circle. It turns out that a given low-pass filter can be completed to a tight frame as shown in
Fig. 8 provided that

2

3= [Ho(e! /)12 >0, (43)
k=0
and
2 2 2 2
(3 _ Z |Ho(ej(w+2krr/3)|2> (3 _ Z |H1(€j(w+2kﬂ'/3)|2> _ ZHo(ej(w+2k7r/3)Hik(ej(w+2kﬂ'/3) > 0. (44)
k=0 k=0 k=0

11



Table 2. The high-pass filters g; completing the low-pass filter (45) to a rational (2/3) tight frame. The frequency
responses |H/ (w)| and |GY (w)| are also illustrated. Note that the high-pass filters have approximately the same
frequency response magnitude. The filters are illustrated in Fig. 9.

H(E), G(e")

n go(n) gi(n) g2(n) 25
0 0.64917778505741 0 0 )
1 -0.48262654366226  0.63770868747435 0

2 -0.15059130119969 -0.46687803212812  0.64520631583316 15
3 -0.01477135217528  -0.14815175304968  -0.49098922627425 1
4 -0.00118858802016 -0.02267890229656  -0.13149490989732

5 0 0 -0.02152627546889 05
6 0 0 -0.00119590419272 0

0 /4 /2 3mn/4 i
()

Notice that if the filters H;(z) were part of an orthonormal FB, then these equations would hold with equality.
Intuitively, the equations say that, the filters should be far enough from being unit energy sequences so that
they can be completed so as to eliminate their currently non-zero inner product.

The problem then is to find the ‘square root’ of (I — H(z) H(27')). As mentioned in the introduction,
there are numerous methods to perform this task. We used the symmetric factor extraction method described
in Ref. 21 (also see Section 2.1 in Ref. 22 and the references therein for a slightly different version of the
method). The first step is the computation of the determinant of the matrix and the selection of a subset of
its roots (as if one were performing univariate spectral factorization via polynomial root finding). The next
step reduces the matrix to a unimodular matrix using structured symmetric factors. Then, this unimodular
matrix is further reduced to a constant non-negative definite symmetric matrix. Finally factoring the constant
matrix, two factors are obtained as desired. This method allows one to choose the zeros of each factor without
any minimum- or maximum-phase restriction, unlike other methods.??

3.1. Example
We set the symmetric low-pass filter with 3 zeros at z = {W, W2, —1}, normalized so that H(1) = /6, i.e.,

6
H(z) = 6£3 [(1+2+22)1+2)]°. (45)
The frequency response is shown in Table 2. Figure 7 (right column) illustrates the iterated low-pass filter
h3)(n); it is visibly smoother that the iterated low-pass filters of the orthonormal case.

To check whether this low-pass filter can be completed to a tight frame, we evaluate (43) and (44) on the
unit circle, using the polyphase components as defined in (11). These turn out to be nonnegative, so this low-
pass filter allows a tight frame to be formed. Next, we form the matrix H(z) using the polyphase components
as defined in (11) (notice that Hq2(2) will not be causal according to this definition). Applying the symmetric
factor extraction algorithm in Ref. 21 to perform matrix spectral factorization of G(z) GT(271) in (42)
induced by the filter in (45), we obtain G(z). From G(z) we obtain the three filters G;(z), i = 0,1, 2, which,
together with the low-pass filter, form a tight frame.

Notice that the factors of the matrix G(2)G” (z7!) are not unique. In particular we have,
G(2)GT(27") = G(2) R() RT(z71) GT (=) (46)

where R(z) is any paraunitary matrix. A possible step then might be to introduce such paraunitary factors
so as to improve the frequency responses of G;(z). Following the concept of the double-density DWT,?
we might ask that go(n — 2) = g1(n — 1) = ga(n), but this is not possible with FIR filters. However, we
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Figure 9. Perfect reconstruction filters for the rational (2/3) overcomplete filter bank of Fig. 8. The impulse
responses and zero-diagrams are illustrated. The low-pass filter h is given by (45); the high-pass filters g;, obtained
via polynomial matrix spectral factorization, are tabulated in Table 2. Note that the high-pass filters satisfy (49)
and therefore, the transform is approximately shift-invariant.

13



can approximate this relationship. To gain insight on the extent to which this relationship can be satisfied,
consider the PR conditions, this time similar to (6), (7), (8).

Ho(2)Ho(z™ 1) + Hi(2)Hy (271 + Go(2)Go(271) + G1(2)G1(271) + Go(2)Ga(271) = 3, (47)

Ho(z:W*)Ho (2 )+ Hy(zW*) Hy (27 ) +Go(GWH)Go (271 +G1(zWHF) Gy (27 +Ga(2WF)Ga(271) = 0, (48)
for k € {1,2}. We would like to find a solution such that,

go(n—2) = gi1(n—1) = ga(n). (49)
But this implies

Go(zWF) Go(z™1) + G1(zWF) G1(z71) + G2 (zWF) G2 (27 1) = 0, (50)
which in turn requires, from (48) that

Ho(zW") Ho(271) + Hy (zW") Hi (7)) = 0. (51)

Provided that this is satisfied, if we write,
1
G(z)G(z™) =1- 3 [Ho(z) Ho(z™Y) + Hy(2) Hl(z_l)] , (52)

it follows that G;(z) ~ 27" G(2) is an eligible solution.

Turning back to our example, it turns out that (45) satisfies (51). Therefore, performing rotations
similarly as in Ref. 29, we are able to obtain high-pass filters satisfying (49). The resulting filters are
tabulated in Table 2 and illustrated in Fig. 9. The frequency decomposition provided by the rational tight
frame designed here is illustrated in the lower panel of Fig. 2 — the stop-bands are free of the ripples that
are present in the orthonormal solution. Note that the low-pass filter (45) used here is such that (a) the
rational wavelet transform has only one vanishing moment, and (b) the passbands of the band-pass filters
(illustrated in Fig. 2) have a lower Q-factor compared to the orthonormal (2/3) rational transform.

4. CONCLUSION

We investigated the filter design problem for orthonormal rational FBs. Using Grébner basis methods, we
obtained minimal-length solutions for the orthonormal (2/3) rational filter bank with K vanishing moments,
with K = 1,2,3. We also considered the design of rational tight frames, which sample the time-frequency
plane more densely, can be approximately shift invariant, and provide additional degrees of freedom for
the design. For a given low-pass filter, we presented the necessary conditions for completion, described the
completion using matrix spectral factorization, and demonstrated the design procedure in an example.
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