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On the Dual-Tree Complex Wavelet Packet and

M -Band Transforms
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Abstract

The 2-band discrete wavelet transform (DWT) provides an octave-band analysis in the frequency

domain, but this might not be ‘optimal’ for a given signal. The discrete wavelet packet transform

(DWPT) provides a dictionary of bases over which one can search for an optimal representation (without

constraining the analysis to an octave-band one) for the signal at hand. However, it is well known that

both the DWT and the DWPT are shift-varying. Also, when these transforms are extended to 2-D and

higher dimensions using tensor products, they do not provide a geometrically oriented analysis. The dual-

tree complex wavelet transform (DT-CWT), introduced by Kingsbury, is approximately shift-invariant

and provides directional analysis in 2-D and higher dimensions. In this paper, we propose a method to

implement a dual-tree complex wavelet packet transform (DT-CWPT), extending the DT-CWT as the

DWPT extends the DWT. To find the best complex wavelet packet frame for a given signal, we adapt

the basis selection algorithm by Coifman and Wickerhauser, providing a solution to the basis selection

problem for the DT-CWPT. Lastly, we show how to extend the 2-band DT-CWT to an M -band DT-CWT

(provided that M = 2b) using the same method.

Index Terms

Dual-tree complex wavelet transform, wavelet packet.

I. INTRODUCTION

The discrete wavelet transform (DWT), obtained by iterating a perfect reconstruction (PR) filter bank

(FB) on its low-pass output, decomposes a discrete-time signal according to an octave-band frequency
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decomposition as illustrated in the first panel of Figure 1. However, as is well known, the DWT is far from

being shift-invariant and does not provide a geometrically oriented decomposition in multiple dimensions

(perpendicular orientations are mixed in a single subband). One alternative to the DWT that does have

those properties is the dual-tree complex wavelet transform (DT-CWT) introduced by Kingsbury [10],

[12], [20]. In addition to the wavelet FB utilized by the DWT, the DT-CWT utilizes a second wavelet

FB, designed according to a certain criterion. Specifically, the second wavelet FB is designed so that

its impulse responses are approximately the discrete Hilbert transforms of those of the first wavelet FB.

Then, regarding the first FB as the real part and the second FB as the imaginary part of a complex

transform, the frequency analysis shown in the second panel of Figure 1 is achieved. That the frequency

response of each channel is approximately analytic is important for the DT-CWT to posses its desirable

properties.

For a specific signal (or set of signals), the frequency decomposition provided by the DWT (and DT-

CWT) might not be optimal. To find a more suitable decomposition, algorithms have been proposed to

find the “best-basis” from a structured dictionary of bases via suitable optimization [14]. For example,

a best-basis algorithm that finds a sparse representation by minimizing the transform-domain entropy is

proposed in [5], and an algorithm that finds the best basis in a rate-distortion sense is proposed in [17].

One way to generalize the DWT so as to generate a structured dictionary of bases is given by the discrete

wavelet packet transform (DWPT). The (full) DWPT, obtained by iterating a PR FB on both its low-pass

and high-pass output, provides a frequency-domain analysis as illustrated in the third panel of Figure 1

(for a 4-level DWPT). However, like the DWT, the DWPT is also shift-variant and mixes perpendicular

orientations in multiple dimensions.

In this paper, we address the problem of constructing a complex (approximately analytic) version of the

DWPT by utilizing the dual-tree approach. Like the DT-CWT, such a dual-tree complex wavelet packet

transform (DT-CWPT) should be approximately shift-invariant and, in multiple dimensions, geometrically

oriented. The most straight-forward way to generate a complex dual-tree form of the DWPT is to extend

each of the two DWTs used to construct the DT-CWT into packets themselves using the same set filters,

an approach described previously in [6]–[8], [24]1. However, for several subbands in this construction,

significant energy leaks into the negative frequency band as illustrated in the fourth panel of Figure 1.

1Specifically, this construction is described as follows. Given a DT-CWT with dual-tree filters hi(n) for the first FB and

h′i(n) for the second FB, where i ∈ {0, 1}, one iterates the high-pass branches in the first FB using hi(n) and the high-pass

branches in the second FB using h′i(n).
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Those subbands are far from being approximately analytic. Unfortunately, as a result, this construction

does not fully possess the desired properties of a DT-CWPT.

In the following, we describe the development of a new DT-CWPT that avoids the shortfall of the

straightforward construction. In particular, given a DT-CWT, it will be shown how to obtain a DT-CWPT

with approximately analytic subband responses. This (approximately analytic) DT-CWPT provides the

desired frequency analysis as illustrated in the fifth panel of Figure 1. Like the DT-CWT, this DT-

CWPT is approximately shift-invariant and provides a geometrically oriented signal analysis in multiple

dimensions. Like the DWPT, the new DT-CWPT provides a structured dictionary of frames. Algorithms

for best complex wavelet packet frames can be obtained by modifying existing best-basis algorithms. It

will be demonstrated in the following that the best frame computed using the DT-CWPT is less sensitive

to signal translation than the best basis computed using the DWPT.

The DT-CWT, which was originally developed using two 2-band DWTs was extended to M -band

DWTs recently in [2], and used for image processing in [3]. The M -band DT-CWT in [2], [3] employs

two M -band discrete wavelet transforms where the wavelets associated with the two transforms form

Hilbert transform pairs. For M = 2b, we also describe a simple construction of an M -band DT-CWT,

based on the DT-CWPT. We reported a prior version of these results in [1].

