A Greedy Hyper-heuristic in Dynamic Environments

Ender Ozcan
ASAP Research Group,
School of Computer Science,

Sima Etaner Uyar
Istanbul Technical University
Faculty of Electrical and

Edmund Burke
ASAP Research Group,
School of Computer Science,

University of Nottingham, Electronics, University of Nottingham,
Jubilee Campus, Wollaton Computer Engineering Jubilee Campus, Wollaton
Road, Nottingham NG8 1BB, Department, Road, Nottingham NG8 1BB,

United Kingdom
exo@cs.nott.ac.uk

ABSTRACT

If an optimisation algorithm performs a search in an envi-
ronment that changes over time, it should be able to fol-
low these changes and adapt itself for handling them in
order to achieve good results. Different types of dynam-
ics in a changing environment require the use of different
approaches. Hyper-heuristics represent a class of method-
ologies that are high level heuristics performing search over
a set of low level heuristics. Due to the generality of hyper-

34469 Maslak Istanbul, Turkey
etaner@cs.itu.edu.tr

heuristic frameworks, they are expected to be adaptive. Hence,

a hyper-heuristic can be used in a dynamic environment to
determine the approach to apply, adapting itself accordingly
at each change. This study presents an initial investiga-
tion of hyper-heuristics in dynamic environments. A greedy
hyper-heuristic is tested over a set of benchmark functions.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]:

Heuristic methods

General Terms
Algorithms

Keywords

Hyper-heuristics, dynamic environments, adaptive, greedy,
mutational heuristics, hill climbing

1. INTRODUCTION

Many real-world optimisation problems are dynamic in
nature, i.e. the environment changes over time. For an opti-
misation algorithm to be successful in such an environment,
it should be able to follow these changes and adapt itself to
such changes. A change in the environment may occur due
to a change in the objective function, the constraints or the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’09, July 8-12, 2009, Montréal Québec, Canada.

Copyright 2009 ACM 978-1-60558-505-5/09/07 ...$5.00.

2201

United Kingdom
ekb@cs.nott.ac.uk

problem instance. Different dynamic environments exhibit
different change properties [1]:

e frequency of change

e severity of change

e predictability of change

e cycle length / cycle accuracy

Different types of dynamics require the use of different ap-
proaches to handle the changes. For example, if the change
is not very severe and the new optimum remains close to the
old one, perturbing the current solution slightly may be a
better approach; whereas if the environment changes drasti-
cally and the new optimum is far from the old one, a simple
random restart may be the best option. The success of the
method chosen in a dynamic environment is closely related
to the nature of the underlying changes. Many studies exist
in literature that analyse the approaches proposed to handle
different types of dynamics in the environment. A detailed
analysis of dynamic environments can be found in [1, 7, 8,
12, 13].

Hyper-heuristics are high level heuristics which perform
search over a set of low level heuristics for solving diffi-
cult problems [2, 5]. In literature, two broad hyper-heuristic
classes can be identified: heuristics to choose heuristics [10]
and heuristics to generate heuristics [3]. Most of the former
type of hyper-heuristics process a single candidate solution
and decide which low level heuristic(s) will be applied at each
iteration during the search. No problem specific information
is allowed between two levels in a standard Hyper-heuristic
framework as illustrated in Fig. 1 [4]. This raises the level
of generality and a hyper-heuristic can be applied to an-
other problem in another domain easily. Cowling et al. [4]
present most of the simple methodologies that can be used
as a hyper-heuristic. One of those methods is the Greedy
approach. Greedy applies all low level heuristics separately
to the current candidate solution and accepts the one that
generates the best solution. In this study, a Greedy based
hyper-heuristic is used. At the end of this stage, the result-
ing solution might be worse than the current solution. A
new solution is accepted if it has better or the same quality
as the current one.

Ozcan et al. [9, 10] show that the choice of low level
heuristics affects the performance of a hyper-heuristic. Per-
turbative heuristics are divided into two classes: mutational
and hill climbing heuristics. Mutational heuristics modify a

given solution randomly ignoring the quality of the resultant
solution, while hill climbing heuristics guarantee a solution
which has better or the same quality as the input in the ex-
pense of returning the same solution. The previous studies
show that choosing a mutational heuristic and then apply-
ing a single hill climbing heuristic yields better results than
using the hill climber within the set of low level heuristics.

