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ABSTRACT

In a number of signal processing applications, problem formulations
based on the `1 norm as a sparsity inducing signal prior lead to sim-
ple algorithms with good performance. However, `1 norm is not flex-
ible enough to handle certain signal structures that are represented
using a few groups of coefficients. Formulations that make use of
mixed norms provide an alternative that can handle such signals by
forcing sparsity on a group level and allowing non-sparse distribu-
tions within the groups. However, conventional mixed norms allow
only non-overlapping groups – a restriction that leads to characteris-
tics unlikely for natural signals. In this paper, we investigate mixed
norms with overlapping groups. We consider a simple denoising for-
mulation that gives a convex optimization problem and provide an
algorithm that solves the problem. We use the algorithm to evaluate
the performance of mixed norms with overlapping groups as signal
priors.

Index Terms— Mixed norm, Minkowski sum, denoising, ratio-
nal dilation wavelets.

1. INTRODUCTION

Signal processing based on sparsity measures has received signifi-
cant attention in the last two decades. In particular, it has been ob-
served that the `1 norm as a signal prior leads to simple formula-
tions/algorithms with good performance. However, from a Bayesian
perspective, `1 norm implicitly assumes that the signal coefficients
are independent. Since it has been observed that there is some corre-
lation between groups of coefficients, this points to a shortcoming of
the `1 norm as a signal prior. ‘Mixed norms’ provide an alternative
that addresses this issue, retaining at the same time, the simplicity
of the `1 norm. For certain choices of the parameters, mixed norms
encourage coefficients to form groups. Within the groups, the coeffi-
cients are allowed to follow non-sparse distributions and the sparsity
requirement is in force only on a group level. In other words, it is
the number of non-zero groups that matters rather than the separate
coefficients.

Mixed norms are defined as follows. Given a set of coefficients
x = {x1, . . . , xn}, we form J groups with K coefficients each1

where the kth coefficient of the j th group is given by xn(j,k). In this
setting, the `p,q norm of x is given by,

‖x‖p,q =

(
J∑
j=1

( K∑
k=1

|xn(j,k)|p
)q/p)1/q

. (1)

1The number of coefficients in each group could be different. Here, this
choice is made to keep the notation simpler.

In the definition of the groups above, we note that the index function,
n(j, k), might or might not be invertible. If n(j, k) is invertible, the
groups do not overlap, i.e. a coefficient belongs to a single group at
most. This case has been investigated in a number of publications
(see [1, 2, 3] and the references therein).

We remark that when n(j, k) is invertible, i.e. when the groups
do not have overlaps, the groups ‘communicate’ only over the outer
sum in (1). For q = 1, which will be of interest here, this leads to
an independence assumption among the groups. Whether a group of
coefficients is kept or discarded, is decided regardless of the ‘neigh-
boring’ groups. We think that it is unlikely for natural signals to
conform to such predefined rigid-group structures. Moreover, inter-
group independence is likely to lead to ‘blocking effects’. There-
fore, it is plausible to consider groups with overlaps, which can be
achieved by letting n(j, k) be non-invertible.

Use of overlapping or non-overlapping groups is not merely a
matter of choice. When groups have overlaps, certain modifications
are required in the algorithms (see [4] for an interesting discussion of
an heuristic algorithm). In the sequel, we will discuss this for a de-
noising problem (which could also be used in a linear inverse prob-
lem setting by employing the ‘Majorization-Minimization’ method
– see [5]). We restrict our attention to the p = 2, q = 1 case, which
allows simple algorithms for the formulation we consider. Our intent
is not to seek a state-of-the-art denoising method, but rather to inves-
tigate the behavior of `2,1 norms with overlapping groups as signal
priors and compare them to `1 and `2,1 norms with non-overlapping
groups.

2. PROBLEM FORMULATION

Given noisy observations of a signal, y, the `p,q-regularized denois-
ing formulation we consider is

x̂ = argmin
x

1

2
‖y − x‖22 + λ ‖x‖p,q. (2)

Here x̂ denotes the estimate of the underlying signal. With non-
overlapping groups, for p > 1, q = 1, the denoising formulation in
(2) does indeed achieve the desired effect: sparsity only on a group
level (see [1] for a more detailed discussion). In particular, for p = 2,
q = 1, and invertible index function n(·, ·), the minimizer of the
above functional is given by,

Algorithm 1. For j = 1, . . . , J , set

x̂j = soft{‖yj‖2, λ}
yj
‖yj‖2

, (3)

where
soft(z, λ) = sgn(z) max{|z| − λ, 0} (4)

and yj is the j th group, i.e. yj = (yn(j,1), . . . , yn(j,K)).
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Fig. 1: (a) Groups with overlaps. This collection of groups can be decom-
posed into two non-overlapping collection of groups as depicted in (b) and
(c).

