
Exploring Spelling Correction Approaches
for Turkish

Dilara Torunoğlu-Selamet, Eren Bekar, Tugay İlbay, Gülşen Eryiğit
Department of Computer Engineering

Istanbul Technical University
Istanbul, 34469, Turkey

[torunoglud, erenbekar, ilbay, gulsen.cebiroglu]@itu.edu.tr

Abstract—The spelling correction of morphologically rich
languages is hard to be solved with traditional approaches
since in these languages, words may have hundreds of different
surface forms which do not occur in a dictionary. Turkish is
an agglutinative language with a very complex morphology and
lacks annotated language resources. In this study, we explore the
impact of different spelling correction approaches for Turkish
and ways to eliminate the training data scarcity. We test with
seven different spelling correction approaches, four of which
are introduced in this study. As the result of this preliminary
work, we propose a new automatic training data collection
process where existing spelling correctors help to develop an
error model for a better system. Our best performing model uses
a unigram language model and this error model, and improves
the performance scores by almost 20 percentage points over the
widely used baselines. As a result, our study reveals the achievable
top performance with the proposed approach and gives directions
for a better future implementation plan.

Keywords—Spelling Corrector, Spell Checker, Turkish

I. INTRODUCTION

In morphologically rich languages (MRLs) and especially
the agglutinative ones like Turkish, Finnish or Hungarian, a
word may occur in hundreds of different surface forms by
the addition of multiple suffixes the end of a word stem.
The creation of a lexicon/dictionary consisting of all possible
surface forms is impractical and most of the time not efficient
due to memory space and search speed constraints. As a result,
the usage of a lexicon to check if the newly constructed
candidate of a misspelled word is valid or not, as is the case
in traditional approaches tailored for morphologically poor
languages, becomes unusable for MRLs.

Finite state transducers (FSTs) [1], [2] are proven to be
very well suited for this kind of languages and perform
very fast lookup over possible word generations. One of the
early implementations of spelling correction for MRLs is the
error tolerant finite state recognition (ETFSR) approach of
Oflazer [3]. Although it is very fast to create the possible
candidates up to the specified edit distance limit, the deficiency
of this approach is that it does not produce an ordered list of
possible corrections which prevents its usage as an automated
spelling corrector. Recent approaches [4]–[6] which focus on
weighted finite-state spell-checking using language models
and error models are very efficient for the spelling correction
of MRLs. Pirinen and Lindén [6] who experiment also with

some agglutinative and polysynthetic languages as well as
English, use the Wikipedia articles of the related languages
in order to create the corresponding language models. On
the other hand, the same error models which are used for
English are also used for MRLs only by adding language-
specific characters.

Wang et al. [7] propose a fast and accurate approximate
string search algorithm (ASS) which keeps track of the fre-
quent mistakes (error model) extracted from training data
(consisting of spelling mistakes and their corrections) and
generates the most probable correction candidates. The method
uses a vocabulary trie for validating the generated candidates.
It is very straightforward to collect the training data for the
error model from the user queries of a search engine (the
suggested and selected corrections) as it is conducted in the
mentioned study.

In this paper, we explore the way of creating a Turkish-
specific error model for lack of manually annotated training
data and the different combinations of the error model, the
language model and the minimum edit distance candidate
generation for spelling correction. We compare our results
with 3 existing spelling correction systems for Turkish: 1.
error tolerant finite state recognition (ETFSR) approach of
Oflazer [3], 2. MsWord and 3. Zemberek [8].1 The paper is
structured as follows: Section 2 introduces the error model and
Section 3 discusses the proposed spelling correctors, Section
4 presents the used datasets and evaluation metrics, Section 5
gives the experimental results and discussions and Section 6
the conclusion and future work.

II. THE ERROR MODEL

Obtaining the error model is a challenging task considering
the lack of manually annotated training data for the Turkish
language. Wang et al. [7] proposed a probabilistic approach
for spelling correction. This approach was novel in that it
was using a log-linear candidate generation utilizing a special
data structure that can find top candidates efficiently. The
proposed method works effectively for languages which have
a limited dictionary for lookup. They derived all the possible

1To the best of our knowledge, at the time of writing this paper, the only
three spelling correction systems that we can compare with were these three
systems.

7



rules from the training data using a similar approach to Brill
and Moore [9]. In their study, they collected the training
data for the error model from the user queries of a search
engine. Despite not having this opportunity, we propose a
new automatic training data collection process where the
existing spelling correctors help to develop an error model.
We collected a training data set from the Twitter domain. We
then passed all the ill-formed words (which are not accepted
by our morphological analyzer) from one online (Google2) and
one offline spelling correctors [8] and accepted the corrections
which are proposed identically by both of these correctors
as the corrected form of the ill-formed words in our training
set. At the end of this process, we obtained a training set of
5775 word pairs (ill-formed and corrected words) which have
a character length within a range of 2 to 23. After obtaining
the training set for the error model, we used the same approach
with Wang et al. [7] to store the extracted error rules.

