
MAT 271E – Probability and Statistics

Spring 2015

Instructor : İlker Bayram
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• Probability Space

Probability models, conditioning, Bayes’ rule, independence.

• Discrete Random Variables

Probability mass function, functions of random variables, expectation, joint PMFs, conditioning, inde-
pendence.

• General Random Variables

Probability distribution function, cumulative distribution function, continuous Bayes’ rule, correlation,
conditional expectation.

• Limit Theorems

Law of large numbers, central limit theorem.

• Introduction to Statistics

Parameter estimation, linear regression, hypothesis testing.



MAT 271E – Homework 1

Due 18.02.2015

We randomly draw two cards from a deck. Recall that there are 4 colors in a deck (clubs, diamonds, hearts,
spades) and 52 cards in total. Answer each question below independently. Think in terms of events. The idea
is to make the computations simpler by introducing events.

1. Find the probability that both cards are hearts.
(Hint : Let A1 = {The first card is a heart}, and A2 = {The second card is a heart}. Observe that you
are asked to compute P (A2 ∩A1). Use conditioning!)

Solution. Let us define the events

A1 = {The first card is a heart},
A2 = {The second card is a heart}.

We need to find P (A2 ∩A1). Note that

P (A2 ∩A1) = P (A2|A1)P (A1).

But P (A2|A1) = 12/51 and P (A1) = 13/52 (Why?). Thus we find P (A2 ∩A1) = (13 · 12)/(52 · 51).

2. Find the probability that the second card is a heart.
(Hint : Consider A1, A2 as defined in the previous question’s hint. You are asked to compute just P (A2)
this time. Make use of A1 to simplify computation.)

Solution. Note that

P (A2) = P (A2 ∩A1) + P (A2 ∩Ac
1).

We already know P (A2 ∩A1) from Q1. Let us compute P (A2 ∩Ac
1). We have

P (A2 ∩Ac
1) = P (A2|Ac

1)P (Ac
1).

But P (A2|Ac
1) = 13/51 and P (Ac

1) = 39/52 (Why?). Thus we find P (A2 ∩A1) = (39 · 13)/(52 · 51). Thus
we find,

P (A2) =
13 · 12 + 39 · 13

52 · 51
=

1

4
.

Note that P (A2) = P (A1).

Here’s an alternative solution, based on a symmetry argument discussed also in class. Define the events

C = {The second card is a club},
D = {The second card is a diamond},
H = {The second card is a heart},
S = {The second card is a spade}.

Observe that C ∪D∪H ∪S = Ω. Also, by symmetry, we expect the probability of each event to be equal.
Therefore P (C) = P (D) = P (H) = P (S) = 1/4.

3. Find the probability that both cards have the same color.
(Hint : Define events to make your life easier. How is this question different from Q1?)

Solution. Let us define

B = {Both cards have the same color}. (1)

Note that we are asked to compute P (B). Now define the events

C = {Both cards are clubs},
D = {Both cards are diamonds},
H = {Both cards are hearts},
S = {Both cards are spades}.

Note that B = C ∪D ∪H ∪ S. Since these events are disjoint (i.e. C ∩D = ∅, C ∩H = ∅, etc.), we have
P (B) = P (C) + P (D) + P (H) + P (S). But by symmetry, we have P (C) = P (D) = P (H) = P (S). Also,
we already computed in Q1 that P (H) = 12/(4 · 51). Therefore, P (B) = 12/51.



4. Find the probability that at least one of the cards is a heart.
(Hint : Note that at least one means one or two in this case. Define simple events relevant for the problem
and express the event of interest in terms of the events you defined.)

Solution. Let us define the events

A = {At least one of the cards is a heart},
A1 = {The first card is a heart},
A2 = {The second card is a heart}.

Note that we are asked to compute P (A) and A = A1 ∪ A2. But A1 ∩ A2 6= ∅, so we cannot add the
probabilities of A1 and A2 to obtain the probability of A. To write A in terms of disjoint sets, note that
A = A1 ∪

(
A2 ∩Ac

1

)
. We can compute easily that P (A1) = 13/52. Notice also that

Ac
1 = {The first card is not a heart},

so P (Ac
1) = 39/52. Now,

P (A2 ∩Ac
1) = P (A2|Ac

1)P (Ac
1) =

13

51

39

52
.

We finally obtain,

P (A) = P (A1) + P (A2 ∩Ac
1) =

13

52
+

13

51

39

52
=

20

51
.

5. Given that both cards are aces, find the probability that one of them is a heart.

Solution. Define the events

A = {Both cards are aces},
B = {One of the cards is a heart}.

We need to compute P (B|A). But note that the set A ∩B is so small, we can list its elements. Suppose
(ha, sa) denotes the outcome for which the first card is the ace of hearts and the second card is the ace of
spades, etc. Then,

A ∩B = {(ha, ca), (ha, da), (ha, sa), (ca, ha), (da, ha), (sa, ha)}.

Since the probability of each element in A ∩B is 1/(52 · 51), we find P (A ∩B) = 6/(52 · 51). Also, since
P (A) = (4 · 3)/(52 · 51) (why?), we find

P (B|A) =
P (B ∩A)

P (A)
=

6

52 · 51

52 · 51

4 · 3
=

1

2
.

6. Given that both cards are faces (i.e., jack, queen or king), find the probability that both are hearts.

Solution. Let us define the events

F1 = {The first card is a face},
F2 = {The second card is a face},
H1 = {The first card is a heart},
H2 = {The second card is a heart}.

Note that we are asked to compute P (H1 ∩H2|F1 ∩ F2). Note that

P (H1 ∩H2|F1 ∩ F2) =
P
((

H1 ∩ F1

)
∩
(
H2 ∩ F2

))
P (F1 ∩ F2)

.

Notice that (why?)

P (F1 ∩ F2) = P (F2|F1)P (F1) =,

and (why?)

P
((

H1 ∩ F1

)
∩
(
H2 ∩ F2

))
= P

((
H2 ∩ F2

)∣∣∣(H1 ∩ F1

))
P (H1 ∩ F1) =

2

51

3

52
.

Thus we find

P (H1 ∩H2|F1 ∩ F2) =
2

51

3

52

51

11

52

12
=

1

22
.
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MAT 271E – Homework 2

Due 04.03.2015

1. We randomly select a card from a deck. Consider the following events.

A = {the card is a heart},
B = {the card is an ace},
C = {the card is a king}.

Check whether the following pairs of events are independent or not.