Let us now turn to mixed norms with overlapping groups. Con-
sider a grouping system as shown in Fig. 1(a). We can decompose
this system into two subsystems with non-overlapping groups as de-
picted in Fig. 1(b,c). If we denote the `p,q norm according to the
group systems in Fig 1(a,b,c) as ‖ · ‖a, ‖ · ‖b, ‖ · ‖c respectively,
thanks to q = 1, we have ‖ · ‖a = ‖ · ‖b + ‖ · ‖c. Thus we can write
the functional

J(x) =
1

2
‖y − x‖22 + λ ‖x‖a, (5)

as
J(x) =

1

2
‖y − x‖22 + λ ‖x‖b + λ ‖x‖c. (6)

We remark that if either of ‖x‖c or ‖x‖b was missing in (6), we
could minimize J(x) using Algorithm 1. Thus we can assume that
we have two mappings Mb(y), Mc(y) defined as,

Mb(y) = argmin
x

1

2
‖y − x‖22 + λ ‖x‖b, (7)

Mc(y) = argmin
x

1

2
‖y − x‖22 + λ ‖x‖c. (8)

Given these, an algorithm that minimizes (6) is,

Algorithm 2. Initialize z1, z2 by setting them to zero.

(I) Repeat until some convergence criterion is met,

z1 = y − z2 −Mb(y − z2), (9)
z2 = y − z1 −Mc(y − z1), (10)

(II) Set x̂ = y − (z1 + z2).

In general, given a more complicated group system than that of
Fig. 1(a), we can always decompose it into non-overlapping subsys-
tems, possibly using more than two such subsystems. In that case,
Algorithm 2 will utilize more than two M(·) functions. We will
consider the general problem in the next section.

One remark about Algorithm 2 is in order. Apparently, the algo-
rithm is known (see [6] for a derivation and an application to dictio-
nary learning). However, we are not aware of a previous description
in this context and therefore we provide a derivation in the follow-
ing for convenience. The derivation makes use of the dual problem
which is easier to solve.

3. THE DUAL-PROBLEM AND ITS SOLUTION

Notation

In the rest of the paper, all of the variables are assumed to be vectors
in Rn. We will not need to refer to particular entries of these vectors

so we use regular small case letters for vectors. The subscripts will
be used to differentiate between different vectors.

We first note that we can rewrite (see [7]) any norm ‖ · ‖ as
the support function σK(·) of some closed convex set K, which is
defined by,

σK(·) := sup
z∈K
〈z, ·〉. (11)

For example, ‖·‖p = σBq (·) whereBq denotes the unit ball accord-
ing to the `q norm with p−1 + q−1 = 1.

Therefore, given y ∈ Rn, we can rewrite the original problem
as the minimization of

J(x) =
1

2
‖y − x‖22 + λ1 σK1(x) + . . .+ λn σKn(x) (12)

whereKi’s are convex sets and σKi(·) is the support function ofKi.
Here we take

‖ · ‖2,1 = λ1 σK1(·) + . . .+ λn σKn(·), (13)

where the mixed norm (which appears in the original problem (2)) is
defined according to some grouping system. Now, assuming that we
know how to minimize

Ji(x) =
1

2
‖y − x‖22 + λi σKi(x) (14)

or, equivalently (see Prop. 1), that we know how to find the projec-
tion of any point z onto λiKi, for i ∈ {1, . . . , n}, the following
algorithm can be used to obtain the minimizer of (12). In the follow-
ing, we denote the projection operator onto a set C as ProjC(·).

Algorithm 3. Initialize zk ∈ (λkKk) for k = 1, 2, . . . , n, and the
iteration count i = 1.

(I) For k = 1 to n,

(i) Set v = y −
∑

m=1,...,n
m 6=k

zm. (15)

(ii) Update zk = Projλk Kk
(v).

(II) Set xi = y −
∑n
m=1 zm, update i = i+ 1, go to (II).

The algorithm produces a sequence {xi}∞i=1 which converges to
the minimizer of J(x) in (12).

Algorithm 3 implies Algorithm 2 when only two support func-
tions σKi appear in (13). In general, since the dual formulation is
simpler to describe, and we lack further space, we will not translate
Algorithm 3 to the primal formulation, which could be done straight-
forwardly.

