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A Simple Prior For Audio Signals

İlker Bayram and Mustafa Kamasak

Abstract—We propose a simple prior for restoration problems
involving oscillatory signals. The prior makes use of an un-
derlying analytic frame decomposition with narrow subbands.
Other than this, the prior does not have any other parameters,
which makes it simple to use and apply. We demonstrate
the utility of the proposed prior through some real audio
restoration experiments.

Index Terms—Inverse problem, audio prior, audio inpainting,
saddle point.

I. INTRODUCTION

An inverse problem requires to reconstruct an object x, given
distorted and noisy observations, y. A variational approach
formulates this task as a minimization problem of the form,

x̂ = argmin
u

f(y, u) + g(u). (1)

Here, the functional f(y, ·), called the ‘data term’, pe-
nalizes deviations from the observations and, g(·), called
the ‘prior term’, penalizes deviations from our model/prior
expectations regarding x. The functional for the data term
is determined by the distortion and the noise properties
affecting the observation. Consequently, the data term can be
considered ‘independent’ of the properties of x. In contrast,
the prior term is chosen by taking into account the particular
family of signals that the desired object belongs to. However,
from a practical point of view, it is not sufficient that the
prior be a good descriptor of the family – it is also desired
that the prior be easy to work with. In this paper, our goal
is to propose an effective prior for audio signals, that is also
easy to work with.

Bayesian formulations, that make use of the probability
distribution of the expected object, provide alternatives to
the variational formulation in (1). For audio, various prior
distributions have been proposed [1–5]. Among these, [1–3]
study priors that also take into account the time/frequency
persistence of audio signals by employing hyperparameters
for modelling the distributions of the time-frequency frame1

coefficients. Typically, by sampling the posterior distribution
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1A frame may be regarded as a collection of atoms that span a space of
interest in a stable manner – see [6] for a detailed discussion.
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Fig. 1. We think of an audio signal as a linear combination of constant-
frequency components with time-varying weights. We also assume that the
weights can be well-approximated by piecewise constant functions. Here,
notice that the weight for the middle component (with frequency ωs) can
be obtained by demodulating the component by ωs.

(given the observations) through Markov Chain Monte Carlo
techniques, statistics of the posterior distribution are ob-
tained, which are in turn useful for estimation – in particular,
minimum mean square estimates are obtained simply by
estimating the mean of the posterior distributions (also see
[7, 8] in this context). Alternative works, such as [4, 5] work
with individual time-frequency domain coefficients. These
latter approaches do not involve hyperparameters that link
neighboring coefficients, but in turn they do not make use of
the time/frequency persistence properties of audio signals.

Recently, mixed norms have been proposed for modelling
the time-frequency coefficients of audio [9]. In contrast to
the `1 norm, which promotes individual sparsity, mixed
norms allow a small number of clusters/groups of coeffi-
cients, where each group is non-sparse. Thus mixed norms
are more suitable, compared to the `1 norm, for capturing
clusters observed in time-frequency coefficients of typical
audio signals. Also, by adjusting the size, shape and weight-
ing within the groups, components with different character-
istics (such as tonal or transient) can be captured [10, 11] –
also see [12–16] for related discussion/applications. Unlike
the priors used in Bayesian formulations mentioned above,
mixed norms do not involve hyperparameters to be esti-
mated. However, one still needs to decide the group structure
(the size, shape, weights etc.).

In this paper, we propose a prior that does not require to
select parameters/structures. The idea rests on a simplified
version of the sinusoidal models in [17, 18]. Specifically,
we think of an audio signal as a linear combination of
constant-frequency components, whose weights can be well
approximated by piecewise constant functions (see Fig. 1).



Under this model, if wf (k) denotes the (discrete-time)
weight function of a component (with center frequency ‘f ’),
the total variation of this function, defined as [19, 20],∑

k

|wf (k)− wf (k + 1)| (2)

is expected to be small. In addition, since the number of
such constant-frequency components is also expected to be
small, a prior as described in three stages below, becomes
feasible.

(i) Partition the audio signal into narrow subbands,
(ii) Demodulate each subband to obtain its ‘baseband’

counterpart (or the weight function),
(iii) Compute the total variation of each ‘baseband’ and

sum these resulting values.

We remark that for a signal as in Fig. 1, such a prior is
expected to take smaller values than a random signal of the
same length. Although the three-stage description above is
valid, we actually realize the proposed prior in a simpler
way. In particular, the ‘partitioning’ in (i) is realized by
applying a time-frequency frame with narrow subbands. For
this, an STFT or an analytic wavelet frame2 with a high
Q-factor3 (see e.g. [21, 22]) may be utilized. After that,
we work with the frame coefficients and steps (ii), (iii)
are realized by an equivalent ‘phase corrected difference
operator’ applied on the coefficients of each subband. The
details are provided in Section II.