Notation and Definitions

Sequences are represented by lower case letters as in, c(n). The z-transforms of the sequences are

represented by capital letters, as C(z), possibly evaluated on the unit circle, as C(ejω). When we refer

to the frequency response of a time-varying linear system like the one shown on the top panel of Figure

2, we mean the frequency response of the filter in the equivalent structure shown on the bottom panel.

H{.} refers to either the continuous or the discrete-time Hilbert transform operator. Which one is used

should be clear from the context.

II. PROPERTIES OF THE DT-CWT

The DT-CWT consists of two wavelet transforms operating in parallel on an input signal as illustrated

in Figure 3. We denote the wavelet associated with the first wavelet FB as ψ(t) and the wavelet associated

with the second FB as ψ′(t). The wavelet ψ(t) is defined by

ψ(t) =
√

2
∑

n

h1(n)φ(2t− n),

where

φ(t) =
√

2
∑

n

h0(n)φ(2t− n).
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−π −π/2 0 π/2 π

DWT

−π −π/2 0 π/2 π

DT−CWT

−π −π/2 0 π/2 π

DWPT

−π −π/2 0 π/2 π

Non−analytic DT−CWPT

−π −π/2 0 π/2 π

Proposed DT−CWPT

Fig. 1. Frequency domain analysis (see ‘Notation and Definitions’) of DWT, DT-CWT, DWPT, the DT-CWPT developed in

[6]–[8], [24] and the proposed DT-CWPT. Each figure is produced using the same set of Q-shift filters [13] of length 14. The

proposed complex wavelet packet transform provides the desired approximately analytic frequency decomposition.

A(ejω) ↓ MA B(ejω) ↓ MB

≡

. . .

C(ejω) ↓ M

Fig. 2. The iterated filtering and downsampling operation is equivalent to a system expressed as a single filtering followed by

a donwsampling operation.
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Fig. 3. The DT-CWT is implemented using two wavelet filter banks operating in parallel.

The second wavelet, ψ′(t), is defined similarly in terms of {h′0(n), h′1(n)}.

For the ideal DT-CWT, the second wavelet, ψ′(t), is the Hilbert transform of the first wavelet, ψ(t),

ψ′(t) = H{ψ(t)} . (1)

It was shown in [18] that if the low-pass filter h′0(n) is equal to the half-sample delayed version of

h0(n) (to be formalized below), then the wavelets generated by the DT-CWT satisfy (1) as desired. This

condition was later proved ( [16] [25]) to be necessary as well. To construct the DT-CWPT (the packet

form of the DT-CWT), it is also important to use the consequential relationship among the high-pass

filters, h1(n) and h′1(n). We assume that {h0(n), h1(n)} form an FIR conjugate quadrature filter (CQF)

pair, as does {h′0(n), h′1(n)}.

Suppose we are given wavelets, ψ(t) and ψ′(t), satisfying (1). It was shown in [25], that if each

wavelet is orthogonal to its integer translates, then the Hilbert relation (1) is satisfied if and only if, 2

H ′
0(e

jω) = e−j 0.5 ω H0(ej ω) for |ω| < π. (2)

Recall that for an orthonormal wavelet basis, the low-pass and high-pass filters are related as H1(ejω) =

−e−j dω H∗
0 (ej(ω−π)) (equivalently h1(n) = (−1)n h0(d − n)) where ‘d’ is an odd integer. Hence, it

2 It should be noted that the most general condition is actually H ′
0(e

jω) = e−j((2m+1)ω/2)H0(e
jω) for |ω| < π and some

m ∈ Z [3]. Only m = 0 is considered in [25], but it can be seen, following the treatment given there, that the condition is valid

when m is a non-zero integer as well. However, it can be shown that m values other than 0 and −1 give poor directionality

when used for the implementation of a 2-dimensional DT-CWT. Noting that one can modify m to any desired integer value by

shifting the filters accordingly and possibly changing the roles of the trees, we concentrate, without loss of generality, on the

m = 0 case.
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...↓ 2

k − 1 Stages

≡

H0(e
jω) H0(e

j2ω) · · · H0(e
j2k−2ω) H1(e

j2k−1ω) ↓ 2k

H0(e
jω) ↓ 2H0(e

jω) ↓ 2H1(e
jω)

k − 1 Stages

Fig. 4. Response of the kth stage high-pass branch and its equivalent.

follows from (2) that for the ideal DT-CWT, the high-pass filters satisfy

H ′
1(e

jω) = −j sgn(ω) ej 0.5 ω H1(ejω) for |ω| < π, (3)

where ‘sgn’ is the signum function.

The development of the discrete implementation of the DT-CWPT in Section III builds upon a close

analysis of the filter banks used. As described in [20], for the correct implementation of the DT-CWT,

the first stage of FB requires special attention. (Otherwise, the frequency responses of the first several

stages will be far from analytic.) In the following, we explain why the first stage of the DT-CWT must

be different from the following stages, by giving an explicit expression for the frequency response at

each stage of the transform. By asking that the frequency response of the second wavelet FB at stage k

be the Hilbert transform of that of the first wavelet FB, for every stage k ≥ 1, we obtain the condition

required of the first stage. This explanation, for why the first stage must be different from the following

stages, is quite different from the explanation in [20].