4. DERIVATION AND CONVERGENCE OF THE
ALGORITHM

We first note that λσC(x) = σ(λC)(x). It also follows from the def-
inition of a support function that σC1(x) + σC2(x) = σC1+C2(x).
Thus, J(x) in (12) can be written as,

J(x) =
1

2
‖y − x‖22 + σK(x) (16)

where K = λ1K1 + λ2K2 + . . . + λnKn. This problem can
be solved easily if we know how to project any given vector to the
set K. Let the projection operator onto the set K be denoted as
ProjK(·). The following proposition has been used by a number of
authors [8, 9]. We omit the proof.
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Fig. 2: Time-Frequency sampling pattern of the wavelet basis with dilation
factor d = 6/5. The rectangular windows W1 and W2 are used to define
group systems for the mixed `2,1 norms.
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Fig. 3: Spectrograms of the two chirp signals used in Experiment 1. Left :
‘Linear chirp’. Right : ‘Logarithmic Chirp’.

Proposition 1. Let C be a closed, convex set. Suppose we are given
some y ∈ Rn. The convex functional

J(x) =
1

2
‖y − x‖22 + σC(x) (17)

achieves its unique minimum at x∗ = y − ProjC(y).

This proposition is useful bothways. We may know how to
project onto C or how to minimize J(·). The proposition can be
invoked to pass from the minimizer of J(·) to the projection and
vice versa. In the following, we will have this in mind when we talk
about projections – given a set and a point y, we will assume that
we either know how to minimize the associated cost function J(·) or
project y onto the set.

For our task of minimizing (12), under assumption (14), the
proposition allows us to transform the original problem into :

Problem 1. Let K = λ1K1 + λ2K2 + . . . + λnKn. Given
ProjλiKi

(·), how can we construct ProjK(·)?

In order to see the convergence of the algorithm, we first write
the projection as a minimization algorithm.

ProjK(y) = argmin
z∈K

‖y − z‖22. (18)

We remark that z ∈ K if and only if it can be written as,

z =

n∑
i=1

zi for some zi ∈ Ki, i = 1, . . . , n. (19)

Therefore, if we define the convex function

Fy(z1, z2, . . . , zn)

=

{∥∥y −∑n
i=1 zi

∥∥2
2

if zi ∈ Ki ∀i ∈ {1, . . . , n},
∞ if zi /∈ Ki for some i ∈ {1, . . . , n}.

we can write, ProjK(y) = argminz1,z2,...,zn Fy(z1, z2, . . . , zn).
With this notation, Algorithm 3 can be seen to be a coordinate de-
scent type algorithm [10] for the cost function Fy .
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Fig. 4: Output SNR’s for Experiment 1. A coefficient is counted as ‘signifi-
cant’ if its magnitude exceeds 0.001. Top panel : Linear chirp. Bottom panel
: Logarithmic Chirp. For the linear chirp, the the tick marks, which show the
best SNR values obtained with S3, S2, S1 and `1 norms are 11.72, 11.64,
11.28 and 9.93 dB respectively. For the quadratic chirp, the best SNR values
are (in the same order) 12.03, 11.87, 11.59 and 10.12 dB.

5. EXPERIMENTS

For our experiments, we used an orthonormal wavelet basis with a
dilation factor d = 6/5 (see [11] for a more detailed discussion).
This is roughly a wavelet basis of the form {dn/2 ψ(dx− k)}n,k∈Z.
This basis yields a time-frequency (T-F) sampling pattern as depicted
in Fig. 2. To define the groups, we used two different windows
defined on this T-F lattice. The first window, W1, hosts six coefi-
cients in a particular subband of the wavelet transform. The sec-
ond window, W2, hosts coefficients from two consecutive subbands
(six from the coarser, five from the finer). We anticipated that W1

would be effective for capturing ridges that change subbands slowly
whereas W2 would be suitable for more complicated structures in-
volving neighboring subband interactions.

Using W1, we constructed two grouping systems. The first one,
denoted by S1, employs non-overlapping groups obtained by shift-
ing W1 along the frequency and time axes (along the time axis, each
shift of the window is by six coefficients)2. The second one, denoted
by S2, employs all shifts of the window W1 on the T-F lattice and
therefore contains overlapping groups (overlaps along the frequency
axis only). Using the second window, W2, we constructed a sin-
gle grouping system, denoted by S3, which consists of the groups
obtained by considering all the shifts of W3 on the T-F plane (thus
overlaps are along the frequency and time axes). In the following,
we will denote the `2,1 norms associated with these grouping sys-
tems as ‖ · ‖S1 , ‖ · ‖S2 , ‖ · ‖S3 .