We used the Aho-Corasick tree structure for storing and
applying the correction rules. During the generation of the
error model, the rules are extracted from the misspelled
and corrected forms of words by using the Levenshtein edit
distance algorithm. The output of this part is a set of rules
which includes addition, deletion and substitutions of letters.
This rule set also contains the likelihood of each derived rule.
The extracted rules and their estimated likelihoods are stored
in an Aho-Corasick search tree which is a very efficient string
matching trie-based data structure. All leaf nodes in this search
tree have an output link which associates the node itself with
the likelihood of the rule in the node. This lets fetching rules
and their likelihoods effectively. It also stores failure links that
redirect the search to the best applicable node when there is
no way to continue for the queried string. This prevents us
from starting from the beginning each time the search query
fails and results in a significant time gain during the search.

III. SPELLING CORRECTORS

ETFSR and Zemberek use edit-distance based candidate
generation approaches. The following subsections introduces
our new approaches that we experiment with, which are
basically the different combinations of the language and error
models as well as ETFSR.

Spelling Corrector #1 (SC1)

Our first approach is an adaptation of Wang et al. [7]. Since
creating a lexicon which will cover all possible surface forms
in an MRL is not practical and efficient in that the required
memory allocation for the data structure is very big even with
the most compact data structures3, instead of the vocabulary
trie for candidate validation, SC1 uses an FST (a finite-state

2At the time of this collection process, Google spelling correction service
was still available.

3In the early stages of our implementation, we tried to just place the most
frequently occurring surface forms extracted from a corpus into the lexicon
and even this approach took more than 500M of memory by using a suffix
tree, which we believe is not acceptable for a spelling corrector application
to be in practical usage.

Fig. 1: Spelling Corrector #1

transducer which is built from a stem lexicon for the MRL
in focus and the morphotactic and phonetic rules to generate
the inflected forms of these stems) as the language validator.
Figure 1 draws the main components of SC1. The training
phase is the process of creating the error model which is
explained in Section II. In the candidate generation phase,
the previously constructed Aho-Corasick tree is looked-up for
all applicable rules for a given misspelled word. Since not all
the rules generate a valid surface form, the generated results
should be validated by the FST. If the constructed word is
validated by the FST, then all applied rule likelihoods are
summed up and this forms the likelihood of the candidate
word. As a pruning technique, before applying a rule, it is
always checked that the rule likelihood is able to generate a
more probable candidate. If not, the rule is not applied to the
misspelled word.

As a result, our approach differs from the original ASS
model [7] in two main points: 1) the usage of FST for
validation, 2) the calculation of the rule set probabilities in the
training phase. In the original work, they employ a log-linear
model for calculating the probabilities of rule sets whereas in
our work, we simply use likelihoods for preliminary investi-
gation.

Spelling Corrector #2 (SC2)

As mentioned in the introductory section, the output of
ETFSR is a set of unsorted candidates and the size of the
candidate list is unpredictable. SC2 is an approach to deal
with this deficiency by re-ranking ETFSR outputs using the
probabilities calculated from the error model as explained
previously. Figure 2 shows the structure of SC2, where the
misspelled inputs firstly enter the ETFSR. We then retrieve
the rules (and their scores) from our rule tree that should
be applied to the misspelled word to generate each candidate
in the output list from the ETFSR. In other words, we get

8



the list of applied rules (which can be addition, deletion
and substitution of a letter) according to the Levenshtein edit
distance between the misspelled word and the corresponding
candidate. When we have the rules for a candidate, we sum
up the costs of the applied rules, and then simply sort the
candidates by their costs. The candidate with the minimum
cost is accepted as the most probable correction.

Fig. 2: Spelling Corrector #2

Spelling Corrector #3 (SC3)

Inspired by previous works by Linden and Pirinen [4]–[6],
SC3 aims to make use of unigram language models for
candidate sorting. To this end, a unigram language model is
trained from word surface forms from a Turkish corpus. The
ETFSR outputs are then re-ranked similarly to SC2 but this
time using the unigram probabilities. The candidate having
the highest probability and the smallest edit distance from
the input misspelled word is then accepted as the produced
correction. The structure of SC3 is shown in Figure 3.

Fig. 3: Spelling Corrector #3

Spelling Corrector #4 (SC4)

SC4 is inspired from Linden and Pirinen [6], in that it uses
a language and an error model together in order to generate
candidates. SC4 uses the same unigram language model from
SC3 and the same error model introduced in Section II. SC4
differs from SC1 in that, the generated candidates by the error
model are validated by using the language model instead of
the FST and the best proposal is selected as the candidate with
minimum rule cost and maximum unigram probability:

argmax
cεGen

p(c)
1

rulecost(c)

Laplace Smoothing [10] is used in order to compensate for
the absence of a candidate word in the language model. SC4
is depicted in Figure 4.

