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ABSTRACT 
This paper deals with the determination of the frequency 

response function of a cantilevered Bernoulli-Euler beam which 
is viscously damped by a single damper. The beam is simply 
supported in-span. The frequency response function is obtained 
through a formula that was established for the receptance matrix 
of discrete linear systems subjected to linear constraint 
equations, by considering the simple support as a linear 
constraint imposed on generalized co-ordinates. The comparison 
of the numerical results obtained via a boundary value problem 
formulation justifies the approach used here. 

 
 

INTRODUCTION 
The second author recently established a formula for the 

receptance matrix of viscously damped discrete systems 
subjected to several constraint equations in reference [1]. The 
reliability of the formula derived was tested on an academic 
example of a spring-mass system with three degrees of freedom 
the coordinates of which were assumed to be subjected to a 
constraint equation. In order to put forward the applicability of 
the method better, the formula was applied in reference [2] to a 
more complex but practical system. The system was made up of 
a cantilevered beam simply supported at a given distance from 
the fixed end. It was desired to determine the amplitude 
distribution of the beam due to harmonically varying vertical 
force acting at a given point. The problem could be posed as to 
find the frequency response function of the beam. The present 
study deals with the same system as in reference [2], the 
difference being, that here also a viscous damping of the beam is 
allowed by a single viscous damper. 

 

THEORY 
The problem can best be stated referring to the cantilevered 

beam shown in Figure 1. The Bernoulli-Euler beam, viscously 
damped by a viscous damper of damping constant c at x = αL is 
assumed to be simply supported at a distance s* = ηL from the 
fixed end. At the distance x = γL, a harmonically varying force 
F(t) is acting on the beam. Now it is desired to determine the 
amplitude distribution of the beam due to this force. This 
problem can be posed also as to find the frequency response 
function of the beam. 
 
Application Of The Formula In Reference [1] 

Let us begin with the mechanical system in Figure 1 where 
it is assumed first that the support does not exist. The equation 
of the motion of the beam is [3] 

 
& ')(* +�,

 F(t)-/.)01�2�3
 t)(x,wct)(x,wmt)(x,EIw IV −=−++ 444  

 (1) 
the exciting force being 

 

 ti
0eFF(t) Ω=  , (2) 

 
where the primes and overdots denote partial derivatives with 
respect to x and time t respectively, and i is the imaginary unit. 
EI is the bending rigidity and m is mass per unit length of the 
beam. δ(x) denotes the Dirac function and c denotes the viscous 
damping coefficient. 

The corresponding boundary conditions are 
 

 0t)(L,wt)(L,wt)(0,wt)w(0, =′′′=′′=′= . (3) 
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Figure 1. Viscously damped cantilevered beam simply supported in-span, subject to a harmonically varying force. 

 
 
 
 

An approximate series solution of the differential equation (1) 
can be taken in the form 

 

 ∑
=

≈
n

1
rr (t)� (x)wt)w(x,

r

 (4) 

 
where the wr(x) are the orthogonal eigenfunctions of the bare 
clamped-free beam, normalised with respect to the mass density 
and ηr(t) are the generalized co-ordinates. After substitution of 
expression (4) into the differential equation (1) and application 
of the Galerkin procedure, the system of the modal equations, 
i.e., the system of differential equations for the ηi(t), is obtained 
as in reference [3] 
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where 
 

4
4

i
2
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mL

EI
L)( �� = , 128751040687.1L�� 11 == , 

746940911329.4L�� 22 == , …, 

 ( )	�
 wF(t)(t)N ii = . (6) 

The system of differential equations in equation (5) can be 
written in matrix notation as 

 

 (t)(t)(t) (t) 2 N � �D � =++ ���  (7) 

 
where 

[ ]Tn1 (t)�  ...  (t)�(t) = � ,     ( )2
i

2 � diag = ,     ti �e (t) NN = , 

 ( )��� F0 wN = ,     ( ) ( )��� ���c TwwD = , 

 [ ]Tn1 (x)  w...  (x)w(x) =w . (8) 

 
ωi (i = 1, …, n) are the eigenfrequencies of the bare cantilever 
beam. 

Substitution of 
 

 ti �e(t)  � � =  (9) 

 
into the matrix differential equation (7) yields 

 

 NH  �  )( Ω=  (10) 

 
where the receptance matrix is in the form 

 

 ( ) ( ) 122 i � �� 
−

++−= �DIH . (11) 
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Let us now return to the actual system with the support at x 
= ηL. The introduction of the support leads to the constraint 
equation 

 

 ∑
=

=
n

1r
r

*
r 0(t)� )(sw  (12) 

 
which can be written compactly as 

 

 0 T
1 =�a  (13) 

 
where 

 

 [ ]T*
n

*
1

*TT
1 )(s  w...  )(sw)(s == wa ,  s* = ηL. (14) 

 

The amplitude vector �  in the constrained case can be 

written from equation (10) analogously as 
 

 ( ) N H� �
cons=  (15) 

 
where from reference [1] the receptance matrix of the 
constrained system reads 

 

 ( ) ( ) ( )
( ) 
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)(s� )(s
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.��
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*T*

cons
 w  Hw

 Hw w
I HH , (16) 

 
I  being the nxn unit matrix. 