We also noted that the simplicity of use is an important
criterion for the utility of a prior. To that end, we shall also
discuss a ‘dual’ expression of the proposed prior. The dual
expression allows to rewrite (1) as a saddle point problem.
This in turn allows to employ several effective schemes for
saddle point problems which have recently been proposed
[23–27] (also see [28, 29]).

A. Some Remarks About the Proposed Prior

• The proposed prior is based on the simple signal model,
described in Fig. 1. Originally, the model does not
include frequency-varying components like chirps or
effects like vibrato/tremolo. However, such components
can be handled by local approximations, provided the
parameters of the underlying time-frequency frame are
adequate. We provide some discussion on the limita-
tions of the prior in Section II-B.

2Here, by ‘analytic wavelet frame’, we refer to a discrete wavelet
transform where the wavelets’ Fourier transforms are one-sided (i.e. the
wavelets contain either negative or positive frequencies).

3The Q-factor of a function is defined to be the ratio of its center
frequency to its bandwidth.

• The prior is not adaptive – it does not depend on
the underlying signal. One could propose an adaptive
scheme by employing a prior segmentation step as in
[30] so as to obtain stationary segments, followed by
a frequency decomposition of these segments. Alter-
natively, based on a parametric modulated stationary
signal model as in [31], one could first estimate the
parameters of the underlying components and make
use of this additional knowledge. Although these ap-
proaches/models are viable, they also complicate the
model/prior. In this paper, our goal is to develop a prior
which can be useful, although resting on a model that
might be rather simplistic for real signals.

• For inverse problems, an alternative to the variational
or Bayesian formulations in (1) is to employ matching
pursuit [32] schemes. In those approaches, the prior
knowledge is embedded directly into the procedure
for obtaining a solution. For instance, under a sparsity
assumption in a certain dictionary, one tries to fulfill a
given objective using as few atoms as possible from the
dictionary. This is done by selecting the atoms one by
one, starting with the most important ones. For audio,
other structures than sole sparsity can be incorporated
by using fixed combinations of atoms rather than single
atoms – for a discussion, we refer to [33].

• The proposed prior operates directly on the signal,
not on the coefficients of a particular representation
of the signal. In this regard, the proposed prior is an
instance of an analysis prior [34]. Although a synthesis
counterpart of the proposed prior could also be feasible,
such a discussion is beyond the scope of the paper.

Notation

Throughout the paper, vector fields defined over the time-
frequency parameter space are denoted with a bar as in z̄.
The value of this vector field at a time-frequency point (s, k)
is denoted by z̄s,k and is a vector. Also, throughout the text,
we use the same inner product symbol 〈., .〉 for functions,
for vector fields and for individual vectors. For instance, if z̄
and ū are two vector fields defined over the parameter space
(s, k) we have the equivalence 〈z̄, ū〉 =

∑
s,k〈z̄s,k, ūs,k〉,

where the two inner products on the left and right hand
sides of this equality have different domains.

Outline

In Section II, we present some observations regarding time-
frequency coefficients of frames. Based on these obser-
vations, we give the formal description of the proposed
prior. We also provide in this Section, a discussion on
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the limitations of the prior. A ‘dual’ description of the
prior, which facilitates its use in variational formulations,
is derived in Section III. Two different applications are
discussed and algorithms are provided in Section IV, along
with experiments that employ the algorithms. Section V is
the conclusion.

II. DESCRIPTION OF THE PRIOR

A. Motivation and Computation Details

Consider a single component signal with fixed frequency ωc
and variable amplitude a(t) given as,

x(t) = a(t) e−j(ωc t+φ0). (3)

Suppose we sample this signal with period T , to produce
the discrete-time signal

xd(n) = a(Tn) e−j(ωc T n+φ0). (4)

Provided that a(t) varies slowly, or T is small enough, we
will have

|xd(n)| = a(Tn) ≈ a
(
T (n+ 1)

)
= |xd(n+ 1)| (5)

In words, the magnitudes of the neighboring samples are
approximately the same. For phases, we observe that

∠xd(n+ 1) = T ωc(n+ 1) + φ0 (6)
= (T ωc n+ φ0) + T ωc (7)
= ∠xd(n) + T ωc. (8)

In words, the phases are the same up to a correction factor.
Combining these two observations, we can write

xd(n+ 1)− e−j ωc T xd(n) ≈ 0. (9)

In this simple model, ωc can also be replaced by a
time-dependent frequency like ωc + ε(t), so that x(t) =
a(t) exp

(
−j(ωc+ ε(t)) t+φ0

)
. Provided that ε(t) is small,

we would still expect (9) to hold. This is the main observa-
tion that our prior depends on.