Fig. 4: Spelling Corrector #4

Table I displays the usage and combination of language and
error models as well as the candidate generation method in
the introduced spelling correctors. As can be noticed from the
table, the difference between SC2 and SC1 is that in SC2,
which uses ETFSR in its candidate generation stage, all the
produced candidates are already valid words, whereas in SC1
the candidates are validated after being produced by the use
of the error model. The last two spelling correctors (SC3
and SC4) using language models are the highest memory-
consuming systems as expected and explained in the introduc-
tory section. They are tested both with ETFSR candidate gen-
eration (SC3) and Aho-Corasick candidate generation (SC4).
SC4 also uses the error model in its probability calculation.
Another possible system (discussed in the following sections)
which could provide a slight increase in the scores would be
a combination of ETFSR, the language model and the error
model, though it was not tested as part of this study.

9



Models Error
Model

Language
Model

Candidate
Generation

SC1 � � Aho-Corasick
SC2 � � ETFSR
SC3 � � ETFSR
SC4 � � Aho-Corasick

TABLE I: Models Used in Different Approaches

IV. EXPERIMENTAL SETUP

We tested our system on Turkish which is a highly ag-
glutinative language carrying all the characteristics of a mor-
phologically rich language. We used an available two-level
morphological analyzer of Oflazer [11] as the FST language
validator of our system in SC1 and again the ETFSR from
Oflazer [3] in SC2 and SC3.

To obtain a unigram language model we used the corpus
introduced by Sak et al. [12]. The text corpus compiled from
the web contains about 500M tokens. Due to the composition
of the data found on the web, the corpus include noisy data.
We extracted only the valid Turkish words which constitute
842 MB of the corpus (almost 43M valid tokens).

During the collection of the test data, for the sake of fairness
we do not include errors made on purpose due to social media
writing trends such as emoticons and words that are typed
out without vowels or the proper diacritics, which would be
corrected in a normalization stage [13] rather than spelling
correction.

The creation of the training data to train the error model is
explained in Section II. Since this automatic approach is only
applied during the creation of the training data used in rule
extraction, this does not hamper the evaluation on our test data
which is manually annotated with corrected forms (1016 word
pairs).

V. EXPERIMENTAL RESULTS & DISCUSSIONS

In our experiments, we first test with ETFSR and the
spelling correctors introduced in Section III and evaluate their
results. We then compare our models with other available
spelling correctors for Turkish.

Table II introduces some statistics about ETFSR and with
the other models (SC1, SC2, SC3 and SC4); namely the
average operation time the spelling correction approach on
our test set described in previous section and the average
index of the correct candidate within all possible generated
candidates. The index number starts from 0 indicating that
the first candidate in the output is the correct one given
the manually annotated test set. One may notice from this
table that the ETFSR approach produces very fast results but
the correct answer generally occurs in lower positions in the
produced candidate list. On the other hand SC1 is almost 10
times slower when compared to ETFSR but produces more
accurate results. SC2 is much faster when compared to SC1
and has almost similar success ranges. SC3 and SC4 similar
to SC2 in terms of average duration but give better average

index results. The added cost due to re-ranking is smaller than
a single millisecond4 over ETFSR.

Approach Average
Duration (ms)

Average
Index

ETFSR 388 1.46
SC1 3385 0.9
SC2 389 0.6
SC3 333 0.35
SC4 363 0.145

TABLE II: Output Statistics

Table III gives the comparison of the spelling correction
accuracies of our models with the mentioned tools. Although,
the Google spelling suggestion API was used during the
creation of our training data, it could not be compared with
the other spelling correctors in this section since it is no longer
available. In this experiment, for all of the systems, we took
the first suggestion given by that system and compared it with
the gold-standard correction in our test set. Our best model
outperforms the widely used Zemberek spelling corrector by
almost 20 percentage points. Despite the modest size of our
training data set that we were not able to continue to collect
due to the unavailability of one of the services (Google spelling
suggestion API) that we have used, we see that the proposed
error model on its own (SC2) outperforms MsWord by more
than 2 percentage points. We believe that, with the addition of
extra training data, the system performance may be improved
even further. As a future work, self-training approaches may
be tested for the learning of the error-rule probabilities. But
we observe that the used language model has a much higher
impact by almost 10 percentage points. One should notice
that the used language model is just a unigram surface model
and better results may be obtained with more sophisticated
language models.