Experiment 1. Our first experiment involves two artificial chirp sig-
nals and aims to highlight the difference between the overlapping
group systems S2 and S3 above. The first chirp signal is linear and
sweeps the frequencies between [π/80, 5π/16] rad/samples in 5000
samples. The second chirp signal is ‘logarithmic’ and sweeps the
frequencies between [π/80, 7π/8] rad/samples in the same number

2As the windows move along the frequency axis, their widths and heights
are scaled using the dilation factor so as to keep the number of included
coefficients the same.
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Fig. 5: SNR outputs for Experiment 2. A coefficient is counted as ‘signifi-
cant’ if its magnitude exceeds 0.01. The input is a noisy speech signal (SNR
= 5dB). The best SNR values obtained by using S3, S2, S1 and `1 norms are
11.35, 11.29, 10.99 and 10.11 dB respectively.

of samples. The spectrogram of the linear and logarithmic chirp sig-
nals are depicted in the left and right panels of Fig. 3.

We consider the formulation,

x̂ =
1

2
argmin

x
‖y − x‖22 + λ ‖x‖ (20)

where ‖ · ‖ is one of ‖ · ‖1 (the regular `1 norm), ‖ · ‖S1 , ‖ · ‖S2 ,
‖ · ‖S3 . Taking as input the chirp signals contaminated with white
noise (input SNR = 5dB), we varied λ to obtain reconstructions with
different number of non-zero coefficients. The output SNR, with re-
spect to the number of coefficients whose magnitude exceed 0.001
(the greatest coefficient magnitude is ≈ 3.8) are depicted in Fig. 4
for the linear and logarithmic chirp in the lower and upper panel
respectively. For both signals, we see that the best SNR with the
mixed norms is clearly higher than that of the `1 norm. Again in
both cases, S2 and S3 (overlapping groups) perform better than S1

(non-overlapping groups). We repetitively observed this behavior in
our experiments. For the linear chirp, where the ridge moves slowly
along the frequency axis, we see that S3 performs only slightly bet-
ter (by 0.08 dB) than S2. However, for the logarithmic chirp, where
the ridge movement along the frequency axis is faster, the perfor-
mance gap between S3 (with its groups hosting coefficients from
neighboring subbands) and S2 is wider (0.16 dB). Even though the
improvement in the performance difference between S2 and S3 for
the quadratic chirp is less than we expected, we believe that the re-
sults could be further improved by modifying the structure of the
groups.

One observation common to both cases is, as we progress from
S1 to S3, the best reconstruction becomes less sparse. This is more
or less expected as one switches from `1 to S1, because mixed norms
put less emphasis on sparsity (this can also be observed in Fig. 3
of [1]). What demands an explanation is the observation that the
best reconstruction with S3 uses almost all of the coefficients and
with fewer coefficients, the performance achieved with this norm de-
grades quickly. We think that this unexpected behavior stems from
the rigidity in the ‘sparsity measure’ – here the number of coeffi-
cients that exceed a certain threshold. Indeed, when we look at the
histogram of the coefficients, those obtained via S3 have a slightly
higher kurtosis (than those obtained using the other norms) indicat-
ing a sparse distribution. In the following experiment, we increase
the threshold for a coefficient to be counted ‘significant’ and we ob-
serve that the number of coefficients for the best reconstructions with
the `1 and S3 norms get even closer.

Experiment 2. In our second experiment, we took as input a speech
signal (4 sec., 16000 samples/sec.) contaminated with white noise
(input SNR = 5dB) using the same formulation and the norms in Ex-
periment 1. The outputs SNR’s are shown in Fig. 5. `1 norm is best

if one restrics herself to few coefficients. However, mixed norms
are able to extract more out of the signal, when more coefficients
are allowed. Of course, the results are dependent on the particular
basis chosen (in particular the dilation factor) but we can neverthe-
less conclude that overlapping groups enhance performance and the
difference between S2 and S3, even though slight, encourages inter-
subband group systems.

6. CONCLUSION

In this paper, we evaluated the performance of mixed norms with
overlapping groups as signal priors. We considered a particular de-
noising formulation, that leads to a convex minimization problem, in
order to evaluate different grouping systems and described an algo-
rithm that solves that minimization problem. Our simulation results
on synthetic as well as real signals demonstrate the potential of such
priors and provide a motivation to optimize the grouping system. In-
verse problem formulations based on wavelet domain regularization
could also benefit from such optimization.
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