(a) A and B.

(b) A and C.

(c) B and C.

(d) B and Bc.

(e) Bc and Cc.

Solution. Note that P (A) = 1/4, P (B) = 1/13, P (C) = 1/13.

(a) We observe that

P (A ∩B) = 1/52 = P (A)P (B).

Therefore A and B are independent.

(b) Same reasoning as in (a) shows that A and C are independent.

(c) Note that B ∩ C = ∅ but P (B) > 0, P (C) > 0. Thus B and C are not independent.

(d) Same reasoning as in (d). An event and its complement are not independent unless one of them has
zero probability.

(e) Note that we have Bc ∩ Cc 6= ∅ so we cannot reason as in (c). We could check the independence
condition as in (a), but since we know that B and C are independent, here’s a more elegant argument
that makes use of this and another useful fact (for this question, it is of course trivial to check the
independence condition but in other scenarios, an argument like the one below might be handy).

Here’s the useful fact : if two arbitrary events E and F are independent, then E and F c are also
independent. To see this, observe that if E and F are independent,

P (E ∩ F c) = P (E)− P (E ∩ F )

= P (E)− P (E)P (F )

= P (E) (1− P (F ))

= P (E)P (F c)

from which the claim follows.

Suppose now that Bc and Cc are independent. Then Bc and C are also independent. But then B
and C must also be independent, and we know that this is not true. Therefore the initial assumption
about the independence of Bc and Cc must be wrong.

(Observe that actually an equivalent statement of the useful fact above is that if E and F are not
independent, then E and F c are not independent either.)

2. Suppose that three events satisfy the relation A ⊂ B ⊂ C. Show that P (A|B) ≥ P (A|C). (What does
this mean intuitively?)

Solution. Note that A ∩B = A ∩ C and P (C) ≥ P (B). Thus,

P (A|B) =
P (A ∩B)

P (B)
≥ P (A ∩ C)

P (C)
= P (A|C).

3. There are thirty balls in an urn and three of them are red. The balls are randomly distributed to three
people so that each person gets ten balls. What is the probability that each person has a red ball?

Solution. While you can solve this using combinatorics, there’s an alternative solution that makes use
of events to simplify the argument.



(Soln.1) Let us call label the persons as P1, P2, P3. Let us define the events,

A = {P1 gets a single red ball},
B = {P2 gets a single red ball},
C = {P3 gets a single red ball},
D = {each person gets a single red ball}.

Note that we are asked to compute P (D). Notice also that D = A ∩ B ∩ C. However we also
have, A ∩ B ⊂ C. Therefore, D = A ∩ B. To compute P (A ∩ B), we will use the identity
P (A ∩B) = P (B|A)P (A). Let us start with P (A). Let us further define the events

A1 = {the first ball of P1 is red, the rest are not},
A2 = {the second ball of P1 is red, the rest are not},

...

A10 = {the tenth ball of P1 is red, the rest are not}.

Note that A = A1 ∪ A2 ∪ · · · ∪ A10, and Ak ∩ Aj = ∅ if k 6= j. Therefore, P (A) =
∑

k P (Ak).
But we have (why?)

P (Ak) =
3

30

27

29

26

28
· · · 19

21

for any 1 ≤ k ≤ 10. Thus,

P (A) =
27 · 26 · · · 19

29 · 28 · · · 21
.

Let us now compute P (B|A). Let us similarly define the events

B1 = {the first ball of P2 is red, the rest are not},
B2 = {the second ball of P2 is red, the rest are not},

...

B10 = {the tenth ball of P2 is red, the rest are not}.

We have B = B1 ∪B2 ∪ · · · ∪B10, and Bk ∩Bj = ∅, if k 6= j. Therefore, it follows that

P (B|A) =
P
(
(B1 ∩A) ∪ (B2 ∩A) ∪ · · · ∪ (B10 ∩A)

)
P (A)

=
P
(
B1 ∩A

)
P (A)

+
P
(
B2 ∩A

)
P (A)

+ · · ·+
P
(
B10 ∩A

)
P (A)

=

10∑
k=1

P (Bk|A).

Note that given A, there are 20 balls available to P2, two of which are red. Therefore, we have,

P (Bk|A) =
2

20

18

19

17

18
· · · 10

11
.

for any 1 ≤ k ≤ 10. Thus,

P (B|A) =
18 · 17 · · · 10

19 · 18 · · · 11
.

Combining we obtain,

P (A ∩B) = P (B|A)P (A) =
27 · 26 · · · 10

(29 · 28 · · · 21) · (19 · 18 · · · 11)
=

20 · 10

29 · 28
.
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(Soln.2) Suppose we draw the balls one by one and form a sequence of length 30. The first ten balls are
given to P1 (first person), the second ten balls are given to P2 and the last ten balls are given
to P3 (if you think the order with which the balls are handed in matters, you could first form a
sequence of length 30 as above, and then give the first ten to one of the persons chosen randomly,
the second ten to another chosen randomly etc. – but it does not matter in fact). Suppose we
also label the red balls as R1, R2, R3. These red balls can be placed in a total of

(
30
3

)
·3! different

arrangements. But we are interested in the number of distributions for which there is a red ball
placed between positions 1 to 10, another between positions 11 to 20 and another between 21 to
30. The total number of arrangements under such a restriction is

(
10 ·10 ·10 ·3!

)
. The ratio gives

us the probability we are after,

10 · 10 · 10 · 3!(
30
3

)
· 3!

=
20 · 10

29 · 28
.

4. Consider an experiment that consists of three independent tosses of a coin. Note that we can list the
sample space as Ω = {HHH,HHT,HTH,HTT, . . . , TTT}. Let X be a discrete random variable that
maps Ω to real numbers, defined as X(ω) = (number of heads in ω)−(number of tails in ω), where ω ∈ Ω.
Also let Y = 3X − 3.

(a) Write down the largest set A such that X(ω) ≤ 0 if ω ∈ A.

(b) Write down the largest set B such that Y (ω) ≤ −1 if ω ∈ B.

Solution. (a) A = {HTT, THT, TTH, TTT}.
(b) B = {ω : 3X(ω)− 3 ≤ −1} = {ω : X(ω) ≤ 2/3} = A.

3



MAT 271E – Homework 3

Due 18.03.2015

1. Suppose X is a geometric random variable with PMF given as

PX(k) =

{
(1− p)k−1 p, if k is a positive integer,

0, otherwise.