More generally, consider a multicomponent continuous-time
signal given as,

x(t) =
∑
i

ai(t) e
−j(ωi t+φi). (10)

Also let f(t) = g(t) e−j(ωc t+φ) be a function, well localized
in the time-frequency plane. We will use the time-shifts of
f(t) to sample x(t). Note that,

〈x, f〉 =

∫
x(t) f∗(t) dt

=
∑
i

∫
ai(t) g(t) e−j

(
(ωi−ωc) t+(φi−φ)

)
dt. (11)

Now suppose that ωm ≈ ωc for some m and am(t) g(t) is
well concentrated (say, around t = t0) 4. In this case, (11)
will approximately evaluate to

e−j
(

(ωm−ωc) t0+(φm−φ)
) ∫

am(t) g(t) dt. (12)

Now if am(t) changes slowly enough so that

am(t) g(t− T ) ≈ am(t− T ) g(t− T ), (13)

and

(ωm − ωc)T � 1, (14)

we will have,

〈x(t), f(t− T )〉 ≈ e−jωm T 〈x(t), f(t)〉. (15)

On the other hand, if (13) or (14) is violated, (15) is no
longer expected to hold.

Based on these observations, we propose a prior for sig-
nals with slowly varying harmonic components, as follows.
Suppose we have a collection of discrete-time, analytic
time-frequency atoms fs,k(n), where s denotes the subband
parameter and k denotes the time-shift parameter (these may
be the atoms of an STFT transform or an analytic wavelet
frame with a high-Q factor as in [21, 22]). For subband s,
we assume that fs,k+1(n) = fs,k(n−Ns), i.e. the time-shift
between the consecutive atoms in the sth band is given by
Ns. Also, let the center frequency of the sth band be denoted
by ωs. Now let

cs,k = 〈x, fs,k〉 =
∑
n

x(n) f∗s,k(n). (16)

In this setting, we define our prior P (x) as,

P (x) =
∑
s,k

∣∣cs,k − cs,k+1 e
j ωsNs

∣∣. (17)

Observe that for ωs = 0,∑
k

∣∣cs,k − cs,k+1 e
j ωsNs

∣∣ =
∑
k

∣∣cs,k − cs,k+1

∣∣ (18)

is nothing but the total variation of cs,k, viewed as a function
of k. For ωs 6= 0, cs,k, is no longer expected to be a lowpass
or a piecewise constant sequence. In this case,∑

k

∣∣cs,k − cs,k+1 e
j ωsNs

∣∣ (19)

is equivalent to first demodulating cs,k (by ωs) and then
computing the total variation.

4This is to ensure that (ωm − ωc)G � 1, where G denotes the
approximate length of the time support of g(t). In this case, we will have

e−j
(
(ωm−ωc) t+(φm−φ)

)
≈ e−j

(
(ωm−ωc) t0+(φm−φ)

)
on the time

support of ak(t) g(t).
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B. Limitations of the Model

The computation of the prior can be summarized as follows.
Given the time-frequency coefficients of the signal, cs,k,

(i) first apply a phase corrected difference operator along
each subband (this is equivalent to computing ‘cs,k −
cs,k+1 e

j ωsNs ’ – see (17)),
(ii) then compute the `1 norm of the phase corrected

difference coefficients.

If we interpret the `1 norm as a rough measure of sparsity,
we can argue that, in order for step (ii) to yield a small
number, it is necessary that the difference spectrogram
produced by step (i) be sparse. In order to understand when
this is indeed the case and test whether this is true for audio
signals, we conducted a few experiments using different
signals.

1) Synthetic Signal: Our first experiment is performed on
a synthetic signal. The spectrogram of the signal is shown
in Fig. 2a. The sampling frequency is taken as 32 kHz.
For the STFT, we used a window length of 2048 samples
(64 msec) and a Hop-size of 128 samples (4 msec). The
signal consists of two components. The first component is
a constant frequency sinusoid, multiplied by a Hamming
window. The frequency of the component is chosen so
as to match the center frequency of a particular subband
of the STFT. The second component is a linear chirp
whose frequency varies slowly – again this is obtained by
windowing an infinitely long chirp signal with a Hamming
window. For both components, we observe some leakage to
the neighboring subbands.