Therefore, the displacements of the constrained (i.e., 
supported) beam can be written by using equation (9) as 

 

 ti �
conscons (x)ewt)(x,w =  (17) 

 
where 

 

 r

n

1r
rcons �(x)w(x)w ∑

=

= . (18) 

 
It is easy to show that the above expression can be reformulated 
as 

 

 ( )( ) 0cons
T

cons F ��� )( (x)(x)w wHw Ω=  (19) 

 
which in turn, after some rearrangements, leads to 
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  (20) 
where 
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Noting that according to equation (17), the real part of 

ti �
cons e (x)w  represents the physical displacements, the 

amplitude distribution A(x) along the supported beam subject to 
the harmonic force is obtained as 

 

 Im
2
consRe

2
cons (x)w(x)wA(x) +=  (22) 

 
In the case F0 =1, the right hand side of equation (22) represents 
nothing else but the frequency response function of the beam in 
Figure 1. 
 
Solution Through The Boundary Value Problem 
Formulation 

In order to prove the validity of the expression (22) along 
with equations (20) and (21), the only way is to compare this 
with the results of a boundary value problem formulation. 
The bending vibrations of the four beam portions shown in 
Figure 1 are governed by the partial differential equations 

 

 0t)(x,wmt)(x,EIw i
IV
i =+ �� ,     (i = 1,2,3,4) (23) 

 
with the following boundary and matching conditions: 
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0t)(0,wt)(0,w 11 =′= ,  0t),(swt),(sw *
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1 == ,  
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2
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1 ′′=′′ , 

( ) ( )t� ���wt�����w 32 = ,  ( ) ( )t�����wt�����w 32 ′=′ , 

( ) ( )t�����wt�����w 32 ′′=′′ , 

( ) ( ) ( ) 0t�����wct�����w EI-t�����w EI 232 =−′′′′′′ � , 

( ) ( )t�����wt�����w 43 = ,  ( ) ( )t�����wt�����w 43 ′=′ , 

( ) ( )t�����wt�����w 43 ′′=′′ ,  0t)(L,wt)(L,w 44 =′′′=′′ , 

 ( ) ( ) 0eFt�����w EI-t�����w EI i 	
043 =+′′′′′′ t , (24) 

 
If harmonic solutions of the form 

 

 ti
ii e (x)Wt)(x,w Ω=  (25) 

 
are substituted into equation (23), the following ordinary 
differential equations are obtained for the amplitude functions 
Wi(x) : 

 

 0(x)W



(x)W i
4IV

i =− ,     (i = 1,2,3,4) (26) 

 
where 

 

 
EI

m�
 24
=  (27) 

 
In the expressions above, both wi(x,t) and Wi(x) represent 

complex valued functions. The essential point here is to imagine 
the actual bending displacements wi(x,t) as the real parts of some 
complex valued functions, for which the same notation is used 
for the sake of briefness. 

The corresponding boundary and matching conditions read 
now 
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( ) ( )��W��W 32 ′′=′′ ,  ( ) ( ) ( ) 0� �W
EI

�
 ic���W���W 232 =−′′′−′′′ , 

( ) ( )���W���W 43 = ,  ( ) ( )���W���W 43 ′=′ ,  ( ) ( )���W���W 43 ′′=′′ , 

 0(L)W(L)W 44 =′′′=′′ ,  ( ) ( ) 0
EI

F���W-���W 0
43 =+′′′′′′ , (28) 

 
The general solutions of the differential equations (26) are 
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where c1 to c16 are unknown integration constants to be 
determined which can be complex in general. 

Substitution of the expressions (29) into the conditions (28) 
yields, after rearrangement, the following set of sixteen 
inhomogeneous equations for the determination of the 
coefficients ci : 

 
 A c = b. (30) 

 
The expression of the 16x16 coefficient matrix A is given in the 
Appendix. The vectors c and b are defined as 

 

[ ]1621
T c...cc=c  

 











= 00�

 EI

F
-0...0

3
0Tb  (31) 

 
where only the fourteenth element of the 16x1 vector b is non-
zero. 

Lengthy expressions of the elements ci of the vector c, which 
were obtained by MATHEMATICA via symbolic computation, 
are not given here due to space limitations. However, it is 
important to note that the vector c and therefore the amplitude 
functions Wi(x), (i = 1,2,3,4) in equations (29) contain the 

common factor 
3

0

L
EI

F
 which has the dimension of length. 