Also, let Y and Z be random variables defined as,

Y =

{
1, if X is even,

−1, if X is odd,

Z =

{
0, if X ≤ 10,

1, if 10 < X.

(a) Find the PMF of Y .

(b) Compute E(Z).

Solution. (a) We compute

P ({Y = 1}) =

∞∑
k=1

(1− p)2k−1 p

=
p

1− p

∞∑
k=1

(
(1− p)2

)k
=

p

1− p

(1− p)2

2p− p2

=
1− p

2− p

Since Y can only take two values, we have, P ({Y = −1}) = 1− P ({Y = 1}). Thus,

PY (k) =


1

2−p , if k = −1,
1−p
2−p , if k = 1,

0 othwerwise.

(b) It is easier to compute E(Z) using PX here.

E(Z) =

∞∑
k=11

PX(k)

=

∞∑
k=11

(1− p)k−1 p

=
(1− p)10

p

∞∑
k=0

(1− p)k

=
(1− p)10

p2
.

Note that E(Z) = P ({X > 10}).

2. Consider a square whose corners are labeled as ci (see below). A particle is placed on one of the corners
and starts moving from one corner to another connected by an edge at each step (note that there is an
edge between c1 and c4 and an edge between c2 and c3).

c1 c2

c4c3
If the particle reaches c4, it is trapped and stops moving. Assume that the steps
taken by the particle are independent and the particle chooses its next stop randomly
(i.e., all choices are equally likely). Suppose also that the particle is initially placed
at c1. Also, let X denote the total number of steps taken by the particle (to reach
c4).



(a) Find the probability that X = 1.

(b) Find the probability that X = 2.

(c) Find the PMF of X.

(d) Compute the expected value of X.

Solution. (a) P ({X = 1} = 1/3 since the probability of going to c4 from c1 is 1/3.

(b) In this case, we need to compute the probability of a sequence of the form d c4 where d is either c2
or c3. Thus P ({X = 2}) = 2

3
1
3 .

(c) Note that by similar reasoning X = n occurs if we observe a sequence of the form d1 d2 . . . dn−1 c4,
where dk’s are different than c4. Thus the PMF is given by

PX(n) =
2n−1

3n
,

where n is a positive integer.

(d) Using PX(n), we compute,

E(X) =
1

3

∞∑
n=1

n

(
2

3

)n−1

= 3.

3. Repeat the question above but this time assume that the corners are connected as shown below.

c1 c2

c4c3

Notice that now c2 and c3 are not connected. Consequently, if the particle is at c2, the probability of
choosing c1 or c4 as the next stop is 1/2.

Solution. (a) P ({X = 1} = 1/3 since the probability of going to c4 from c1 is 1/3.

(b) X = 2 if and only if one of the corner sequences in {(c2 c4), (c3 c4)} occurs. Therefore,

P ({X = 2} =
1

3

1

2
+

1

3

1

2
=

1

3
.

(c) Note that X = 4 occurs if and only if we observe a corner sequence of the form (x c1 c4), where x is
either c2 or c3. That is, we have to come back to c1 if X > 2. More generally, X = 2k + 1 occurs if
and only if a sequence of the form

(x c1 x c1 . . . x c1 c4)

occurs, where x is either c2 or c3. Note that the number of x’s is equal to k in that sequence. The
number of c1’s is also k. Thus we compute

P ({X = 2k + 1} =

(
2

3

)k (
1

2

)k
1

3
=

(
1

3

)k+1

By similar reasoning, we can observe that X = 2k (with k > 1) if and only if a sequence of the form

(x c1 x c1 . . . x c4)

occurs. Here, the number of x’s is k and the number of c1’s is k − 1. Thus,

P ({X = 2k} =

(
2

3

)k (
1

2

)k−1
1

2
=

(
1

3

)k

Therefore, the PMF is given by

PX(k) =

{(
1
3

)(k+1)/2
, if k is an odd integer,(

1
3

)k/2
, if k is an even integer.

(d) Using the PMF, we can now compute

E(X) =

∞∑
k=1

k PX(k)

=

∞∑
n=0

(2n + 1)

(
1

3

)n+1

+

∞∑
n=1

(2n)

(
1

3

)n

= 5/2

2



MAT 271E – Homework 4

Due 25.03.2015

1. Suppose X, Y are independent random variables (integer valued) with PMF given as

PX(k) =

{
1/2, if k = 0,

1/2, if k = 1,
and PY (k) =

(
3

4

)k−1
1

4
, if k ≥ 1.

(a) Let Z = X + Y . Find the PMF of Z.

(b) Let Z = Y −X. Find the PMF of Z.

Solution. (a) Note that

{Z = 1} = {X = 0, Y = 1},
{Z = k} = {X = 0, Y = k} ∪ {X = 1, Y = k − 1}, for k > 1.

Thanks to the independence of X and Y , we thus have

PZ(k) =

{
1
2 ·

1
4 , if k = 1,

1
2 ·
(
3
4

)k−1 1
4 + 1

2 ·
(
3
4

)k−2 1
4 , if k > 1.

(b) We similarly observe that

{Z = 0} = {X = 1, Y = 1},
{Z = k} = {X = 0, Y = k} ∪ {X = 1, Y = k + 1}, for k > 0.

Thanks to the independence of X and Y , we thus have

PZ(k) =

{
1
2 ·

1
4 , if k = 0,

1
2 ·
(
3
4

)k−1 1
4 + 1

2 ·
(
3
4

)k 1
4 , if k > 0.

2. Consider a box whose corners are labeled as ci (see below).

c1 c2

c4c3

c5 c6

c8c7

A particle is placed on c1 and starts moving from one corner to another connected by an edge at each
step. If the particle reaches the opposite corner c8, it is trapped and stops moving. Assume that the
steps taken by the particle are independent and the particle chooses its next stop randomly (i.e., all three
choices are equally likely). Also, let X denote the total number of steps taken by the particle (to reach
c8). Our goal is to compute the expected value of X. The steps below propose an approach based on
conditional expectations.

For conditioning, let us also define the random variable Yn as the minimum number of steps that needs
to be taken to reach c8 after the nth step. Observe that Y0 = 3 and Y1 = 2 with probability one.

Let us also define d1 = E(X|Yn = 1)− n, d2 = E(X|Yn = 2)− n, d3 = E(X|Yn = 3)− n. Notice that dk
is independent of n. dk is the expected number of steps after we observe that at the nth step, we are at
least k steps away from c8. Observe also that d3 = 1 + d2 and E(X) = d3.