Hyperheuristic

Choose Accept
heuristic(s) /
and apply Reject

T

Domain barrier

low level
heuristics

Problem domain

Figure 1: A Hyper-heuristic framework

Due to the generality of hyper-heuristic frameworks, they
are expected to be adaptive. Hence, a hyper-heuristic can be
used in a dynamic environment to determine the approach
to apply, adapting itself accordingly at each change. Since
this technique does not require any problem domain specific
information, it is applicable, without any modifications, to
dynamic environments exhibiting various change dynamics.

The main aim of this study is to perform preliminary
experiments to employ a hyper-heuristic framework using
mutational heuristics and a hill climber in a dynamic envi-
ronment while exploring its behaviour in environments ex-
hibiting changes of different severity and frequency. To the
best of the authors’ knowledge, this is the first study which
attempts to use such a Hyper-heuristic framework in the
context of dynamic environments.

2. EXPERIMENTS

2.1 Experimental Design

For this preliminary study, we decided to focus on two
properties of dynamic environments: frequency and change
severity. We also decided to work with mutational heuris-
tics since appropriate diversity levels and convergence rates
are among the key factors which determine the success of
an algorithm under changes of different severity levels and
frequencies. As a basis for the mutational heuristics, the tra-
ditional bit-flip mutation in genetic algorithms is adapted.
FEach bit in a candidate solution is traversed one by one
respectively and a bit is filliped with a given probability,
referred to as mutation rate.

2202

In this study we use a simple hyper-heuristic framework
as shown in Fig. 1. Within this framework, we used six
heuristics, five of which are mutations with different muta-
tion rates, namely 1/L, 2/L, 4/L, 8/L, 10/ L and 0.5, where
L is the length of the solution string. The sixth heuristic is a
simple hill-climber, the Davis’s bit hill climbing method [6].
A random order with respect to the size of a candidate so-
lution is generated and each bit is visited sequentially based
on that order. At each step, relevant bit under consideration
is flipped. If this change improves the quality of the solution
it is accepted, otherwise it is rejected, and then, the next bit
is considered. In this framework, if a mutational heuristic is
selected then after the mutation step, hill climbing is always
invoked. Greedy heuristic selection method is the one that
responds to the changing environment through the low level
heuristics more rapidly as compared to the others, since all
the heuristics are invoked anyway. Hence, it is the one whose
performance is investigated in our experiments.

During the experiments five different well known bench-
mark functions with different characteristics are used: Step,
Schwefel, Rastrigin, Salomon and Whitley’s 4-bit deceptive
function. Whitley’s function is a discrete function, while
the rest of them are continuous functions. A detailed ex-
planation of these benchmark functions are given in [11].
The settings used for these problems are given in Table 1.
In this table, D is the dimension for the problem and n is
the number of bits chosen to represent each dimension. For
all problems, the solution string is made up of 0 or 1 val-
ues. For Whitley’s function, the representation is straight-
forward; each location in the solution string corresponds to
one dimension of the function. For the continuous functions,
a Gray encoding is used as the representation scheme, where
each dimension is represented with a predefined number of
bits.

Table 1: Parameter settings for each problem

Problem | D | n LF MF HF
Step 20 | 10 165 80 30
Schwefel | 20 | 10 155 70 25
Rastrigin | 20 | 10 375 180 70
Salomon | 20 | 10 195 100 40
Whitley 20 | 4 | 122750 | 60000 | 20000

To experiment with different dynamic environments, four
change severity levels and three change frequencies are im-
plemented. For low severity, medium severity, high severity
and wvery high severity changes, on average 5%, 20%, 40%
and 70% of the bits are changed respectively between consec-
utive environments. To determine the number of iterations
between two consecutive changes which correspond to low
frequency, medium frequency and high frequency changes, we
let the programs run for a long time without any changes on
each problem separately and we observed the convergence
plots. The determined settings for the change frequency in
terms of number of iterations between consecutive changes
are also reported in Table 1. In the table LF', M F and HF
correspond to low frequency, medium frequency and high fre-
quency respectively.