Consider the kth stage of the first FB terminated with H1(ejω) as illustrated in Figure 4. Denoting the

equivalent response by H(k)(ejω) we can use the noble identities to write, for k > 1,

H(k)(ejω) = H1(ej2
k−1ω)

k−2∏
m=0

H0(ej2
mω) for |ω| < π. (4)

Suppose that the equivalent response of the second FB’s corresponding branch, which is obtained by

replacing Hi by H ′
i, is denoted by H ′(k)(ejω). If we further define,

H(1)(ejω) = H1(ejω) (5)

H ′(1)(ejω) = H ′
1(e

jω) (6)

we have the following lemma.
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Lemma 1: Given CQF pairs {h0(n), h1(n)}, {h′0(n), h′1(n)} that satisfy (2), (3), it follows that, for

all k ≥ 1, H ′(k)(ejω) and H ′(k)(ejω) satisfy,

H ′(k)(ejω) = −j sgn(ω) ej0.5ω H(k)(ejω) for |ω| < π, (7)

which is equivalent to,3

H ′(k)(ejω)
H(k)(ejω)

=
H ′

1(e
jω)

H1(ejω)

= −j sgn(ω)ej0.5ω for |ω| < π.

(8)

Proof: See the appendix.

Equation (7) may also be written as,

H ′(k)(ejω) = −ej0.5ωH
{
H(k)(ejω)

}
.

Therefore, by delaying the input to the second wavelet FB by a half-sample (by multiplying its Fourier

transform by e−j0.5ω), the frequency response of the first wavelet FB would be equal to the Hilbert

transform of the frequency response of the second wavelet FB, for every stage k ≥ 1, except for the

low-pass band. That is the desired property of the discrete implementation of the DT-CWT.4 However,

an ideal half-sample delay requires an infinite impulse response (IIR) system. If we accept a non-ideal

half-sample delay system and ask for an invertible approximate half-sample delay system, then we could

use a realizable all-pass system; that will also be IIR.

Instead of using a half-sample delay system, we now consider the case where the filters of the first

stage are allowed to be different from the following stages, as illustrated in Figure 3. Denote by h(1)
i (n)

and h
′(1)
i (n) the filters in the first stage, as in Figure 3. Also, denoting the new kth stage response of

the first FB by H
(k)
new(ejω) and that of the second FB by H

′(k)
new (ejω), we have the following result as a

corollary of Lemma 1.

Corollary 1: Suppose we are given CQF pairs {h0(n), h1(n)}, {h′0(n), h′1(n)} that satisfy (2), (3).

For k > 1,

H
(k)
new(ejω) = H

{
H
′(k)
new (ejω)

}
, (9)

if and only if

h
′(1)
0 (n) = h

(1)
0 (n− 1). (10)

3We ignore the zeros on the unit circle.
4 However, in [3], the authors, following a different interpretation of the dual-tree transform, reach another set of prefilters.

The prefilters we present here are the same as in [20].
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Proof: See the appendix.

Note that any PR FB can be used for the first stage; it does not need to be one designed specifically

for the DT-CWT.5 If the first stage of the DT-CWT is chosen in this way and if the remaining stages

satisfy (2) exactly, then the transform will be exactly analytic at every stage except the first stage. (If the

remaining stages satisfy (2) approximately, then the DT-CWT will be approximately analytic at every

stage except the first stage.)

III. THE DUAL-TREE COMPLEX WAVELET PACKET TRANSFORM

To construct a packet form of the DT-CWT each of the subbands should be repeatedly decomposed

using low-pass/high-pass PR FBs. The PR FBs should be chosen so that the response of each branch of

the second wavelet packet FB is the discrete Hilbert transform of the corresponding branch of the first

wavelet packet FB. Then each subband of the the DT-CWPT will be analytic. This requirement can be

fulfilled with a simple rule which is derived below.

First, note that if a given filter g(n) is the discrete Hilbert transform of some other filter h(n), that is,

G(ejω) = j sgn(ω)H(ejω) for |ω| < π, (11)

then when g(n) is convolved with some sequence c(n), we have,

G(ejω)C(ejω) = j sgn(ω)H(ejω)C(ejω) for |ω| < π. (12)

As shown by this equation, if h(n) and g(n) is a discrete Hilbert transform pair, then g(n) ∗ c(n) and

h(n)∗c(n) is also a discrete Hilbert transform pair. The preceding discussion is basically a consequence

of the fact [15] that the discrete Hilbert Transform may be regarded as a linear time-invariant (LTI)

system.

Now turning back to the DT-CWT, suppose we decompose the kth stage highpass subband of the

DT-CWT using some 2-channel PR FBs as shown in Figure 5. We want to determine conditions on

the filters fi(n), f ′i(n) such that the resulting DT-CWPT is analytic. From Section II, we know that

H(k)(ejω) = H
{
H ′(k)(ejω)

}
. Considering the equivalent structures provided, it follows from (11) and

(12) that in order for the extended responses to be Hilbert transform pairs, that is, for

H(k)(ejω)Fi(ej2
kω) = H

{
H ′(k)(ejω)F ′

i (e
j2kω)

}
5 However, if orthonormality is desired in each FB of the DT-CWT, then orthonormal FBs must be used for the first stage.
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H
(k)(ejω) ↓ 2k

F0(e
jω) ↓ 2

F1(e
jω) ↓ 2

H
(k)(ejω)F0(e

j2kω) ↓ 2k+1

H
(k)(ejω)F1(e

j2kω) ↓ 2k+1

≡

H
′(k)(ejω) ↓ 2k

F
′

0(e
jω) ↓ 2

F
′

1(e
jω) ↓ 2

H
′(k)(ejω)F ′

0(e
j2kω) ↓ 2k+1

H
′(k)(ejω)F ′

1(e
j2kω) ↓ 2k+1

≡

Fig. 5. On the left is the the kth subband of the first FB of the DT-CWT further decomposed using filters fi(n) and the

equivalent structure. On the right is the the kth stage of the second FB of the DT-CWT extended using filters f ′i(n) and the

equivalent structure. If H(k) = H{H ′(k)}, then we need to set fi(n) = f ′i(n) to ensure that the extensions satisfy the Hilbert

transform relationship as well.

to hold, it is necessary and sufficient that

fi(n) = f ′i(n).