(a) Find the conditional probabilities P (Yn = 3|Yn−1 = 2), P (Yn = 2|Yn−1 = 1), P (Yn = 1|Yn−1 = 2).

(b) Show that

P
(

(X = 2n + 3)
∣∣∣(X ≥ 2n + 1)

)
=

7

9
P
(

(X = 2n + 1)
∣∣∣(X ≥ 2n + 1)

)
.

(c) Show using part (b) that E(X) <∞.

(d) We noted that d3 = 1 + d2. Find a different equation that expresses d2 in terms of d1 and d3. Then
find yet another independent equation that expresses d1 in terms of d2. Solve the three equations to
obtain d1. (Why do we need part (c)?)



Solution. (a) P (Yn = 3|Yn−1 = 2) = 1/3, P (Yn = 1|Yn−1 = 2) = 2/3 because every corner two steps
away from c8 is adjacent to c1 and two other corners which are one-step away from c8.

P (Yn = 2|Yn−1 = 1) = 2/3 because every corner which is one-step away from c8 is a neighbor of two
other corners which are two steps away from c8.

P (Yn = 2|Yn−1 = 3) = 1 because all neighbors of c1 are two steps away from c8.

(b) Observe that Xcannot be negative and if X = 2n + 1, then the realization of the sequence obtained
by Yn’s is of the form

(y1, y2, y3, y4, . . . , y2n−1, 1, 0),

where y2k+1 = 2, for 0 ≤ k < n. Now if A = {X ≥ 2n + 1} occurs, this means that yk 6= 0 for k ≤ 2n
and y2n−1 = 2.

Given A, the event B = {X = 2n+ 1} occurs if and only if (y2n, y2n+1) = (1, 0). Therefore P (B|A) =
(2/3) · (1/3).

Given A, the event C = {X = 2n + 3} occurs if and only if

(y2n, y2n+1, y2n+2, y2n+3) ∈ {(1, 2, 1, 0), (3, 2, 1, 0)}.

Therefore,

P (C|A) = (2/3) · (1/3) · (2/3) · (1/3) + (1/3) · 1 · (2/3) · (1/3).

Computing ratios, we find that P (C|A) = (2/9)P (B|A).

Observe now that actually, B ⊂ A, C ⊂ A. Therefore, P (C) = (2/9)P (B) (show this!).

(Note : You can actually derive the PMF and obtain E(X) directly.)

(c) It follows from part (b) that PX(2k) = 0 and PX(2k + 1) ≤ (7/9)k. Thus,

E(X) ≤
∞∑
k=0

(2k + 1) (7/9)k <∞.

(d) Let A = {Yn = 2}, B1 = {Yn+1 = 1}, B3 = {Yn+1 = 3}. Then, we can write, A = (A∩B1)∪ (A∩B3),
where (A ∩B1) and (A ∩B3) are disjoint. We now note that (show this!)

E(X|A) = E(X|A ∩B1)P (B1|A) + E(X|A ∩B3)P (B3|A).

But notice that if we know Yn+1, then the number of remaining steps no longer depends on the value
of Yn. Therefore,

E(X|A ∩B1) = E(X|B1) = d1 + n + 1.

Similarly,

E(X|A ∩B3) = E(X|B3) = d3 + n + 1.

Noting that P (B1|A) = 2/3, P (B3|A) = 1/3 (by part (a)), we thus obtain,

E(X|A) = d2 + n =
2

3
(d1 + n + 1) +

1

3
(d3 + n + 1).

Rearranging, we obtain,

d2 =
2

3
d1 +

1

3
d3 + 1.

By a similar reasoning, we obtain another equality as

d1 =
2

3
d2 + 1.

Putting the three equations together, we obtain the system of equations,

d1 =
2

3
d2 + 1,

d2 =
2

3
d1 +

1

3
d3 + 1,

d3 = d2 + 1.

This is a linear system. Solving for di’s, we find d1 = 7, d2 = 9, d3 = 10. This is the only finite
solution, observe also that di =∞also satisfies the equations – but we ruled out this case in part (c).
Thus E(X) = 10.

2



MAT 271E – Homework 5

Due 08.04.2015

In the questions below, suppose X1, X2 and X3 are independent random variables uniformly distributed on
[0, 1].

1. Compute the probability that X1 ≤ X2.

Solution. Let us define the events

A1 = {X1 ≤ X2}
A2 = {X2 ≤ X1}.

Note that the intersection of Ai’s has zero probability and A1 ∪ A2 = Ω. Also, by symmetry, P (A1) =
P (A2). Therefore, P (A1) = P (A2) = 1/2.

An alternative solution is as follows :

P (A1) =

∫ ∞
−∞

P (A1|X2 = t) fX2
(t) dt

=

∫ 1

0

P (X1 ≤ t) dt

=

∫ 1

0

t dt = 1/2.

2. Compute the probability that X1 ≤ 2X2.

Solution.

P (X1 ≤ 2X2) =

∫ ∞
−∞

P (X1 ≤ 2X2|X2 = t) fX2(t) dt

=

∫ 1

0

P (X1 ≤ 2t) dt.

Observe now that

P (X1 ≤ 2t) =

{
2t, if 0 ≤ t ≤ 1/2,

1, if 1/2 < t ≤ 1.

Thus,

P (X1 ≤ 2X2) =

∫ 1/2

0

2t dt +

∫ 1

1/2

1 dt =
3

4
.

An alternative solution can be obtained by conditioning on X1 = t and X2 = u.

P (X1 ≤ 2X2) =

∫ ∞
−∞

∫ ∞
−∞

P (X1 ≤ 2X2|X1 = t,X2 = u) fX1,X2
(t, u) du dt

=

∫ ∞
−∞

∫ ∞
−∞

P (t ≤ 2u) fX1,X2(t, u) du dt

=

∫ 1

0

∫ 1

0

P (t ≤ 2u) du dt.

Observe now that for fixed numbers t and u,

P (t ≤ 2u) =

{
1, if t/2 ≤ u,

0, if t > 2u.

Therefore,

P (X1 ≤ 2X2) =

∫ 1

0

∫ 1

t/2

1 du dt

=

∫ 1

0

(1− t/2) dt

=
3

4
.