We applied the phase corrected difference operator to the
STFT coefficients of the synthetic signal to obtain the
difference spectrogram shown in Fig. 2b. For the first
component, there appears a hollow canal in between two
subbands with relatively higher magnitude. The hollow canal
is produced in the subband whose center frequency matches
the frequency of the signal component. In the neighboring
leakage subbands, the suppression is not as strong, due
to a violation of (14). For the second component, as the
frequency of the chirp approaches the center frequency of
a particular subband, (14) starts to hold and cancellation
occurs (see the short white segments pointed to by the
arrows). Although the prior is based on a model that does
not include frequency varying components, we see that,
such components can still be handled to some extent since
they can be approximated by a sequence of shorter constant
frequency components. This being said, we also observe that
if the chirp frequency is not close to the center frequency
of any subband, the suppression provided by the phase
corrected difference operator is weak. This also means that,
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Fig. 2. (a) Spectrogram of a synthetic signal with two components. (b)
The spectrogram after the application of the phase corrected difference
operator. The difference operator creates a long hollow canal for the
constant frequency component. For the chirp component, these canals,
pointed to by the arrows, appear whenever the frequency of the chirp
approaches the center frequency of a subband.

for a constant frequency component, if the frequency of
the component does not match the center frequency of any
subband, then the prior does not necessarily yield a small
value for the signal. Nevertheless, in practice, we can try to
avoid this problem by increasing the number of subbands
so that there will be a subband that roughly matches the
frequency of a given component. Below, we test whether
this is indeed possible, using a real audio signal.

One last observation is regarding the robustness of the
prior against changes in the amplitude of the components.
Although the model in Fig. 1 assumes that the weight
functions are piecewise constant, the weight functions for
the components above are not constant but are slowly
varying (actually Hamming functions). Since the variation is
slow (note that the time-support of the Hamming windows
are 1 sec) compared to the time-support of the atoms (128
msec), the prior is effective in this case.

2) Stringed Instrument: Our second experiment is per-
formed on an excerpt played by tanbur (a stringed instru-
ment). The signal is 3-sec long with a sampling frequency
of 32 kHz (a total of 96000 samples). The (zoomed-in)
spectrogram of the signal is shown in Fig. 3a. For the STFT,
we used a window length of 4096 samples (128 msec) and
a Hop-size of 256 samples (8 msec). The spectrogram, after
the application of the phase corrected difference operator is
shown in Fig. 3b. Applying the phase corrected difference
operator reduces the energy of the spectrogram significantly.
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But more importantly5, we observe that the difference spec-
trogram now contains hollow canals, similar to the ones in
the experiment above with the synthetic signal. Similarly, we
think that such canals are produced whenever the frequency
of a certain component matches the center frequency of a
subband. In that case, the condition (14) is in effect and
the phase corrected difference locally yields small outputs.
For the subbands neighboring these hollow canals (leakage
subbands), the condition (14) no longer holds and therefore
the phase corrected difference fails to produce small outputs.

3) Vibrato: In a third experiment, we consider a violin
vibrato. The parameters of interest are as follows. Sampling
frequency is 44.1 kHz, the window length and Hop-size
for the STFT are 4096 samples (93 msec) and 256 sam-
ples (6 msec) respectively. The original spectrogram and
the phase corrected difference spectrogram are shown in
Fig. 3c,d. For this signal, the frequency content varies more
rapidly than the tanbur signal in the previous experiment.
In turn, the phase corrected difference operator is less
successful in suppressing the spectrogram. In particular, we
do not observe long hollow canals as in the previous two
experiments. However, we still observe that the difference
operator has been able to cancel some portions of the
spectrogram.

More experiments using the tanbur signal can be found in
Section IV. We now consider an alternative description of
the prior, that is useful for rearranging variational formula-
tions as in (1).

III. A DUAL DESCRIPTION OF THE PRIOR

In this section, we present another description of P (x) in
the form,

P (x) = max
z̄∈B
〈K x, z̄〉 (20)

where K is a linear map and B is a closed convex set.
This description is useful for deriving saddle point or dual
problems associated with variational formulations as in
(1) that employ P (x). This issue is further discussed in
Section IV.

In the following, we assume that our input signal x is
real-valued. Recall that the prior makes use of a collection
of analytic time-frequency atoms

{
fs,k

}
(s,k)∈I , where I

is some index set. Becasue of the analyticity property,
the atoms are complex-valued. In order to work with real
variables, we split the real and imaginary parts of the atoms
as frs,k and f is,k (so that fs,k = frs,k + j f is,k). Based on

5We have observed that such a reduction in energy occurs even if the
underlying signal was uncorrelated noise. Indeed one could justify the
occurence of such a reduction under some stationarity conditions.