Therefore, we conclude that whatever PR FB is used to decompose the first FB of the DT-CWT should

also be used decompose the second (dual) FB — in order to preserve the Hilbert transform relationship

already satisfied by those branches. The branches of the DT-CWT that do not already satisfy the Hilbert

transform property are the low-pass branch of the final stage and the high-pass branch of the first stage.

Note that the low-pass branch of the final stage is not further decomposed. The high-pass branch of the

first stage, that is, the filters h(1)
1 (n) and h

′(1)
1 (n), satisfy h

′(1)
1 (n) = h

(1)
1 (n − 1), which is exactly the

same relationship satisfied by the low-pass filters of the first stage, h′(1)0 (n) = h
(1)
0 (n−1). Observing that

the analysis carried out in the previous section for the DT-CWT is dependent only on the relative delays,

we conclude that the FB structure following the low-pass filters of the first stage should also follow

the high-pass filters of the first stage. This procedure produces a DT-CWPT consisting of two wavelet

packet FBs operating in parallel, where some filters in the second wavelet packet FB are the same as

those in the first wavelet packet FB. The first of these two wavelet packet FBs is illustrated in Figure 6,

for a four-stage DT-CWPT. The second wavelet packet FB is obtained by replacing the first stage filters

h
(1)
i (n) by h(1)

i (n−1) and by replacing hi(n) by h′i(n) for i ∈ {0, 1}. The filters denoted by Fi in Figure

6 are unchanged in the second wavelet packet FB. The frequency responses of a four-stage DT-CWPT

are illustrated in the fifth panel of Figure 1 where it is clear that the responses are approximately analytic

as desired.
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A ≡ a(n) ↓ 2

H0

H0

H1
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F0
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H
(1)
1

H0

H0

H1

H1

F0

F1

F0

F0

F1

F1

F0

F1

H0

H1

Fig. 6. The first wavelet packet FB of a four-stage DT-CWPT. The second wavelet packet FB is obtained by replacing the

first stage filters h(1)
i (n) by h(1)

i (n− 1) and by replacing hi(n) by h′i(n) for i ∈ {0, 1}. The filters fi(n) are those that must

be used in both FBs.

An important point about the transform described above is the choice of the extension filters fi(n).

Notice that, preserving the Hilbert transform property, constrains only the transform so as to force the

use of the same filter pair in both FBs. However, this does not place any restrictions on fi(n). Hence,

the same criteria for the selection of a CQF pair to extend a regular DWT can be used for the selection

of fi(n) (see [14] for instance). Filters with short support, frequency selectivity, or possessing a number

of vanishing moments etc. can be used in accordance with the requirements of the application at hand.
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Fig. 7. The HLLH subband response to an impulse and translated impulse in the real DWPT and the DT-CWPT. The energy

is approximately conserved for the DT-CWPT. Q-shift filters [13] of length 14 are used to produce this figure.

A. Approximate Shift-invariance of the DT-CWPT

As Figure 1 confirms, the developed DT-CWPT is approximately analytic. As a consequence, the

multi-dimensional form of the transform will be geometrically oriented in two (and more) dimensions.

In addition, in a sense, the transform is also approximately shift-invariant — the energy in each subband

is approximately preserved if the input sequence is shifted by an arbitrary number of samples. Figure 7

illustrates this property. Because it is nearly shift-invariant, best-frame algorithms using the DT-CWPT

are more robust to signal translation than best-basis algorithms using the real DWPT, as illustrated in

Section III-B. This approximate shift-invariance property is due to the reduction in aliasing that takes

place in the DT-CWPT compared to the real DWPT. The aliasing, caused by the down-samplers, is

reduced in the DT-CWPT because the band-pass response of each branch is approximately analytic. We

refer to Section 4 of [12] for a further explanation of this point.

We should note that DT-CWPT is not the only method for implementing an (approximately) shift-
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Fig. 8. Two bases derived from the DWPT and the corresponding ideal time-frequency tiling.

invariant wavelet packet decomposition. The orthonormal wavelet packet transform presented in [4] is

exactly shift-invariant, also in the sense that the energy in each subband is invariant to translation of the

input signal. However, for a given input signal, the algorithm of [4] attains shift-invariance by performing

an exhaustive search over all of shifted wavelet packet bases to determine the ‘best basis’ (the one that

provides a representation of the input signal minimizing a cost function). Thus, the transform is signal-

dependent, and a disadvantage as noted in [4] is the complexity necessarily introduced by the search

algorithm. In contrast, the DT-CWPT is a fixed linear transform and necessitates only the design of

DT-CWT filters, on which a body of literature already exists [9], [11], [13], [19] (also see [20] for an

overview).