3. Compute the probability that X1 ≤ X2 ≤ X3.

Solution. With a symmetry argument as in Q1, we can see that this probability is 1/6. But let us see
how to compute this probability by conditioning. We have,

P (X1 ≤ X2 ≤ X3) =

∫ ∞
−∞

∫ ∞
−∞

P (X1 ≤ X2 ≤ X3|X2 = t,X3 = u) fX2,X3
(t, u) du dt

=

∫ ∞
−∞

∫ ∞
−∞

P (X1 ≤ t ≤ u) fX1,X2
(t, u) du dt

=

∫ 1

0

∫ 1

0

P (X1 ≤ t ≤ u) du dt.

Observe that for fixed t and u with 0 ≤ t ≤ 1, 0 ≤ u ≤ 1,

P (X1 ≤ t ≤ u) =

{
t, if t ≤ u,

0, if u > t.

Therefore,

P (X1 ≤ X2 ≤ X3) =

∫ 1

0

∫ 1

t

t du dt

=

∫ 1

0

t(1− t) dt

=
1

6
.

4. Compute the probability that X1 ≤ 2X2 ≤ 3X3.

Solution. We have,

P (X1 ≤ 2X2 ≤ 3X3) =

∫ ∞
−∞

∫ ∞
−∞

P (X1 ≤ 2X2 ≤ 3X3|X2 = t,X3 = u) fX2,X3
(t, u) du dt

=

∫ ∞
−∞

∫ ∞
−∞

P (X1 ≤ 2t ≤ 3u) fX2,X3
(t, u) du dt

=

∫ 1

0

∫ 1

0

P (X1 ≤ 2t ≤ 3u) du dt.

Observe that for fixed t and u with 0 ≤ t ≤ 1, 0 ≤ u ≤ 1,

P (X1 ≤ 2t ≤ 3u) =


2t, if 0 ≤ t ≤ 1/2 and 2t/3 ≤ u,

1, if 1/2 ≤ t and 2t/3 ≤ u,

0, if u > 2t/3.

Therefore,

P (X1 ≤ X2 ≤ X3) =

∫ 1/2

0

∫ 1

2t/3

2t du dt +

∫ 1

1/2

∫ 1

2t/3

1 du dt

=

∫ 1/2

0

2t (1− 2t/3) dt +

∫ 1

1/2

(1− 2t/3) dt

= (t2 − 4t3/9)
∣∣∣1/2
0

+ (t− t2/3)
∣∣∣1
1/2

=
4

9
.

5. Using Xi’s suppose we form a symmetric matrix as,

A =

[
X1 X3

X3 X2

]
.

Note that A is a 2× 2 symmetric matrix with positive entries.

2



(a) Compute the probability that A is invertible.

(b) In this particular setting, A is positive definite if its determinant is positive. Compute the probability
that A is positive definite.
Hint : For t ∈ [0, 1], what is the probability that X1 X2 ≥ t?
(Note : You should know the definition of positive definiteness from linear algebra – if you don’t
remember please look it up!)

Solution. (a) A is invertible if and only if its determinant is non-zero or, if the event {X1 X2 6= X2
3}

occurs. Note that

P (X1 X2 6= X2
3 ) =

∫ ∞
−∞

P (X1 X2 6= X2
3 |X3 = t) fX3(t) dt

=

∫ ∞
−∞

P (X1 X2 6= t2) fX3
(t) dt.

But P (X1 X2 6= t2) = 1 for any t. Therefore, P (X1 X2 6= X2
3 ) = 1. Thus A is invertible with

probability one.

(b) We have,

P (X1 X2 ≥ X3) =

∫ ∞
−∞

∫ ∞
−∞

P (X1 X2 ≥ X3|X2 = t,X3 = u) fX2,X3
(t, u) du dt

=

∫ ∞
−∞

∫ ∞
−∞

P (X1 ≥ t/u) fX2,X3
(t, u) du dt

=

∫ 1

0

∫ 1

0

P (X1 ≥ t/u) du dt.

Observe that for fixed t and u with 0 ≤ t ≤ 1, 0 ≤ u ≤ 1,

P (X1 ≥ t/u) =

{
(1− t/u), if t ≤ u,

0, if t > u.

Therefore (check this!),

P (X1 X2 ≥ X3) =

∫ 1

0

∫ 1

t

1− t

u
du dt

=

∫ 1

0

(1− t) + t ln(t) dt

=
1

4
.

6. Let Z = 2X1. Write down the cdf and the pdf of Z.

Solution. We compute

P (Z ≤ t) = P (X1 ≤ 2t) = FX(2t) =


0, if t < 0,

2t, if 0 ≤ t ≤ 1/2,

1, if 1/2 < t.

Differentiating with respect to t, we obtain,

fZ(t) = F ′Z(t) =


0, if t < 0,

2, if 0 ≤ t ≤ 1/2,

0, if 1/2 < t.

7. Let Z = −X1. Write down the cdf and the pdf of Z.

Solution. We compute

P (Z ≤ t) = P (−X1 ≤ t)

= P (−t ≤ X1)

= 1− P (X1 < −t)
= 1− FX(−t)

=


0, if t < −1,

1 + t, if − 1 ≤ t ≤ 0,

1, if 0 < t.

3



Differentiating with respect to t, we obtain,

fZ(t) = F ′Z(t) =


0, if t < −1,

1, if − 1 ≤ t ≤ 0,

0, if 0 < t.

8. Let Z = X1 + X2. Write down the cdf and the pdf of Z.

Solution. We compute

P (Z ≤ t) = P (X1 + X2 ≤ t)

=

∫ ∞
−∞

P (X1 + X2 ≤ t|X2 = u) fX2
(u) du

=

∫ ∞
−∞

P (X1 ≤ t− u) fX2
(u) du

=

∫ 1

0

P (X1 ≤ t− u) du.

Notice now that

P (X1 ≤ t− u) =


0, if t− u < 0,

t− u, if 0 ≤ t− u ≤ 1,

1, if 1 < t− u.

Thus the form of the integral depends on the value of t. Let us investigate that

• If t < 0, for u ∈ [0, 1], we have t− u < 0. Thus,

P (Z ≤ t) =

∫ 1

0

P (X1 ≤ t− u) du = 0.

• If 0 ≤ t ≤ 1, for u ∈ [0, 1],

P (X1 ≤ t− u) =

{
0, if t < u,

t− u, if u ≤ t.

Thus

P (Z ≤ t) =

∫ t

0

(t− u) du = t2/2.

• If 1 ≤ t ≤ 2, for u ∈ [0, 1],

P (X1 ≤ t− u) =

{
t− u, if t− 1 < u,

1, if t− 1 > u.