(a) Original Spectrogram (Tanbur)
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(b) Phase Corrected Difference (Tanbur)

Time (seconds)

F
re

qu
en

cy
 (

kH
z)

 

 

0 0.5 1 1.5 2 2.5 3
0.2

0.4

0.6

−50

−25

0 dB

(c) Original Spectrogram (Vibrato)
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(d) Phase Corrected Difference (Vibrato)
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Fig. 3. (a) A zoom into the spectrogram magnitude of a piece by a stringed
instrument. (b) Phase corrected difference operator applied to the STFT
of the signal in (a). Observe that the phase corrected difference operator
creates hollow canals similar to the ones in Fig. 2b. (c) A zoom into the
spectrogram of a violin vibrato. (d) Phase corrected difference operator
applied to the STFT of the signal in (c).

the time-frequency coefficients cs,k defined in (16), let us
define a vector field c̄s,k, taking values in R2 as,

c̄s,k =

[
real(cs,k)
− imag(cs,k)

]
=

[
〈x, frs,k〉
〈x, f is,k〉

]
. (21)

Notice that the mapping that takes x to c̄ is linear. Let A
denote this linear operator that maps x to c̄. In this case,
AT is described as,

AT c̄ =
∑
s,k

c̄1s,k f
r
s,k + c̄2s,k f

i
s,k. (22)
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Remark 1. If the collection of atoms
{
fs,k

}
(s,k)∈I forms

a Parseval frame [6], then it can be shown that AT A = I .

In this setting, P (x) in (17) can be written as,

P (x) =
∑
s,k

‖c̄s,k −Rsc̄s,k+1‖2, (23)

where Rs is the rotation matrix associated with the sth

subband, defined as

Rs =

[
cos(ωsNs) sin(ωsNs)
− sin(ωsNs) cos(ωsNs)

]
. (24)

Now, let us denote d̄s,k = c̄s,k − Rs c̄s,k+1. Also, let ∆
denote the linear mapping from c̄ to d̄, i.e. d̄ = ∆ c̄. Note
that if ē = ∆T d̄, then

ēs,k = d̄s,k −RTs d̄s,k−1. (25)

Finally, observe that if v ∈ R2, then ‖v‖2 = maxu∈B2
〈v, u〉,

where B2 is the unit ball of the `2 norm in R2. Therefore,
if z̄ is a vector field over the parameter space (s, k), then∑

s,k

‖d̄s,k‖2 =
∑
s,k

max
z̄s,k∈B2

〈d̄s,k, z̄s,k〉 = max
z̄s,k∈B2

〈d̄, z̄〉.

(26)

Using our notation so far, we can now write,

P (x) = max
z̄s,k∈B2

〈∆Ax, z̄〉 (27)

= max
z̄s,k∈B2

〈x,AT ∆T z̄〉. (28)

In the following, these expressions will be invoked to obtain
saddle point problems.

IV. SUITABLE FORMULATIONS, EXPERIMENTS

A. Linear Inverse Problems

Consider a problem of the form,

min
x

1

2
‖y −H x‖22 + λP (x), (29)

where H is a matrix. Using the alternative description in
Section III, we can write this as a saddle point problem
[35] as,

min
x

max
z̄s,k∈B2

1

2
‖y −H x‖22 + λ 〈∆Ax, z̄〉. (30)

In general, the solution can be obtained by adapting primal-
dual algorithms (see e.g. [23, 25, 27]). Specifically, if H is
invertible, we can say more about the solution :

Proposition 1. Suppose that H is invertible. Let C =
(HT H)−1. Also, let z̄∗ be a vector field that satisfies

z̄∗ ∈ argmin
z̄s,k∈B2

∥∥y − λH−T AT ∆T z̄
∥∥2

2
. (31)

Then, x∗ = H−1 y − λC AT ∆T z̄∗ minimizes (29).

Proof: See the appendix.

Denoising: One special case of interest, in (29), is H = I .
In this case, (29) reads as,

min
x

1

2
‖y − x‖22 + λP (x), (32)

This could also be regarded as a denoising formulation. The
denoising problem is of interest in more general settings as
well since its solution is equivalent to realizing the ‘proximal
map’ associated with the proposed norm, which appears
in many algorithms in convex optimization [36, 37]. The
following is a corollary of Prop. 1.

Corollary 1. Let z̄∗ be a vector field that satisfies

z̄∗ ∈ argmin
z̄s,k∈B2

∥∥y − λAT ∆T z̄
∥∥2

2
. (33)

Then, x∗ = y − λAT ∆T z̄∗ is a solution of (32).

In this case, the following algorithm produces the denoised
signal.

Algorithm 1 Denoising Algorithm
Initialize z̄ ← 0. Also, let ρ be a constant such that I −
ρ λ2∆AAT ∆T is positive semi-definite.
repeat
z̃ ← z̄ + ρ λ∆A(y − λAT ∆T z̄)
for all (s,k) do
z̄s,k ← z̃s,k/max

(
‖z̃s,k‖2, 1

)
end for

until convergence
x∗ ← y − λAT ∆T z̄

Remark 2. For the constant ρ used in the algorithm, if the
underlying frame is a Parseval frame [6], then ρ < 1/(2λ2)
works.

The derivation of the algorithm is provided in the appendix.

