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ABSTRACT

This paper deals with the determination of the frequency
response function of a cantilevered Bernoulli-Euler beam which
is viscoudy damped by a single damper. The beam is smply
supported in-span. The frequency response function is obtained
through a formula that was established for the receptance matrix
of discrete linear systems subjected to linear congraint
equations, by considering the simple support as a linear
constraint imposed on generalized co-ordinates. The comparison
of the numerical results obtained via a boundary value problem
formulation justifies the approach used here.

INTRODUCTION

The second author recently established a formula for the
receptance matrix of viscoudy damped discrete systems
subjected to several condraint equations in reference [1]. The
reliability of the formula derived was tested on an academic
example of a spring-mass system with three degrees of freedom
the coordinates of which were assumed to be subjected to a
constraint equation. In order to put forward the applicability of
the method better, the formula was applied in reference [2] to a
more complex but practical system. The system was made up of
a cantilevered beam simply supported at a given distance from
the fixed end. It was desired to determine the amplitude
distribution of the beam due to harmonicaly varying vertical
force acting at a given point. The problem could be posed as to
find the frequency response function of the beam. The present
study deals with the same system as in reference [2], the
difference being, that here aso a viscous damping of the beam is
alowed by a single viscous damper.
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THEORY

The problem can best be stated referring to the cantilevered
beam shown in Figure 1. The Bernoulli-Euler beam, viscously
damped by a viscous damper of damping constant cat x = alL is
assumed to be simply supported at a distance s* = nL from the
fixed end. At the distance x = yL, a harmonically varying force
F(t) is acting on the beam. Now it is desired to determine the
amplitude digtribution of the beam due to this force. This
problem can be posed aso as to find the frequency response
function of the beam.

Application Of The Formula In Reference [1]

Let us begin with the mechanical system in Figure 1 where
it is assumed firgt that the support does not exist. The equation
of the motion of the beam is[3]

Elw'Y (x, t) + mvi(x, t) + ov(x, t) 5(x —aL) = F(t) (x —yL)
(N

the exciting force being
F(t) = Re™ | (2)

where the primes and overdots denote partial derivatives with
respect to x and timet respectively, and i is the imaginary unit.
El is the bending rigidity and m is mass per unit length of the
beam. 3(x) denotes the Dirac function and ¢ denotes the viscous
damping coefficient.

The corresponding boundary conditions are

w(0,t) =w'(0,t) =w"(L,t) =w"(L,t) =0. 3)
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Figure 1. Viscoudy damped cantilevered beam simply supported in-span, subject to a harmonically varying force.

An approximate series solution of the differential equation (1)
can betaken in theform

w(x,t) = z w (), (1) (4)
=1

where the w,(x) are the orthogonal eigenfunctions of the bare
clamped-free beam, normalised with respect to the mass density
and n,(t) are the generalized co-ordinates. After substitution of
expression (4) into the differential equation (1) and application
of the Galerkin procedure, the system of the modal equations,
i.e., the system of differential equations for the n;(t), is obtained
asin reference[3]

il 0+ ow; (aL. ) wi(al )i O+ ofn (0 = Ni 0
Il
(i=1,..n) (5)
where

. El

T B, =P,L =1.87510406872,
m

o? = (BiL)

B, =p,L =4.694091132®4, ...,

N; () = FO)w; (yL). (6)

The sysem of differential equations in equation (5) can be
written in matrix notation as

il () + Dy () + o n (t) = N(t) @

where

A®=[@® - 1, ’=diagle?), N@©=Nev,

N = R W(yL), D:QN((XL)WT((XL),
w(x) =[w; () ... w, (9] (8)
w (i =1, ..., n) aethe @genfrequencies of the bare antilever
beam.
Substitution of
n(t)=ne" ©)

into the matrix differential equation (7) yields

n=H(@QN (10)
where the receptancematrix isin the form

H@Q)=(o?1+iop+e?]". @)

2 Copyright © 2002 by ASME



Let us now return to the adua system with the support at x
= nL. The introduction of the support leads to the @nstraint
equation

n
> wi(S)n ) =0 (12)
r=1
which can be written compadly as
a; =0 (13)
where

a; :WT(S*):[Wl(s*) Wn(s*)]T, s =nL. (14)

The amplitude vector ﬁ in the constrained case @n be
written from equation (10) analogoudy as

1=Heons@)N (15)

where from reference [1] the receptance matrix of the
constrained system reads

w(s)w'(s)H Q)T
w'(s)H(@)w(s)E

0
Hcons(Q): H (Q)'% - (16)

| beingthe nxn unit matrix.
Therefore, the displacements of the constrained (i.e,
supported) beam can be written by using equation (9) as

Wcons(x't) :Wcons()()eiQt (17

where
Weons(X) = Zw, o, - (18)

It is easy to show that the above expresson can be reformulated
as

Weors() = (WT () Hoons Q) WOL)F,  (19)

which in turn, after some rearrangements, leadsto

o H 1 g
_ : . a(s)aT(s)diag%4_92§* .
Weons(X) _ o7 9 g ! g- ' Ch(yL)