Thus

P (Z ≤ t) =

∫ t−1

0

1 du +

∫ 1

t−1
t− u du = 2t− t2

2
− 1.

• If t > 2, for u ∈ [0, 1], we have t− u > 1. Thus,

P (Z ≤ t) =

∫ 1

0

P (X1 ≤ t− u) du =

∫ 1

0

1 du = 1.

To summarize, the cdf and the pdf of Z is given as,

FZ(t) = P (Z ≤ t) =


0, if t < 0,

t2/2, if 0 ≤ t ≤ 1,

2t− t2/2− 1, if 1 ≤ t ≤ 2,

1, if 2 < t,

fZ(t) = F ′Z(t) =


0, if t < 0,

t, if 0 ≤ t ≤ 1,

2− t, if 1 ≤ t ≤ 2,

0, if 2 < t.

4



MAT 271E – Homework 6

Due 15.04.2015

1. You and your friend play a game as follows. You toss a fair coin until the first Head occurs and your friend rolls a fair die
for each toss. Save for this stopping condition, assume that the tosses and the rolls are otherwise independent. What is
the expected sum of the die rolls?

Solution. In the following, we denote the sum of the die rolls as X.

Let us define the events

An = {the first Head occurs at the nth toss},

for n ≥ 1. Observe that An’s form a partition of the sample space and P (An) = (1/2)n.

Note now that the expected value of the roll of a fair die is,

6∑
i=1

i
1

6
=

7

2
.

If we roll the die n times, the expected value of the sum (under the assumption that the rolls are independent) is therefore
7n/2. Thus,

E(X|An) =
7

2
n.

We finally obtain,

E(X) =

∞∑
n=1

E(X|An)P (An) =

∞∑
n=1

7

2
n

1

2n
= 7.

2. Suppose (X1, X2) is uniformly distributed on the triangle formed by the points (0, 0), (1, 0), (0, 1). That is,

fX1,X2
(t, u) =

{
2, if 0 ≤ t, 0 ≤ u, and t+ u ≤ 1,

0, otherwise.

(a) Find the marginal pdfs of X1 and X2.

(b) Determine if X1 and X2 are independent.

(c) Compute P (X1 ≤ t|X2 = 1/2), fX1|X2
(t|1/2) and E(X1|X2 = 1/2).

(d) Compute E(X1|X1 ≤ X2).

Solution. (a) We compute

fX1
(t) =

∫ ∞
−∞

fX1,X2
(t, u) du =

{
0, if t /∈ [0, 1],∫ 1−t
0

2 du = 2(1− t), if t ∈ [0, 1].

It similarly follows that

fX2
(u) =

{
0, if u /∈ [0, 1],

2(1− u), if u ∈ [0, 1].

(b) Observe that

fX1
(t) fX2

(u) 6= fX1,X2
(t, u)

for all (t, u). Therefore X1 and X2 are not independent.

(c) Note that

fX1|X2
(t|u) =

fX1,X2
(t, u)

fX2
(u)

=

{
1/(1− u), if t ≥ 0, u ≥ 0, t+ u ≤ 1,

0, otherwise.

Thus,

fX1|X2
(t|1/2) =

{
2, if 0 ≤ t ≤ 1/2,

0, otherwise.

We now obtain,

P (X1 ≤ t|X2 = 1/2) =


0, if t ≤ 0,

2t, if 0 ≤ t ≤ 1/2,

1, if 1/2 < t.

Also,

E(X1|X2 = 1/2) =

∫ ∞
−∞

t fX1|X2
(t|1/2) dt =

1

4
.



(d) Let A be the event that X1 ≤ X2. To compute E(X1|A), let us first find the conditional joint pdf fX1,X2|A(t, u). Notice
that since X1 and X2 is uniformly distributed on the triangle ∆ between the points (0, 0), (1, 0), (0, 1), given A, the
pair is uniformly distributed on ∆ ∩A (why?). Therefore, the conditional joint pdf is given as,

fX1,X2|A(t, u) =

{
4, if 0 ≤ t, 0 ≤ u, and t+ u ≤ 1, t ≤ u,
0, otherwise.

We can now compute E(X1|A) using this joint conditional pdf,

E(X1|A) =

∫ ∞
−∞

∫ ∞
−∞

t fX1,X2|A(t, u) du dt

=

∫ 1/2

0

∫ 1−t

t

t 4 du dt

=

∫ 1/2

0

∫ 1−t

t

t 4 (1− 2t) dt

=
1

6
.

3. Suppose X and Y are independent standard normal random variables. Also, let Z = X + 2Y .

(a) Find the joint pdf of X and Z, that is fX,Z(t, u).

(b) Find the pdf of Z.

(c) Compute E(X|Z = u).

Solution. (a) Notice that given X = t, Z can be written as Z = t+ 2Y . But we know that if U = aV + b, then

fU (u) =
1

|a|
fV

(
u− b
a

)
.

Since Y is standard normal, it therefore follows that

fZ|X(u|t) =
1

2
fY

(
u− t

2

)
=

1√
2π 2

exp

(
−1

2

(
u− t

2

)2
)
.

Notice that this is the pdf of a Gaussian with mean t, variance 4. Multiplying with fX(t), we obtain the joint pdf as,

fZ,X(u, t) =
1

4π
exp

(
−1

8
(u− t)2 − 1

2
t2
)
.

(b) We can find the pdf of Z in different ways. First, we can use the joint pdf of Z and X to find the marginal pdf as,

fZ(t) =

∫ ∞
−∞

fZ,X(t, u) dt.

For that, notice that (check this!)

fZ,X(u, t) =
1√

2π
√

5
exp

(
− 1

10
u2
)
× 1√

2π 2/
√

5
exp

(
−5

8
(t− u/5)2

)
.

We recognize the second term as the pdf of a Gaussian random variable centered around u with variance 4/5. Thus it
integrates to 1. Using this observation, we obtain,

fZ(t) =

∫ ∞
−∞

1√
2π
√

5
exp

(
− 1

10
u2
)
× 1√

2π 2/
√

5
exp

(
−5

8
(t− u/5)2

)
dt

=
1√

2π
√

5
exp

(
− 1

10
u2
) ∫ ∞

−∞

1√
2π 2/

√
5

exp

(
−5

8
(t− u/5)2

)
du

=
1√

2π
√

5
exp

(
− 1

10
u2
)
.

Thus Z is Gaussian with mean 0, variance 5.