Experiment 1. To test the effectiveness of the prior, we
perform a denoising experiment6. The clean signal is a
3-second tune played by tanbur (a stringed instrument),
sampled at 32 kHz (a total of 105 samples). The (zoomed

6Matlab codes for the experiments can be found at
‘http://web.itu.edu.tr/ibayram/AudioPr/’
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(a) Clean Signal (b) Noisy Signal
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(c) Proposed Prior (d) Method of Yu et al.
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Fig. 4. Denoising experiment. (a) Original signal, (b) Noisy signal, SNR
= 17.55 dB, (c) Denoised signal with the proposed prior, SNR = 24.91 dB,
(c) Denoised with the method of Yu et al. [38], SNR = 23.95 dB.

in) spectrogram of the original signal is shown in Fig. 4a.
We produce the ‘observation signal’ by adding iid Gaussian
noise to the clean signal (SNR = 17.55 dB). The spectrogram
of the noisy signal is shown in Fig. 4b.

To define the prior, we employ an STFT with a Hamming
window7 of length 4096 (corresponding to 128 ms) and a
Hop-Size of 256 (corresponding to 8 ms) – therefore the
redundancy is approximately 16. We input the noisy signal
to Algorithm 1 with λ = 0.008. The resulting spectrogram
is depicted in Fig. 4c. The output SNR is 24.91 dB.

In order to provide a comparison, we also applied the
block-thresholding method of Yu et al. [38] 8. The resulting

7To be precise, we employ a ‘normalized’ version of a Hamming window.
Normalization is performed to make the STFT a Parseval frame. In this
setting, the normalized window is close to the original window.

8We used the code that was made available on the webpage of the
authors.

spectrogram9 is depicted in Fig. 4d. In this case, the output
SNR is 23.95 dB.

SNR values aside10 (which is not a very reliable measure in
terms of perceptual quality), there are differences between
the spectrograms of the denoised signals. We think that
the reason is the following. Observe that the clean signal
is very rich in harmonics. However, high order harmonics
are relatively faint and they seem to be lost in noise if we
look at the noisy signal’s spectrogram. Because of this, the
block-thresholding method, which takes into account only
the magnitudes of coefficients, eliminates these components
completely (observe especially the high-frequency regions,
wiped-out by the method). On the other hand, the proposed
prior works with the phases of the coefficients as well. This
could help the denoising algorithm to extract more (albeit
slightly) of the harmonics. Nevertheless, if we increase λ
further, we observed that the high-frequency components
are supressed for our algorithm as well.

Experiment 2. In this experiment, we apply the denois-
ing algorithm to the clean ‘Glockenspiel’ signal shown
in Fig. 5(a,c), in order to better understand the denoising
behavior of the prior. Due to the nature of the instrument,
the signal consists of attacks (at the onsets) followed by
a tonal component. The attacks are clearly visible, both in
the time domain signal and the spectrogram. As the time-
frequency frame, we use an STFT with the same parameters
as in Experiment 1. Also, λ is set to 0.05.

The spectrogram of the denoised signal is depicted in
Fig. 5b. Because our prior penalizes deviations from a tonal
behavior, in the denoised signal, the attacks are significantly
suppressed. This is also evident from the time-domain
residual signal where the energy is mostly concentrated at
the onsets. In a sense, denoising lead to a decomposition
of the signal into its ‘transient’ and ‘tonal’ components,
although that was not intended. Such decompositions are
of interest for coding as well as processing purposes – we
refer the reader to [8, 10, 39, 40] for detailed discussions.

We note that the conclusion in the previous paragraph
also points to a shortcoming of the proposed prior. The
prior is not very suitable for representing ‘transients’ like
attacks as in this example, or clicks, very rapid changes etc.
Nevertheless, we note that the same objection could be made
for the sinusoidal models as in [17, 18], which have proved
useful.

9This is the spectrogram obtained by applying the STFT to the time-
domain signal, i.e. the magnitudes of the ‘analysis coefficients’ of the STFT.

10We also note that especially for higher levels of noise, block-
thresholding yields a higher SNR than our algorithm.
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(a) Original Glockenspiel Signal
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(b) ‘Denoised’ Glockenspiel Signal
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(c) Original Glockenspiel Signal
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Fig. 5. Decomposition of Harmonic and Transient Components. (a) The
original Glockenspiel signal. The onsets cause the thin vertical bars in the
spectrogram. (b) In the denoised signals, the onsets have been significantly
suppressed. (c) Time domain representation Glockenspiel signal. (d) The
residual, i.e. the difference between the original and the denoised signals,
consist mainly of the onsets.

B. Recovering Missing Segments

In a second application, we try to recover missing segments
of an audio signal. The scenario is as follows. There is
an underlying original signal x(n), but somehow we only
observe a subset of the samples. Our task is to construct a
signal that agrees with the given data.