B. Best Basis Selection

Allowing the iteration of the high-pass outputs as well as the low-pass outputs, the DWPT introduces

a number of different structures (trees) to analyze the input (see Figure 8). Each tree yields a unique

frequency decomposition of the input. Consequently, the same input is represented in a number of different

bases, some representations being more sparse or compact than others. Thus, given an input, the search

for a best basis among our collection of trees, in terms of expressing the input in the most compact way,

makes sense in this setting. In the following, the search algorithm introduced in [5] for the DWPT, will

be adapted to the DT-CWPT.

The dynamic programming approach described by [5], [23] rests on the concept of an additive cost
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Fig. 9. A tree introducing the notation for Algorithm 1.

function.

Definition 1: A cost function C(·), mapping the sequences {xi}N
i=1 to real numbers, is additive if

C ({xi}) =
∑

i g(xi) for some g : R → R and all {xi}N
i=1.

Following this definition, it is seen that instead of computing the cost function for each basis separately,

the decision to keep the parent or its children at a particular point in the tree can be made locally. Notice

that there are a number of different cost functions [23] that satisfy the above definition. The cost function

we will consider in this paper is the Shannon entropy. To utilize the Shannon entropy, the underlying

transform should be orthonormal and the input signal should be scaled so as to have unit energy. The

algorithm to find the best tree is given as follows [23]:

Algorithm 1: Let Bn
k denote the kth vertex at the nth level for a tree, as shown in Figure 9. Let L

be the highest level.

· Scale the input so that it is a unit energy sequence.

· For each vertex Bn
k in the tree, compute the cost for the coefficients corresponding to that particular

vertex. Let Cn
k denote the total cost at vertex Bn

k .

· For n = L− 1 to 1,

· For k = 0 to 2n − 1,

· If Cn
k < Cn+1

2k + Cn+1
2k+1, then prune the tree so that Bn

k is a leaf.

· Otherwise, set Cn
k := Cn+1

2k + Cn+1
2k+1.

· End Loop

· End Loop.

We note at this point that even though the DT-CWPT is not an orthonormal transform, it consists

of two orthonormal transforms (which follow the same tree structure but use different filters at some

vertices), provided that orthonormal FBs are used. Consequently, for each tree structure, regarding the

coefficients from the first tree as the real part and the coefficients from the second tree as the imaginary
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Fig. 10. The signal used in the ‘best basis’ selection experiment and its spectrogram. The length of the signal is 1024.

parts of a complex valued transform, the total energy of the DT-CWPT coefficients is equal to two times

the energy of the input function. Thus, if Step 1 in Algorithm 1 is modified so as to scale the input to

have an input of energy 0.5, we see that we can use the algorithm to find the best basis for the DT-CWPT

as well.

For an input signal whose spectrogram is shown in Figure 10, using the Shannon entropy as the cost

function, we found that the ‘best basis’ for both the DWPT and the DT-CWPT is given by the upper

panel in Figure 8. (Note the relation between the ideal frequency division provided by the best basis in

Figure 8 and the spectrogram in Figure 10.) It is noted in [14] that due to the shift-variance of the DWPT,

the best basis computed using Algorithm 1 might vary as the input signal is shifted. However, following

the discussion in Section III-A regarding the approximate shift-invariance of the DT-CWPT, we expect

that the best basis for the DT-CWPT be more stable compared to the best basis for the DWPT when

the input signal is shifted. To test this, we circularly shifted the signal in Figure 10 (which is of length

1024) by k samples and computed the best basis for the DWPT and the DT-CWPT as k is varied from

0 to 1023. It was seen that the best basis for the DT-CWPT remains unchanged most of the time and

that the best basis for the DWPT is more dependent on the amount of the shift. The results are tabulated

in Figure 11. This example illustrates that the DT-CWPT can be less sensitive to signal shifts than the

real DWPT.
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Fig. 11. Number of times each best basis is selected as the signal in Figure 10 is circularly shifted. The signal shift is varied

from 0 to 1023. Eleven distinct bases are generated by the DWPT best basis algorithm as the test signal is circularly shifted.

Tree 1 is the tree in the upper panel of Figure 8. Each tree provides a distinct frequency decomposition.

Fig. 12. Impulse responses of some of the filters used in T+− at level-4.

C. 2-D Oriented Dual-Tree Wavelet Packet Transform

The DT-CWPT may be extended to 2-D similar to the DT-CWT [20]. We will briefly explain the

‘real 2-D dual-tree wavelet packet transform’. The ‘complex’ case can be obtained similarly (see [20]

for the definitions of ‘real’ and ‘complex’ 2-D dual-tree transforms).

First, the two transforms making up the dual-tree transforms are extended to 2-D similarly as the

standard separable wavelet transform. Then, denoting the 2-D transform of the first tree by T1 and that

of the dual-tree by T2, the 2-D real oriented 2-D dual-tree transform, is given by,

T2D =

 T+−

T++

 :=
1
2

 I −I

I I

 T1

T2

 .
Figure 12 illustrates the some of the impulse responses from T+− employing the full-tree at level-4.
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A ≡ a(n) ↓M

H
(1)
0

H
(1)
M−1

H
(1)
1

H
(1)
2

...

H0

HM−1

H1

H2

...

H0

HM−1

H1

H2

...

Fig. 13. The first filter bank of an M -band DT-CWT. The filters of the first tree, are labeled as h0(n), h1(n), . . . , hM−1(n),

with an exception for the first stage. The second filter bank filters are denoted by primed labels, i.e. as

h
′(1)
0 (n), . . . , h

′(1)
M−1(n), h′0(n), . . . , h′M−1(n).