Having obtained Wi(x) (i = 1,2,3,4), it is possible to 
determine the steady state amplitude at any point x of the beam, 
due to the harmonic force at a point x = γL. Noting that 

according to equation (25) the real part of ti �
i e (x)W  represents 

the physical displacements, the amplitude distribution (x)A  

along the supported beam subjected to the harmonically varying 
vertical force at x = γL is obtained as 

 

 Im
2
iRe

2
i (x)W(x)W(x)A +=  (32) 

 
In the case F0=1, the right hand side of the above equation 
represents the frequency response function of the beam in Figure 
1.  
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NUMERICAL APPLICATIONS 
This section is devoted to the numerical evaluations of the 

formulae established in the preceding sections. In these 

examples, Ω*= 5 and 0.5c =  are chosen. These mean that a 
harmonicall y varying vertical force of the radian frequency 

4mL
EI  5  is acting at the location x = γL, shown in Figure 1, 

and the non-dimensionalized damping value is 0.5. 
In the first example, the foll owing data α = 0.75 and γ = 1.0 

are chosen which mean that the damper and the harmonic force 
act at the points x = 0.75L and at the tip, respectively. 

The displacement amplitudes at various sections of the 

beam, non-dimensionalized by dividing by 
3

0

L
EI
F

 are given in 

Table 1. η represents the non-dimensional position of the 

support, whereas 
L
x

x =  denotes the non-dimensional position of 

the point, the vibration amplitude of which we are interested in. 
The values in the first columns are values obtained from formula 

(22), where n = 15 is taken in the series expansion (4) and 1

�
 to 

15

�
 in equation (21) taken from reference [4] are correct up to 

twelve decimal places. These explanations are also valid for 
Tables 2 and 3. The values in the second columns are “exact” 
values from equation (32), obtained by the direct solution of the 
boundary value problem outli ned in section 2.2. 
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Table 1. Dimensionless vibration amplitudes at various sections 

of the beam due to the harmonic forcing ti
0eF Ω  at γ = 1.0. 

Ω = 4mL
EI  5 and α = 0.75 are chosen. 

 
 

The second example is based on the data η = 0.25 and γ = 
1.0 which in turn mean that the beam is supported at x = 0.25L 
and the harmonic force acts again at the tip. The non-
dimensionalized vibration amplitudes at various sections of the 
beam are given in Table 2 for three different attachment points 

of the viscous damper to the beam : x = 0.25L, 0.50L and 0.75L. 
The values in the first and second columns are again values 
obtained from equations (22) and (32).  
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Table 2. Dimensionless vibration amplitudes at various sections 

of the beam due to the harmonic forcing ti
0eF Ω  at γ = 1.0. 

Ω = 4mL
EI  5 and η = 0.25 are chosen. 

 
 

And finally, the third example is concerned with η = 0.25 
and α = 0.50, i.e., the beam is supported at x = 0.25L and the 
damper attachment point is the midpoint of the beam. The non-
dimensionalized amplitudes at various beam sections are given 
in Table 3 for three acting points of the harmonic force on to the 
beam : x = 0.50L, 0.75L and L. The first columns are values 
obtained from equation (22) whereas those of the second 
columns are determined by equation (32).  
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Table 3. Dimensionless vibration amplitudes at various sections 

of the beam due to the harmonic forcing ti
0eF Ω  at three acting 

points. Ω = 4mL
EI  5 , η = 0.25 and α = 0.50 are chosen. 
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The agreement of the values in both columns in Tables 1 to 
3 justifies the expression (22) along with equations (20) and 
(21), obtained on the basis of a formula establi shed for the 
receptance matrix of viscously damped discrete systems subject 
to several constraint equations. It is worth nothing that the 
agreements of the numbers in both columns become excellent if 

many more decimal places are considered in i

�
values. 

 
CONCLUSIONS 

This study is concerned with the determination of the 
frequency response function of a viscously damped, cantil evered 
Bernoulli -Euler beam, which is simply supported in-span. The 
frequency response function is obtained through a formula, 
which was established for the receptance matrix of discrete 
systems subjected to linear constraint equations. The comparison 
of the numerical results obtained with those via a boundary value 
problem formulation justifies the approach used here. 

REFERENCES 
[1] Gürgöze M., 2000, “Receptance matrices of viscously 

damped systems subject to several constraint equations” , Journal 
of Sound and Vibration, 230, pp.1185-1190. 

[2] Gürgöze M, and Erol H., 2001, “Determination of the 
frequency response function of a cantilevered beam simply 
supported in-span”, Journal of Sound and Vibration, 247, pp. 
372-378. 

[3] Gürgöze M, and Özer A., 1997, “Sensitivitaet der 
Eigenwerte eines gedaempften Euler-Bernoulli -Balkens in 
Bezug auf Daempfergrössen”, Zeitsch Angew Math Mech, 77, 
pp.235-237. 

[4] Kane T.R, Likins P.W, and Levinson D.A., 1983, 
Spacecraft Dynamics, New York: McGraw-Hil l.



 7 Copyright © 2002 by ASME 

APPENDIX 
 
 
The matrix A in equation (30) : 
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