The problem discussed above appears in different settings.
In particular, packet loss concealment schemes in streaming

audio can be formulated as above [41, 42]. In this context,
see [41] for an algorithm based sinusoidal models, [42] for a
related coding scheme that makes use of the time persistence
property of the packets. The problem has also been called
an instance of an ‘audio inpainting’ problem in [43] and
is handled by a matching pursuit type algorithm – also see
[44] for a time-frequency regression formulation.

Here, we will make use of the proposed prior. For this, let
N denote the indices of the observed samples. We formulate
the problem as,

min
u
P (u) subject to u(n) = x(n) for n ∈ N. (34)

Now let S denote the set of signals which agree with the
data, i.e.,

S = {u : u(n) = x(n) for n ∈ N}. (35)

Notice that S is a convex set. Using S, we can rewrite our
problem (34) as,

min
u∈S

max
z̄s,k∈B2

〈z̄,∆Au〉. (36)

This is a saddle point problem. A simple algorithm that
converges in practice [23] is to take small steps in z
and u successively (see Algorithm 2). Formally convergent
schemes can be found in [24–29].

Algorithm 2 A Primal-Dual Algorithm
Initialize z̄ ← 0. Set γ to a small value.

Initialize u(n)←

{
x(n), for n ∈ N,
0, for n /∈ N.

(37)

repeat

u← argmin
v∈S

1

2 γ
‖u− v‖22 + 〈AT ∆T z̄, v〉 (P)

z̄ ← argmax
t̄s,k∈B2

− 1

2 γ
‖t̄− z̄‖22 + 〈t̄,∆Au〉 (D)

until convergence

We now discuss how to realize the steps of Algorithm 2.

Realizing (P): Let

v∗ = argmin
v∈S

1

2 γ
‖u− v‖22 + 〈AT ∆T z̄, v〉 (38)

This can be written as,

v∗ = argmin
v∈S

∥∥(u− γ AT ∆T z̄)− v
∥∥2

2
. (39)

Now let ũ = u− γ AT ∆T z̄. Then we have,

v∗(n) =

{
ũ(n), for n /∈ N,
x(n), for n ∈ N.

(40)
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Realizing (56): Let

t̄∗ = argmax
t̄s,k∈B2

− 1

2 γ
‖t̄− z̄‖22 + 〈t̄,∆Au〉. (41)

Equivalently, we have,

t̄∗ = argmax
t̄s,k∈B2

∥∥(z̄ + γ∆Au)− t̄
∥∥2

2
(42)

Now let z̃ = z̄ + γ∆Au. Then,

t̄∗s,k = z̃s,k
1

max(‖z̃s,k‖2, 1)
(43)

Experiment 3. We apply the proposed formulation (34)
on an audio signal. We use the signal in Experiment 1
(reproduced in Fig. 6a for ease of reference). To obtain the
‘observation signal’, we set to zero a segment of length 500
samples, out of every 3000 samples. The spectrogram of the
observation signal is shown in Fig. 6b (SNR = 9.26 dB). The
new vertical bars in the spectrogram are due to the missing
segments.

To define P (·), we used an STFT frame as in Experiment 1
but with half the redundancy (i.e. the hop size is 512
samples). The spectrogram of the reconstructed signal is
shown in Fig. 6c (SNR = 19.10 dB). Time-domain details
are shown in Fig. 6d. Perceptually, the distortion due to the
missing segments is significantly suppressed.

To compare the performance of the algorithm with the
method in [43], we ran another experiment using the same
algorithm. In this case, we set the first 10ms (320 samples)
segment out of every 100ms (3200 samples) frame to zero.
This results in an input SNR of 9.7 dB. After applying
the algorithm, the SNR increases to 20.5 dB. Although the
utilized signal is different from that in [43], we note that
the SNR value is comparable (see the right-end values in
Fig.2c of [43]).

V. CONCLUSION

In this paper, we introduced a simple prior for audio signals,
that is also easy to work with, in different settings. The
prior could be interpreted as an adaptation of total variation
to modulated signals. We have shown how to use the prior
in two different applications and evaluated its performance
using real audio signals. We hope to utilize the prior in other
applications such as restoration, audio sensor fusion, etc. in
the near future.

The proposed prior concentrates more on the ‘tonal’ compo-
nent [39] of the audio. To that end, it could be complemented
with an additional term for handling ‘transient’ components.
However, this would also complicate the prior, which we
tried to avoid in the first place. We think that a modification
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(b) Signal with Missing Segments
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(c) Reconstruction
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(d) Time Domain Details
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Fig. 6. Audio Inpainting Experiment. (a) Spectrogram of the original
signal (b) Spectrogram of the observation signal with missing segments
(c) Spectrogram of the reconstruction (d) Time domain details of the
original signal (thin) and the reconstruction (thick). The missing segments
lie between the dashed lines.
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that is sensitive to the complexity of the prior would be an
interesting topic to pursue.