IV. IMPLEMENTING THE M -BAND DT-CWT

The DT-CWT discussed above employs two 2-band discrete transforms where one of the transforms

is regarded as yielding the real part and the other yielding the imaginary part of the DT-CWT. It is

required that the frequency responses of the branches computing the real part and the imaginary part,

form discrete Hilbert pairs. A generalization of this structure may be achieved by utilizing two M -band

transforms (see Figure 13), with a similar interpretation in terms of real and imaginary responses, and

the same discrete Hilbert transform relationship [2] (also see [3] for an application to image processing).

It can be shown for the 2-band case that, if the Hilbert transform relationship is required to be exact,

the filters in both trees can not all be FIR [20]. This is the same for the M -band case. To overcome

this problem, in [2], the authors approximate IIR filters using FIR filters by minimizing the L2 error of

the frequency response and in [3] perform the filtering operations in the frequency domain. However,

if attention is restricted to M -band DT-CWTs with M = 2k, one can employ 2-band DT-CWPTs to

realize these transforms. More specifically, a 2k-band DT-CWT can be obtained by pruning a full DT-
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A ≡ a(n) ↓ 2

H0

H0

H1

H1

F0

F1

H0

H1

H
(1)
0

H
(1)
1

H0

H1

Fig. 14. The first two stages of the first filter bank of the 4-band DT-CWT derived from the DT-CWPT. The second filter

bank is obtained following the rule given in Figure 6.

AB ≡ A(z) ↓ 4B(z2)

H
(1)
0 H0

H
(1)
0 H1

H
(1)
1 H0

H
(1)
1 H1

H0H1

H1H0

H1H1

H0H0

Fig. 15. The 4-band filter bank equivalent to the filter bank given in Figure 14.

CWPT (see Figures 14,15). As a consequence, if we already have a DT-CWPT implemented using FIR

filters (which thus satisfies the required properties approximately rather than exactly), we can obtain a

reasonable approximation to the required discrete Hilbert property by using FIR filters. To appreciate this

approximation, the sufficient phase condition is discussed in Section IV-A.

It is also instructive to consider Hilbert pairs of M -band wavelets and develop the M -band DT-CWT

using these wavelet bases, as is done for the 2-band case. For convenience we consider the M = 4 case
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H0(z) ↓ 2

H0(z)

H1(z) ↓ 2

↓ 2

F0(z)

F1(z) ↓ 2

↓ 2

H1(z) ↓ 2

Fig. 16. A discrete wavelet packet transform.

H0(z)H0(z
2)

H0(z)H1(z
2)

H1(z)F0(z
2)

H1(z)F1(z
2)

↓ 4

↓ 4

↓ 4

↓ 4

Fig. 17. Equivalent of the filter bank in Figure 16.

in the following and obtain the 4-band DT-CWT from a given 2-band DT-CWT.

Suppose we are given a 2-channel orthonormal filter bank {h(2)
0 (n), h(2)

1 (n)} and its associated scaling

function φ(2)(t) and wavelet ψ(2)(t), the Fourier transforms of which are defined by

Φ(2)(ω) =
∞∏
l=1

[
1√
2
H

(2)
0

(ω
2l

)]
,

Ψ(2)(ω) =
1√
2
H

(2)
1

(ω
2

)
Φ(2)

(ω
2

)
.

Suppose we are also given a second 2-channel filter bank {h′(2)0 (n), h′(2)1 (n)} and its associated scaling

function φ′(2)(t) and wavelet ψ′(2)(t), where ψ′(2)(t) is the Hilbert transform of ψ(2)(t), i.e.

Ψ′(2)(ω) = j sgn(ω)Ψ(2)(ω). (13)

That is, we are given a 2-band ‘dual-tree’ complex wavelet transform where the complex wavelet ψ(2)(t)+

jψ′(2)(t) is analytic.

Now we would like to construct a 4-band complex wavelet transform. To that end, suppose that

{f0(n), f1(n)} is another 2-channel orthonormal filter bank. We can then obtain a 4-channel orthonormal

filter bank, namely a discrete wavelet packet transform [14], as illustrated in Figure 16. Our aim is to

construct a second wavelet packet transform so that the wavelets (associated with the two wavelet packet

transforms) form Hilbert transform pairs. Using noble identities, it can be seen that the filter bank in
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Figure 16 is equivalent to the filter bank in Figure 17. Now defining,

H
(4)
0 (ejω) := H

(2)
0 (ejω)H(2)

0 (ej2ω),

H
(4)
1 (ejω) := H

(2)
0 (ejω)H(2)

1 (ej2ω),

H
(4)
2 (ejω) := H

(2)
1 (ejω)F0(ej2ω),

H
(4)
3 (ejω) := H

(2)
1 (ejω)F1(ej2ω),

we can show, using the infinite product formulas for the M -band (M = 4) case [22],

Φ(4)(ω) =
∞∏
l=1

[
1
2
H

(4)
0

(ω
4l

)]
,

Ψ(4)
k (ω) =

1
2
H

(4)
k

(ω
4

)
Φ(4)

(ω
4

)
, k ∈ {1, 2, 3},

that the Fourier transforms of the scaling function and wavelets associated with this 4-channel filter bank

can be written as,

Φ(4)(ω) = Φ(2)(ω),

Ψ(4)
1 (ω) = Ψ(2)(ω),

Ψ(4)
2 (ω) =

1√
2
F0

(ω
2

)
Ψ(2)

(ω
2

)
,

Ψ(4)
3 (ω) =

1√
2
F1

(ω
2

)
Ψ(2)

(ω
2

)
.