In dynamic environments, one of the most commonly used
performance comparison metrics is the offine error [1]. Of-
fline error is calculated as given in Equation 1. We also use
this metric to asses performance.

z = e, = maz{er,eri1,...,et} (1)

. Z e and

t=1

Nl=

where 2’ is the offline error, T is the total number of evalu-
ations, 7 is the last time step (7 < t) when change occurred

2.2 Results

All results are averages over 50 runs for each test. For
each run of the algorithm, the run continues until 21 envi-
ronments are sampled, i.e. 20 changes occur after the initial
environment.

To see the effect of using a hyper-heuristic framework,
for each environment dynamic and on each problem, we
run each heuristic separately as well as the hyper-heuristic
framework. We then rank the results of each run based on
the offline error values averaged over 50 runs. These exper-
imental results are summarised in Table 2.

In Table 2, the first column shows the different change fre-
quency levels as low, medium and high. The corresponding
iteration values are different for each problem. Therefore
they are not stated explicitly in this table. These can be
found in Table 1. The second column shows the different
change severity levels where 0.05, 0.2, 0.4 and 0.7 correspond
to low severity, medium severity,high severity and very high
severity changes respectively. H0 corresponds to the heuris-
tic which only uses the hill-climber, H1, H2, H3, H4, H5
and H6 correspond to the mutational heuristics which use a
mutation rate of 1/L, 2/L, 4/L, 8/L, 10/L and 0.5 respec-
tively. HH corresponds to the hyper-heuristic which uses all
six heuristics. Each entry in the table gives the average rank
of each tested approach on the five benchmark functions for
the corresponding dynamic environment type.

Table 2: Ranking of each approach averaged over
five benchmark functions for each dynamic environ-
ment type which is determined by a given frequency
(f) and severity (a) of change.

f o HO H1 H2 H3 H4 H5 H6 HH

low 005 66 38 18 18 38 56 7.4 438
020 68 44 24 16 3.0 44 74 538
040 70 48 30 16 26 38 70 56
070 72 50 34 18 24 38 70 54

med 005 64 40 18 16 38 56 7.4 438
020 68 48 28 16 28 40 72 56
040 66 48 38 20 24 36 72 56
070 70 52 38 20 24 32 70 52

high 0.05 62 42 24 16 36 50 74 46
020 6.2 50 36 18 24 40 74 56
040 6.2 56 38 24 20 34 72 52
070 68 52 42 26 20 26 68 5.0

When we look at the table, we see that as the change sever-
ity increases, the average ranks for those heuristics using
higher mutation rates get better. For heuristics with high
mutation rates, this effect is emphasised as the frequency in-
creases. For example for H4 and H5, the ranks drop to their
63% and 67% respectively in a low frequency environment,
while for the high frequency environment, these values be-
come 55% and 52% respectively. For heuristics with lower
mutation rates, the contrary becomes true. For example

2203

for H1 and H2, the ranks increase to their 132% and 189%
respectively in a low frequency environment, while for the
high frequency environment, these values become 124% and
175% respectively. These results are to be expected, because
in an environment where the changes are severe, in order to
adapt to the new environment, the current solution needs to
be perturbed more as opposed to in environments with low
severity changes. However, as the changes become more fre-
quent, the algorithm has less iterations between consecutive
changes to find the current optimum. Too much diversity
slows down convergence, therefore the benefits of increased
diversity become less as frequency increases.

For the hyper-heuristic approach (HH) we see that the av-
erage ranks mostly lie between 4.8 and 5.6 where the worst
rank is 8.0, with no change direction trend as the severity or
the frequency increases or decreases. The selection heuristic
used in this study is greedy, therefore it applies all heuris-
tics to the current solution to choose the best one as the
next solution. To provide a fair comparison between the
hyper-heuristic and the others which use a single heuristic,
each program is allowed the same number of fitness eval-
uations between each consecutive change. Note that while
the hyper-heuristic applies all heuristics at each iteration,
the others only apply one heuristic. This implies that while
the hyper-heuristic samples a specific number of new points
around the current position to go to its next location (thus
making only one move per iteration), the others use those
fitness evaluations to sample points iteratively to visit many
new locations and move around on the landscape. This ex-
plains why the average ranks of the hyper-heuristic are not
higher as expected. Keeping the number of iterations (i.e.
actual moves) between the different programs fixed, rather
than the number of actual fitness evaluations would give
different results.

