Operating Systems

An Overview

Operating System

- software for using the hardware
- computer resources
 - controls
 - shares
- program development environment
- kernel = operating system

Computer System

<table>
<thead>
<tr>
<th>application programs</th>
<th>editors</th>
<th>command interpreter</th>
</tr>
</thead>
<tbody>
<tr>
<td>compilers</td>
<td></td>
<td>operating system</td>
</tr>
<tr>
<td>machine code programs</td>
<td></td>
<td>micropgrams (in ROM)</td>
</tr>
<tr>
<td>hardware</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating System

- direct access to hardware not allowed
- user mode x kernel mode
- hides difficulties of using hardware
- interface between user and hardware
 - system calls

System Calls

- for user programs to
 - interact with operating system
 - get operating system to perform a task for them
- a library routine for every system call
- user program uses library routine

Operating System Responsibilities

- resource sharing
- virtual machine
Resource Sharing

- sharing among users
- security
 - isolate users
- shared resources:
 - CPU
 - memory
 - I/O components
 - data

Resource Sharing

- objectives:
 - to maximize resource utilization
 - to maximize resource availability

Resource Sharing

- provided services:
 - define user interface
 - system calls
 - sharing and usage control of resources in multi-use systems
 - prevent race for resources
 - mutual exclusion
 - allow users to share data (shared memory)
 - resource scheduling
 - I/O scheduling
 - error handling

Resource Sharing

- example:
 - users cannot share printer
 - possible to share screen

Virtual Machine

- as if single user
 - resource sharing transparent to user
- Virtual machine may be different from actual physical machine:
 - I/O
 - memory
 - file system
 - protection and error handling
 - program interaction
 - program control

Virtual Machine

- I/O
 - requires hardware dependent programming
 - device drivers
Virtual Machine

- memory
 - different memory capacity in virtual machine
 - use disk as secondary memory
 - share among users
 - each user sees part of memory allocated to her

- file system
 - for longterm storage of program and data
 - on disk
 - use symbols to access info instead of physical addresses
 - naming
 - all accessed as files in UNIX

Virtual Machine

- protection and error handling
 - isolate users in multi-user systems

Virtual Machine

- program interaction
 - in runtime
 - for example one program may use output of another program as input

Virtual Machine

- program control
 - provide user with high-level command set
 - shell commands
 - shell: command interpreter
 - shell not part of operating system
 - but shell uses system calls heavily
Types of Operating Systems
- mainframe operating systems
- server operating systems
- multi-processor operating systems
- PC operating systems
- real-time operating systems
- embedded operating systems
- smartcard operating systems

Mainframe Operating Systems
- for heavily I/O-bound tasks
- three main services:
 - batch mode
 - non-interactive, routine tasks
 - e.g. preparing employee paychecks
 - transaction processing
 - e.g. airline reservation systems
 - time-sharing
 - multiple remote users running tasks
 - e.g.: database
 - e.g.: OS/390

Server Operating Systems
- on servers
 - PCs with high resource capacities
 - workstations
 - mainframe systems
- services for multi-users over a network
 - hardware and software sharing
 - e.g: printer services, file sharing, web access
- e.g.: UNIX, Windows 2000

Multi-Processor Operating Systems
- for multi-processor systems
- to increase computing power
- based on interconnection between processors:
 - parallel systems
 - networked computers
 - multi-processor computers
- special operating system features required
 - design objectives similar to server operating systems
 - extra features for interconnection and communication between processors

PC Operating Systems
- efficient and easy to use interface
- office applications
- e.g.:
 - Windows 98, 2000, XP
 - Macintosh
 - Linux

Real-Time Operating Systems
- time constraints important
- industrial control systems
 - feedback
- two types:
 - hard real-time
 - time constraints compulsory
 - e.g. robots in car production line
 - soft real-time
 - possible not to obey some constraints
 - e.g. multimedia systems
- örnek: VxWorks ve QNX
Embedded Operating Systems
- palm computers and embedded systems
- limited operation
- special purpose
- e.g.: TV, microwave oven, cell phones, ...
- in some systems, size, memory and power consumption constraints
- e.g.: PalmOS, Windows CE

Smart-Card Operating Systems
- smallest operating system
- on credit card sized cards with processor
- strict memory and CPU constraints
- some are dedicated e.g. electronic payments
- some may have several functionalities
- usually special purpose operating systems developed by card companies
- some Java based
 - possible to load and execute small JAVA programs (applet)
 - some may execute more than one applet
 - multi-programming, scheduling, resource sharing and protection

Main Kernel Architectures
- monolithic
- layered
- virtual machine
- exo-kernel
- server-client model
- modular

Monolithic
- no general structure
- all services and functionalities included in operating system
- all functional procedures
 - at the same level
 - may interact with each other
- large

Modular
- minimal kernel
- services added to kernel at runtime as they are needed
 - e.g. device drivers
- small kernel size
- slower
- e.g.: LINUX

Layered
- layered structure
 - hierarchical
- e.g.: THE operating system

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>processor</td>
</tr>
<tr>
<td>1</td>
<td>memory management</td>
</tr>
<tr>
<td>2</td>
<td>IO control</td>
</tr>
<tr>
<td>3</td>
<td>operator - process interaction</td>
</tr>
<tr>
<td>4</td>
<td>memory and disk control</td>
</tr>
<tr>
<td>5</td>
<td>CPU sharing and multiprogramming</td>
</tr>
</tbody>
</table>

Each layer independent of operations of layers below.
- e.g.: for layer 2 operations, data may be in memory or disk.
Virtual Machine

- VM/370
- virtual 370's
- I/O instructions
- trap

VM/370
- CMS
- OS/360
- CMS

370 hardware

- VM runs on hardware
- allows multiprogramming
- presents multiple virtual machines
- each virtual machine
 - exact copy of hardware
 - each virtual machine may have
 - different operating system

Exo-Kernel

- developed at MIT
- similar to virtual machine concept
- copy of system
- difference: each virtual machine gets subset of system resources
- external kernel
 - controls that virtual machines do not exceed their allocated resources
- each virtual machine may have different operating systems

Server-Client Model

- minimal kernel - micro-kernel
- most of operating system at user mode
- server and client processes
 - e.g. file read operation
 - client process asks from server process
 - server carries out operation
 - gives reply to client
- kernel coordinates communication and interaction between servers and clients

Server-Client Model

- servers in user mode
 - file server
 - process server
 - terminal server
 - memory server
- operating system consists of many smaller sub-units:
 - easy to manage
 - error in one does not affect others (units do not access hardware directly)
 - implementation problems: not possible to implement especially some I/O device drivers at user mode
- suitable for distributed systems