(14)

Suppose now that we extend the second 2-channel filter bank similar to the first one as in Figure 16 but

using a different 2-channel orthonormal filter bank {f ′0(n), f ′1(n)}. Then it follows as in (14) that,

Φ′(4)(ω) = Φ′(2)(ω),

Ψ′(4)
1 (ω) = Ψ′(2)(ω),

Ψ′(4)
2 (ω) =

1√
2
F ′

0

(ω
2

)
Ψ′(2)

(ω
2

)
,

Ψ′(4)
3 (ω) =

1√
2
F ′

1

(ω
2

)
Ψ′(2)

(ω
2

)
.

Using (13), we can then write

Ψ′(4)
1 (ω) = j sgn(ω) Ψ(4)

1 (ω),

Ψ′(4)
2 (ω) = j sgn(ω)

F ′
0(ω/2)
F0(ω/2)

Ψ(4)
2 (ω),

Ψ′(4)
3 (ω) = j sgn(ω)

F ′
1(ω/2)
F1(ω/2)

Ψ(4)
3 (ω).

Following this treatment, we conclude,
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H
′

0
(z) ↓ 2

H
′

0
(z)

H
′

1
(z) ↓ 2

↓ 2

F0(z)

F1(z) ↓ 2

↓ 2

H
′

1
(z) ↓ 2

Fig. 18. The ‘dual’ of the tree in Figure 16.

Theorem 1: Suppose we are given a Hilbert transform pair of wavelets ψ(t), ψ′(t) and a pair of CQFs

fk(n), f ′k(n) for k ∈ {0, 1}. Let ψk(t) be the wavelets obtained by decomposing ψ(t) using fk(n) for

k ∈ {0, 1}. Also let ψ′k(t) be the wavelets obtained by decomposing ψ′(t) using f ′k(n) for k ∈ {0, 1}.

Then ψk(t) and ψ′k(t) form Hilbert transform pairs if and only if fk(n) = f ′k(n), for k ∈ {0, 1}.

Thus, the new wavelets form Hilbert pairs if (and only if) we set f ′k(n) = fk(n) for k ∈ {0, 1}.

Consequently, the ‘dual’ of the tree in Figure 16 is obtained by simply replacing hk(n) by h′k(n) and

leaving fk(n) the same, for k ∈ {0, 1} (see Figure 18).

This method generates a 4-band dual-tree complex wavelet transform. The resulting scaling functions,

wavelets and the spectra of the resulting complex functions are illustrated in Figure 19. For these plots,

Q-shift filters [13] of length 14 are used for hk(n) and h′k(n); and fk(n) is set equal to hk(n) for

k ∈ {0, 1}. 6

We note that this construction is different from that given in [7]. There, the authors use the dual-tree

filters to decompose the detail spaces further while here the detail spaces are decomposed further using

the same filters fk(n) in each of the two trees. The method of [7] results in the complex frequency

responses of certain subbands not being analytic. Also, some of the associated wavelets will not be

Hilbert transform pairs, which follows from the explanations above (see Figure 20).

A. Sufficiency conditions for the M -band DT-CWT

In [3], sufficient conditions are given for two M -band filter banks so that the associated wavelets form

Hilbert transform pairs. For an M -band DT-CWT derived from the DT-CWPT (as described in section

6 We had mentioned in Section III that there are no restrictions on fk(n). The reason for setting them equal to hk(n) here is to

demonstrate that the construction in [7], which uses Q-shift filters only, can be made to yield analytic responses, by rearranging

the filters.
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Fig. 19. The scaling functions, wavelets and the spectra of the complex functions for the 4-band dual-tree complex wavelet

transform. Note that the wavelets are approximately analytic. Q-shift filters [13] of length 14 are used to produce these figures.

IV), if one denotes the filters in the two transforms as hi(n) and h′i(n) i ∈ {0, . . . ,M − 1} respectively

as in Figure 13; using (2), (3) and paying attention to discontinuities, it can be shown that the filters in

the M -band DT-CWT satisfy,

H ′
k(e

jω) = e−jθk(ω)Hk(ejω)
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Fig. 20. The wavelets ψ2(t), ψ3(t) and their spectra produced for the 4-band dual-tree complex wavelet transform produced

following the description in [7]. The scaling function φ(t) and the first wavelet ψ1(t) are the same as in Figure 19, and not

reproduced here. Note that the wavelets Ψ2(f), Ψ3(f) have significant energy on both positive and negative frequencies.

with

θ0(ω) =
(M − 1)

2
ω − nπ, for ω ∈

[
n

2π
M
, (n+ 1)

2π
M

)
,

∀n ∈
{

0, . . . ,
⌈
M

2

⌉
− 1

}
(15)

and

θk(ω) = 0.5π − 0.5ω for ω ∈ [0, π), k ∈ {1, . . . ,M − 1}. (16)

These are exactly7 the sufficiency conditions for Hilbert transform pairs of wavelets for the M -band case,

provided in [3].