Another possible extension might be to take into account
the existence of harmonics in the stationary parts of audio
signals. Note that the current definition of the prior, which
adds the ‘demodulated total variation’ of each subband is
based on the assumption that there are few subbands with
activity at each point in time. However, for audio, the
frequencies of these subbands are usually related. In order
to take this into account, the simple sum (over the subbands)
can be modified or replaced with a more suitable function.
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APPENDIX
DERIVATION OF PROP. 1

The derivation below is essentially an adaptation of a related
derivation regarding 2D total variation in [45] – also see [46]
for an alternative.

Recalling (30), our goal is to find x∗ and z̄∗, with z̄∗s,k ∈ B2,
such that,

x∗ = argmin
x

1

2
‖y −H x‖22 + λ 〈∆Ax, z̄∗〉, (44)

z̄∗ ∈ argmax
z̄s,k∈B2

〈∆Ax∗, z̄〉. (45)

By differentiating the rhs of (44) with respect to x, we see
that x∗ satisfies,

HT
(
H x∗ − y

)
+ λAT ∆T z̄∗ = 0. (46)

But if H has full column-rank, then we can solve for x∗ as

x∗ = (HT H)−1
(
HT y − λAT ∆T z̄∗

)
. (47)

Note that if H is square, then (HT H)−1 = H−1H−T . In
this case, if we plug (47) into (45), we obtain,

z̄∗ ∈ argmax
z̄s,k∈B2

〈
y − λH−T AT ∆T z̄∗, H−T AT ∆T z̄

〉
.

(48)

Let us write B = H−T AT ∆T for simplicity. The last
equation implies that

〈y − λB z̄∗, B (z̄∗ − z̄)〉 ≥ 0. (49)

for all z̄ such that z̄s,k ∈ B2. But observe that,

‖y − λB z̄‖22 = ‖y − λB z̄∗‖22 + ‖λB (z̄∗ − z̄)‖22
+ 2λ 〈y − λB z̄∗, B (z̄∗ − z̄)〉 . (50)

In view of (49) and the nonnegativity of the second term,
we deduce that ‖y − λB z̄‖22 assumes its minimum at z̄∗.
This is (31). The final statement of the proposition follows
from (47).

APPENDIX
DERIVATION OF ALGORITHM 1

The algorithm obtains the minimizer by solving (33). We
will present a derivation of the algorithm as an instance of
a gradient projection algorithm [47, 48]. Alternatively, it can
be viewed as an instance of a forward-backward algorithm
[36, 45] or derived through a majorization-minimization
scheme [49].

Let us recall the gradient projection algorithm. Consider a
problem of the form

min
t∈D

f(t) (51)

where D is a convex set in Rn and f(t) is a differentiable
function whose gradient is bounded as,

‖∇f(t)−∇f(u)‖2 ≤ α‖t− u‖2 (52)

for some α. Also, let PD(·) denote the projection operator
onto D. In this setting, the gradient projection algorithm is
as given below.

Algorithm 3 Gradient Projection
Set ρ < 2/α.
repeat
t̃← t− ρ∇f (t) (S1)
t← PD(t̃) (S2)

until convergence

We remark that (33) is essentially a problem of the form
(51) where f(z̄) = 1

2

∥∥y−λAT ∆T z̄
∥∥2

2
and D is the set of

vector fields z̄ such that z̄s,k ∈ B2. Notice that D is convex
in this case. Also notice that,

∇f(z̄) = λ∆A
(
λAT ∆T z̄ − y

)
. (53)

In view of this, if we define M = λ2 ∆AAT ∆, we can
write,

∇f(z̄)−∇f(ū) = M(z̄ − ū), (54)

Let us now derive an upper bound on the spectral norm of
M . If the underlying frame is Parseval, it can be shown that
AT A = I . Consequently, AAT is a projection operator,
therefore,

‖AAT v‖2 ≤ ‖v‖2. (55)
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Recalling the definition of ∆ (see the text following (24)),
we can write it as ∆ = I − R. Here, R is the linear
operator that delays c̄s,k along k and then applies the unitary
rotation matrix to each entry of the vector field. Therefore
the spectral norm of R is unity. In turn, we find that,

‖∆u‖2 ≤ 2‖u‖2. (56)

Combining (55) and (56), we find that

‖∇f(z̄)−∇f(ū)‖2 ≤ 4λ2 ‖z̄ − ū‖2. (57)

In view of (53) and (57), for (33), the step labeled (S1) can
now be written as,

z̃ ← z̄ + ρ λ∆A(y − λAT ∆T z̄) (58)

where ρ < 1/(2λ2).

The step labelled (S2) should project z̃s,k onto B2 for all
(s, k) pairs. Notice that for a specific (s, k), the projection
is given by,

z̃s,k/max
(
‖z̃s,k‖2, 1

)
. (59)
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