The second approach is arguably simpler. For that, remember that the sum of Gaussian random variables is Gaussian
and only two parameters (mean and variance) are necessary to describe a Gaussian random variable. For our case, we
know X and Y are independent and zero-mean. Therefore Z is also zero mean and has variance 1 + 4 = 5.

(c) Note that

fX|Z(t|u) =
fZ,X(u, t)

fZ(u)
=

1√
2π 2/

√
5

exp

(
−5

8
(t− u/5)2

)
.

Thus, given Z = u, X is a Gaussian random variable with mean u/5, variance 4/5. Therefore, E(X|Z = u) = u/5.
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MAT 271E – Homework 7

Due 06.05.2015

1. Let X be a random variable, uniformly distributed on [0, 1]. Also, let Z be another random variable defined as Z = Xα,
where α is an non-zero but unknown constant.

(a) Compute fZ(t), the pdf of Z, in terms of α.

(b) Suppose we are given two independent realizations of Z as z1, z2. Find the maximum likelihood (ML) estimate of α, in
terms of z1, z2.

(c) Evaluate the ML estimate you found in part (b) for z1 = e−3, z2 = e−4.

Solution. (a) Notice that

FZ(t) = P (Z ≤ t) = P (Xα ≤ t) = P (X ≤ t1/α) =


0, if t < 0,

t1/α, if t ∈ [0, 1],

1, if 1 < t

Differentiating wrt t, we obtain the pdf of Z.

fZ(t) =

{
1
α t

1/α−1, if t ∈ [0, 1],

0, if t /∈ [0, 1].

(b) Given the observations, z1, z2, the likelihood function is,

L(α) = fZ(z1) fZ(z2) =
1

α2
(z1 z2)1/α.

Let p = z1 z2 for simplicity of notation. To find the maximizer of L(α), namely α̂, we set the derivative to zero,

L′(α̂) = −2
1

α̂3
p1/α−1 +

1

α2
p1/α−1

(
− p

α2

)
= 0.

Solving this equation, we obtain the ML estimate as

α̂ = − ln(z1 z2)

2
.

(c) Plugging in the values for z1 and z2, the ML estimate is found for this case as,

α̂ =
3 + 4

2
.

2. Consider two independent random variables, X, Y , that are uniformly distributed on [0, θ]. Using X and Y , we define a new
random variable as Z = max(X,Y ).

(a) Suppose θ is an unknown parameter of interest. A student proposes to use Z as an estimator for θ. Is Z a biased or an
unbiased estimator for θ? If it is biased, can you propose an unbiased estimator?

(b) Biased or not, we decide to use Z as the estimator for θ. Find the value of c so that the interval [Z,Z + c] contains θ
with probability 99/100.

Solution. (a) Let us first find the pdf of Z (it will facilitate our job in (b)). Notice that, because X and Y are independent,

FZ(t) = P (Z ≤ t) = P
(

(X ≤ t) ∩ (Y ≤ t)
)

= P (X ≤ t)P (Y ≤ t) =


0, if t < 0,

t2/θ2, if t ∈ [0, θ],

1, if θ < t.

We obtain the pdf by differentiating as,

fZ(t) =

{
2t/θ2, if t ∈ [0, θ],

0, if t /∈ [0, θ].

We can now compute E(Z) as,

E(Z) =

∫ θ

0

t
2t

θ2
dt =

2

3
θ.

Since E(Z) 6= θ, Z is biased as an estimator of θ. However, we see that

θ̂ =
3

2
Z =

3

2
max(X,Y )

is an unbiased estimator of θ.



(b) Notice that

P (θ ∈ [Z,Z + c]) = P (Z ≤ θ ≤ Z + c)

= P
(
(Z ≤ θ) ∩ (θ ≤ Z + c)

)
= P

(
(Z ≤ θ) ∩ (θ − c ≤ Z)

)
= P

(
θ − c ≤ Z ≤ θ

)
=

∫ θ

θ−c
fZ(t) dt

= 1− (θ − c)2

θ2
.

Solving the equation,

1− (θ − c)2

θ2
=

99

100
,

we obtain c as, c = 9θ
10 .

3. Suppose X1, X2, . . . , Xn are independent and identically distributed random variables with pdf

fXi(t) =

{
0, if t < 0,

ln(θ) θ−t, if t ≥ 0,

where θ > 1 is an unknown constant. Find the maximum likelihood estimator for θ in terms of X1, X2, . . . , Xn. Specify
whether the estimator you found is biased or not.

Solution. Since Xi’s are independent, their joint pdf is given as,

f(t1, t2, . . . , tn) =

n∏
i=1

fXi
(ti) =

{
(ln θ)n θ−

∑
i ti , if all ti ≥ 0,

0, otherwise.

Suppose we are given the realizations of Xi as xi. Then, the likelihood function is obtained by evaluating the joint pdf at
ti = xi, giving us,

L(θ) = (ln θ)n θ−s, (1)

where s =
∑n
i=1 xi. To find the maximizer of L(θ), we set the derivative with respect to θ to zero and obtain the equation,

L′(θ̂) =
n

θ
(ln θ)n−1 θ−s + (ln θ)n(−s) θ−s−1

∣∣∣
θ=θ̂

= 0

Solving this equation, we obtain the ML estimate as,

θ̂ = en/s.

This estimator is biased. In fact, for n = 1, the expected value of θ̂ is infinite.

4. Consider a disk with an unknown radius r. We are interested in the area of the disk. For this, we measure the radius n
times but each measurement contains some error. Specifically, suppose that the measurements are of the form Xi = r + Zi
for i = 1, 2, . . . , n, where Zi’s are independent zero-mean Gaussian random variables with known variance σ2. A professor
suggests that we use

Â = π

(
1

n

n∑
i=1

X2
i

)
as an estimator of the area. Determine if Â is biased or not. If it is biased, propose an unbiased estimator for the area of the
disk.

Solution. Notice that

E(Â) = E

(
π

n

n∑
i=1

X2
i

)

=
π

n

n∑
i=1

E(X2
i )

=
π

n

n∑
i=1

E(r2 + 2r Zi + Z2
i )

=
π

n

n∑
i=1

r2 + σ2

= π r2 + π σ2.

Thus, Â is biased. Observe however that an unbiased estimator can be derived easily from Â as,

Ā = Â− π σ2 = π

[(
1

n

n∑
i=1

X2
i

)
− σ2

]
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MAT 271E – Probability and Statistics

Midterm Examination I

11.03.2015

Student Name :

Student Num. :

4 Questions, 120 Minutes

Please Show Your Work for Full Credit!