In particular, evaluating (15) and (16) for M = 4, we have,

θ0(ω) =


1.5ω if ω ∈ [0, π/2)

1.5ω − π for ω ∈ [π/2, π),
(17)

and

θk(ω) = 0.5π − 0.5ω for ω ∈ [0, π), k ∈ {1, 2, 3}. (18)

7We assume real coefficient filters. It follows that for each k, θk(ω) is an odd function on the domain (−π, π). Also, for

k 6= 0, θk(0) can be chosen arbitrarily since for k 6= 0, Hk(ej0) = 0.
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Fig. 21. Realized θk(ω) (solid), desired θk(ω) (dashed), and |H(4)
k (ω)|/2 (dash dot) for k ∈ {0, 1, 2, 3}. See (17), (18) for

the desired θk(ω).

Using FIR filters as explained, we obtained approximate θk(ω) as shown in Figure 21. Note that θ2(ω) =

θ3(ω) as a consequence of our construction. For convenience, the underlying filter magnitude response

is also shown. Observe that the approximations follow the ideal functions closely on the support of the

underlying filter response.

B. A comparison with the general case

Despite the ease of obtaining the M -band DT-CWT from the DT-CWPT it should be mentioned that

the transform is constrained, due to the method of construction. This can be noted by investigating the

approximation and wavelet spaces. We focus on the M = 4 case to carry out this investigation.
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In general, a 4-band DT-CWT [2], [3] calls for approximation spaces Vi, V ′
i which satisfy

Vi = Vi+1 ⊕W 1
i+1 ⊕W 2

i+1 ⊕W 3
i+1 (19)

and

V ′
i = V ′

i+1 ⊕W ′1
i+1 ⊕W ′2

i+1 ⊕W ′3
i+1 (20)

such that ψk
i (t) and ψ′ki (t) form Hilbert transform pairs for k ∈ {1, 2, 3}.

In contrast, our approach is based on decomposing a 2-band orthonormal wavelet basis. The approxi-

mation spaces for the 2-band basis V̂i, originally satisfy V̂i = V̂i+1⊕Ŵi+1. It is known that [14] iterating

the high-pass branch as in Figure 14 corresponds to decomposing Ŵi as Ŵi = Ŵ 0
i ⊕Ŵ 1

i (note that we do

this only for even i). Thus, the new decomposition may be expressed as V̂i = V̂i+2⊕Ŵi+2⊕Ŵ 0
i+1⊕Ŵ 1

i+1

for even i. Consequently, it can be stated that our construction employs approximation spaces Vi related

to the spaces of the 2-band basis as Vi = V̂2i. This is clearly a special case of the construction in (19)

and (20). Thus, it is likely that there exist superior FIR filters in terms of having shorter support for the

same number of vanishing moments and providing a better approximation to Hilbert transform wavelet

pairs, which may be obtained by a procedure that does not place any constraints on the structure of

the 4-channel filter bank similar to the case of the real M -band DWT as in [21], [22]. However, as

mentioned previously, an advantage of our construction is the ease of obtaining filters which rely on the

2-band DT-CWT for which a body of literature is already available [9], [11], [13], [19] (also see [20]

for an overview).

V. CONCLUSION

Given two DWTs that together form a DT-CWT, we have shown how to extend each DWT so that

the obtained DWPTs, forming the DT-CWPT, possess the desirable features of the DT-CWT, namely

approximate shift-invariance and directional analysis in 2-D and higher dimensions. We proposed a

basis selection algorithm to choose among the bases that the DT-CWPT provides, by adapting the basis

selection algorithm in [5]. We have also shown that, given a 2-band DT-CWT, one can obtain an FIR

implementation for the 2b-band DT-CWT without any need to design new filters. We have verified that

the 2b-band DT-CWT obtained using the proposed method agrees with the conditions for the general

M -band DT-CWT given in [3].
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APPENDIX A

PROOF OF LEMMA 1:

We will show (8) by induction on k. First note that for k > 1, we can write,

H ′(k)(ejω)
H(k)(ejω)

=
H ′

0(e
jω)

H0(ejω)
H ′(k−1)(ej2ω)
H(k−1)(ej2ω)

.

Now suppose that,
H ′(k−1)(ejω)
H(k−1)(ejω)

= −j sgn(ω)ej0.5ω for |ω| < π.

It can then be verified that (taking into account the periodicity by 2π),

H ′(k−1)(ej2ω)
H(k−1)(ej2ω)

= −j sgn(ω)ejω for |ω| < π. (21)

Multiplying this by
H ′

0(e
jω)

H0(ejω)
= e−j0.5ω for |ω| < π,

we see that the desired relationship holds for the kth stage if it holds for the (k − 1)th stage. By our

definition of H(1) and H ′(1) in (5) and (6), it follows by induction that (8) is true.

APPENDIX B

PROOF OF COROLLARY 1:

Using (4), we have for k > 1

H
(k)
new(ejω) =

H
(1)
0 (ejω)
H0(ejω)

H(k)(ejω) for |ω| < π (22)

and

H
′(k)
new (ejω) =

H
′(1)
0 (ejω)

e−j0.5ωH0(ejω)
H ′(k)(ejω) for |ω| < π. (23)

Now, using (7), (22), (23), we can write for k > 1,

H
′(k)
new (ejω) = −j sgn(ω) ejω

H
′(1)
0 (ejω)

H
(1)
0 (ejω)

H
(k)
new(ejω)

for |ω| < π.

Therefore, for k > 1,

H
′(k)
new (ejω) = −j sgn(ω)H(k)

new(ejω)

= −H
{
H

(k)
new(ejω)

}
,
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(notice that this is equivalent to (9)) if and only if,

H
′(1)
0 (ejω) = e−jω H

(1)
0 (ejω),

which is equivalent to (10).
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