Accuracy
ETFSR 49.0%

Zemberek 61.4%
MsWord 66.3%

SC1 68.6%
SC2 67.8%
SC3 78.7%
SC4 80.7%

TABLE III: Comparison with previous studies

In order to investigate the results and the behavior of the
algorithms more closely, we also made a different evaluation
based on promoting the correct candidate appearing in the top
n list of the algorithm’s output. Table IV presents these scores
for n=1, 3, 5 and 10., e.g. SC4 positioned the correct candidate
in its top 3 list in 92.7% of the cases.

We can observe that the success rates of all the models
become similar as n increases, meaning that ETFSR is also
successful in generating the correct candidate in its top 10
list. But SC3 and SC4 are certainly more suited to be used

4The training time (629 ms with our available training data) is not added to
this cost since it occurs only once in the preparation stage and the pre-trained
model is only loaded at the beginning of testing stage.

10



Candidate
List Size ETFSR SC1 SC2 SC3 SC4

1 49.0% 68.6% 67.8% 78.7% 80.7%
3 76.7% 88.6% 89.1% 92.7% 92.7%
5 86.2% 93.5% 92.9% 94.5% 97.0%
10 93.8% 95.7% 95.4% 95.5% 98.9%

TABLE IV: Candidate List Evaluation

as automated spelling correctors. In top 1, the difference is as
high as 31,7 percentage points between ETFSR and SC4.

Although SC3 and SC4 both yield very high scores, they
are both memory-inefficient due to the used surface language
models. A better possible system which would be the combi-
nation of both will actually be a kind of the system proposed
by Linden and Pirinen [6] combined with our automatically
created error model which we aim to develop in our future
work. Although the difference between candidate generation
using FSTs and Aho-Corasick tree is not statistically signifi-
cant5, we expect that memory consumption will be alleviated
with a better implementation, even though there may not be
an increase in performance.

VI. CONCLUSION & FUTURE WORK

In this study, we explored ways to eliminate the scarcity
of training data for spelling correction, as well as the impact
of different spelling correction approaches for Turkish. We
proposed a new automatic training data collection process
where existing spelling correctors contribute to the develop-
ment of an error model, paving the way for better systems.
We explained four spelling correction approaches adapted for
Turkish alternatively using language models, error models
and combination of candidate generation approaches, and
reported their performances for Turkish in comparison with
three established spelling correctors. Our work has been a pre-
liminary investigation of better spelling correction approaches
for MRLs, and there is still much that could be further in-
vestigated and improved, such as 1) Automatically increasing
training set size, 2) Integrating self-training approaches in
learning error rule probabilities, and 3) Using weighted finite-
state language and error models. Although we used a simple
unigram language model in our best-performing systems, we
observed that the systems making use of the language model
outperform those without the model by about 10 percentage
points. Furthermore, we believe that using weighted finite-
state language and error models would produce slightly better
results than the ones represented in this paper as well as
eliminating the memory consumption problem of our best
corrector.

ACKNOWLEDGMENT

This work is part of our ongoing research project “Parsing
Turkish Web 2.0 Sentences” supported by ICT COST Action
IC1207 TUBITAK 1001 (grant no: 112E276).

5We used McNemar’s paired t-test to evaluate the difference between
SC1(68.6%) and SC2(67.8%) and found that the difference between these
two models is not statistically significant, with a two-tailed p value of 0.7.

REFERENCES

[1] Finite-state morphology: Xerox tools and techniques, 2003.
[2] K. Lindén, M. Silfverberg, and T. Pirinen, HFST tools for morphology–

an efficient open-source package for construction of morphological
analyzers, Std., 2009.

[3] Error-tolerant finite-state recognition with applications to morphological
analysis and spelling correction, vol. 22, no. 1, 1996.

[4] K. Lindén, T. Pirinen et al., Weighting finite-state morphological ana-
lyzers using hfst tools, Std., 2009.

[5] T. Pirinen, K. Lindén et al., Finite-state spell-checking with weighted
language and error models, Std., 2010.

[6] T. A. Pirinen and K. Lindén, State-of-the-Art in Weighted Finite-State
Spell-Checking, Std., 2014.

[7] Z. Wang, G. Xu, H. Li, and M. Zhang, A fast and accurate method for
approximate string search, Association for Computational Linguistics
Std., 2011.

[8] Zemberek, an open source NLP framework for Turkic Languages,
vol. 10, 2007.

[9] E. Brill and R. C. Moore, An improved error model for noisy channel
spelling correction, Association for Computational Linguistics Std.,
2000.

[10] Laplacian smoothing and Delaunay triangulations, vol. 4, no. 6, 1988.
[11] Two-level description of Turkish morphology, vol. 9, no. 2, 1994.
[12] Resources for Turkish morphological processing, vol. 45, no. 2, 2011.
[13] D. Torunoǧlu and G. Eryiğit, A Cascaded Approach for Social Media

Text Normalization of Turkish, Std., April 2014.

11