1. An urn contains one red, two green, and three blue balls. A ball is drawn randomly from the(25 pts)

urn. Then without putting the drawn ball back, another ball is drawn randomly.

(a) Propose a sample space for this experiment.

(b) Compute the probability that the second ball is blue.

(c) Given that the second ball is blue, compute the probability that the first ball is red.

2. Suppose that a coin is tossed five times. The coin is biased and P (Head) = p. Assume that the(25 pts)

tosses are independent.

(a) Consider the event A = {all tosses are Tails}. Compute P (A), the probability of A.

(b) Consider the event B = {at least one Head occurs}. Compute P (B).

(Hint : Note that ‘at least one’ means ‘one or more than one’. Think of how A and B are

related.)

(c) Consider the event C = {at least one Tail occurs}. Given the event B in (b), compute

P (C|B), the conditional probability of C given B.

3. Suppose X is a random variable whose probability mass function (PMF) is given as(25 pts)

PX(k) =

{
c 2−k, if k is an integer in [−2, 2],

0, otherwise,

where c is a constant. Suppose also that Y = |X|.

(a) Determine c.

(b) Compute the probability of the event {X ≤ 1} (give your answer in terms of c if you have

no answer for part (a)).

(c) Compute the probability of the event {Y ≤ 1}.

(d) Find PY , the PMF of Y .

4. Consider a square whose corners are labeled as ci (see below). A particle is placed on one of the(25 pts)

corners and starts moving from one corner to another connected by an edge at each step. Notice

that each corner is connected to only two corners.



c1 c2

c4c3

If the particle reaches c4, it is trapped and stops moving. Assume that the steps taken by the

particle are independent and the particle chooses its next stop randomly (i.e., all possible choices

are equally likely). Suppose that the particle is initially placed at c1. Also, let X denote the

total number of steps taken by the particle to reach c4.

(a) Find the probability that X = 1.

(b) Find the probability that X = 2.

(c) Find the probability that X = 4.

(d) Write down PX , the probability mass function (PMF) of X.

(e) Compute E(X), the expected value of X.



MAT 271E – Probability and Statistics

Midterm Examination II

22.04.2015

Student Name :

Student Num. :

4 Questions, 100 Minutes

Please Show Your Work for Full Credit!

1. Consider a random variable X whose probability density function (pdf) is as shown below.(25 pts)

−2 0 2

1
3

fX(t)

t

Let us define the events A and B as A = {X > 0}, B = {|X| > 1}.

(a) Compute the probability of A.

(b) Compute the probability of B.

(c) Compute the conditional probability P (A|B).

(d) Compute E(X).

2. Suppose X is a continuous random variable with cumulative distribution function (cdf) Φ(t) =(25 pts)

P (X < t), and Z is a Bernoulli random variable with probability mass function (PMF),

PZ(k) =


1/2, if k = 0,

1/2, if k = 1,

0, otherwise.

Also, let Y = X + Z. Assume that X and Z are independent.

(a) Find an expression for P (Y > 0) in terms of Φ(t).

(Note: Pay attention to the direction of the inequality).

(b) Find an expression for FY (t) = P (Y ≤ t) in terms of Φ(t).

3. Suppose X is uniformly distributed on the interval [−2, 2], that is,(25 pts)

fX(t) =

{
1/4, if − 2 ≤ t ≤ 2,

0, otherwise.

Also, let Z = X2 − 3.



(a) Find fZ(t), the probability density function (pdf) of Z.

(b) Compute the probability that X2 − 2X > 3.

4. Suppose we roll a fair die until we observe a 6. Assume that the tosses are independent. Let X(25 pts)

be the total sum of the rolls.

(a) Find the probability that we roll n times, where n ≥ 1.

(b) Ler A2 be the event that we roll twice. Compute E(X|A2).

(c) Compute E(X).
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1. There are 4 white and 6 black balls in an urn (10 balls in total). Your friend starts drawing balls(20 pts)

randomly, without replacement, and stops drawing when he draws a ball that has the same color

as the first ball (note that, at least two balls have to be drawn and after the kth draw, there are

10− k balls in the urn).

(a) Find the probability that your friend draws two balls and stops.

(b) Find the probability that your friend draws three balls and stops.

(c) Given that your friend stops right after the third draw, compute the conditional probability

that the first ball is white.

2. Suppose X, Y are independent discrete random variables whose probability mass functions(20 pts)

(PMF) are given as

PX(k) =



1
6 , if k = 0,
2
6 , if k = 1,
3
6 , if k = 2,

0, otherwise,

PY (k) =


1
2 , if k = 0,
1
2 , if k = 1,

0, otherwise.

Also, let the random variable Z be defined as Z = X + Y .

(a) Compute E(X), the expected value of X.

(b) Compute E(X2), the expected value of X2.

(c) Compute the probabilities of the events {Z = 0} and {Z = 1}.

(d) Find PZ , the PMF of Z.

3. Suppose X is a continuous random variable whose probability density function (pdf) is given as(20 pts)

fX(t) =

{
t/2, if 0 ≤ t ≤ 2,

0, otherwise.

Also, let Y = −X + 1.

(a) Compute E(X), E(Y ), E(X Y ).

(b) Are X and Y independent or not? Briefly explain.



(c) Compute the probability of the event {Y ≤ 0}.

(d) Find fY (t), the pdf of Y .

4. Suppose X and Y are independent continuous random variables whose pdfs are given as(20 pts)

fX(t) =

{
2t, if 0 ≤ t ≤ 1,

0, otherwise,
fY (t) =

{
2− 2t, if 0 ≤ t ≤ 1,

0, otherwise,

(a) Compute P (Y ≤ s), for s ∈ [0, 1].

(b) Compute P (Y ≤ X).

(c) Compute P (Y ≤ X2).

5. Suppose X is a continuous random variable uniformly distributed on [−1, 1]. Note that the pdf(20 pts)

of X is given by

fX(t) =

{
1/2, if − 1 ≤ t ≤ 1,

0, otherwise.

Also, let Y = θX, where θ is an unknown non-negative constant (so that θ = |θ|).

(a) Compute E(Y 2), and E(|Y |), possibly in terms of the unknown θ.

(b) Find some ‘c’ (possibly in terms of θ) such that P{|Y | − c ≤ θ ≤ |Y |+ c} = 1/3.

(c) Find an unbiased estimator for θ in terms of Y .