In the extreme cases, i.e. when the mutation rate equals
to 0.5 or when there is no mutational heuristic used, per-
formance is the worst for all types of environments. The
first one of these two heuristics (H6), denotes that at each
step, a new solution is randomly generated. This is equiva-
lent to random walk which is not useful in most problems.
The second one (HO), denotes that at each iteration, the
solution performs only a hill-climbing step from its current
location. This causes the solutions to quickly converge to a
local optimum. This is especially detrimental in dynamic en-
vironments where the optima change over time. HO achieves
its worst performance when the change severity is the high-
est and its best performance when the change severity is
low and change frequency is high. This is an expected out-
come. When the change is not severe, the new optimum is
usually not too far from the current one and with the high
change frequency rate, the solution has not yet had time to
get stuck at a local optimum. Therefore, the algorithm is
able to adapt better than in the other change scenarios.

3. CONCLUSION AND FUTURE WORK

This is a preliminary study into the applicability of a very
simple hyper-heuristic framework based on a very basic se-
lection and acceptance heuristics. The results confirm that
different change dynamics require different approaches to
handle the changes and a hyper-heuristic is able to choose an
appropriate heuristic at each change instance, thus provid-
ing an average performance for all dynamic environments.

The preliminary results are very promising which promote

further study. We will further our experiments to include
more complicated selection and acceptance methods which
also incorporate some form of learning. Also, we used mu-
tational heuristics to handle the changes. However, there
are many approaches which have been shown to be useful
in dynamic environments, for example memory-based tech-
niques. We will incorporate more techniques from dynamic
environments literature into the hyper-heuristic framework
as well as experiment with different frameworks.

4. REFERENCES

[1] J. Branke. Evolutionary optimisation in Dynamic
Environments. Kluwer, 2001.
[2] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross,
and S. Schulenburg. Hyper-heuristics: An emerging
direction in modern search technology. In Handbook of
Metaheuristics, pages 457-474. Kluwer, 2003.
E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa,
E. Ozcan, and J. R. Woodward. Exploring
Hyper-heuristic methodologies with genetic
programming. In Studies in Computational
Intelligence: collaboration, fusion and emergence,
chapter 6. Springer, 2009.
P. Cowling, G. Kendall, and E. Soubeiga. A
Hyper-heuristic approach for scheduling a sales
summit. In Selected Papers of the Third International
Conference on the Practice And Theory of Automated
Timetabling, PATAT 2000, Lecture Notes in
Computer Science, pages 176-190, Springer, 2000.
P. Cowling, G. Kendall, and E. Soubeiga.
Hyper-heuristics: A tool for rapid prototyping in
scheduling and optimisation. In Applications of
FEvolutionary Computing: Proceeding of Evo
Workshops 2002, volume 2279 of Lecture Notes in
Computer Science, pages 1-10, Springer, 2002.

2204

[6] L. Davis. Bit climbing, representational bias, and test
suite design. In Proceedings of the 4th Int. Conference
on Genetic Algorithms, pages 18-23, 1991.

[7] Y. Jin and J. Branke. Evolutionary optimisation in

uncertain environments — a survey. IEEE Transactions

on Evolutionary Computation, 9(3):303-317, 2005.

R. Morrison. Designing Evolutionary Algorithms for

Dynamic Environments. Springer, 2004.

E. Ozcan, B. Bilgin, and E. E. Korkmaz. Hill climbers

and mutational heuristics in Hyper-heuristics. In

Proceedings of the 9th International Conference on

Parallel Problem Solving from Nature (PPSN 2006),

volume 4193 of Lecture Notes in Computer Science,

pages 202-211, Springer, 2006.

E. Ozcan, B. Bilgin, and E. E. Korkmaz. A

comprehensive survey of Hyper-heuristics. Intelligent

Data Analysis, 12(1):1-21, 2008.

K. V. Price and R. M. Storn and J. A. Lampinen.

Differential Evolution, A Practical Approach to Global

optimisation. Springer, 2005.

K. Weicker, editor. Evolutionary Algorithms and

Dynamic optimisation Problems. Der Andere Verlag,

2003.

S. Yang, Y.-S. Ong, and Y. Jin, editors. Evolutionary

Computation in Dynamic and Uncertain

FEnvironments, volume 51 of Studies in Computational

Intelligence. Springer, 2004.

[10]

[11]

[12]

[13]