= () 9%4_9*2 g H Y

B/ ‘ U a'(s)diag o ! ScHas) B

L g e - g
(20)

where

w'(x) =

&aT(x) :ﬁ[al(x) 2],

= X =X .= X . =X
ai(x):COShBir_COSBiE_niEﬁnhﬁir_snﬁiré
— _cos:hBi +cos[§i o c
' snhp, +sinB; | mLo, '

icQa(l)a (a iaH 1 H
. (L) (L)d g%i“_g*zﬁ |

+icQ'a (uL)dia Hil a

1 (L)d 9%4_ d%(L)

(21)

Noting that according to eguation (17), the rea part of
Woons (X)€" represents the physical displacements, the
amplitude distribution A(x) along the supported beam subject to
the harmonic force is obtained as

AG) = Wors (e +Wars(p (22

In the case Fq =1, the right hand side of equation (22) represents
nothing else but the frequency response function of the beam in
Figurel.

Solution Through The Boundary Value Problem
Formulation

In order to prove the validity of the expresson (22) along
with equations (20) and (21), the only way is to compare this
with theresults of a boundary value problem formulation.
The bending vibrations of the four beam portions shown in
Figure 1 are governed by the partial differential equations

E|W|IV (X,t) + mW, (X,t) =0, (I = 1,2,3,4) (23)

with the following boundary and matching conditions:
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w,(0,) =wi(0,) =0, wy(S,t)=w,(s,)=0,
wi(s, ) =wy(s 1), wWi(s, ) =w5(s,1),
W, (oL, t) = w(aL.t), wh(aL,t)=wh(aL.t),
wh (oL, t) = wh(aL.t),

El w(aL,t)- El w (oL, t)- o, (oL, t) =0,

W (rL.t) = w,(yL.t), wirL.t)=w)(L.t),

wi(yL,t) =wi(yL.t), wi(L,h=wi(L,t)=0,
El wh(yL.t)-El wji(yL.t)+Re™ =0,  (24)
If harmonic solutions of the form
Wi (X, 1) = W (x) € (25)

are substituted into equation (23), the following ordinary
differential equations are obtained for the amplitude functions
Wi(x) :

WY)-A'W (=0, (=1234) (2

where

_ 2
A4:mQ
El

(27)

In the expressions above, both w;(x,t) and W(X) represent
complex valued functions. The essential point here isto imagine
the actual bending displacements wi(x,t) as thereal parts of some
complex valued functions, for which the same notation is used
for the sake of briefness.

The corresponding boundary and matching conditions read
now

W, (0)=W;(0)=0, Wy(s)=W,(s)=0, W(s)=Wjs(s),
Wi(S) =W5(s ), W,(aL)=Ws(aL), Ws(aL)=Ws(aL),
icQ

Wi (oL )= W5 (L), wi(aL)- Wé"(aL)—sz(aL): 0,

Wa(yL)=W, (L), W5(yL)=W; (L), Ws(L)=wW;(L),

n m my m F
W (L) = Wi(L) =0, WiL)-WiL)+2=0, (28)

The general solutions of the differential equations (26) are

W, (X) = ¢, Sin AX +C, COSAX +C3 Sinh AX +C, cosh AX
W, (X) = Cs SiN AX + Cg COSAX + C, Sinh AX + Cg cosh AX
W (X) = Cg SIN AX +Cyp COSAX +Cyy Sinh AX +Cy, COSh AX

W, (X) = Cy3 SIN AX + Cy4 COSAX + Cy5 SN AX + Cyg COSH AX
(29)

where ¢; to ¢ are unknown integration constants to be
determined which can be complex in general.

Substitution of the expressions (29) into the conditions (28)
yidds, after rearrangement, the following set of sixteen
inhomogeneous equations for the determination of the
coefficients G :

Ac=b. (30)

The expression of the 16x16 coefficient matrix A is given in the
Appendix. The vectors c and b are defined as

"=l ¢ .. Cg)

0 C
b"=® .. 0 - F°_3 0 oC (31)

g ElA E

where only the fourteenth dement of the 16x1 vector b is non-
zero.

Lengthy expressions of the e ements ¢; of the vector ¢, which
were obtained by MATHEMATICA via symbolic computation,
are not given here due to space limitations. However, it is
important to note that the vector ¢ and therefore the amplitude
functions Wi(x), (i = 1,2,3,4) in equations (29) contain the

common factor Fo_ which has the dimension of length.

El
L3
Having obtained Wi(x) (i = 1,2,3,4), it is possible to
determine the steady state amplitude at any point x of the beam,
due to the harmonic force at a point x = yL. Noting that

according to equation (25) the real part of W, (x)€"“* represents
the physical displacements, the amplitude distribution K(x)

aong the supported beam subjected to the harmonically varying
vertical forceat x = yL isobtained as

AX) = Y WE(X) ge + WE(X)1m (32)

In the case Fy=1, the right hand side of the above equation
represents the frequency response function of the beam in Figure
1
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NUMERICAL APPLICATIONS

This section is devoted to the numerical evauations of the
formulae etablished in the preceding sections. In these
examples, Q*= 5 and c=0.5 are chosen. These mean that a
harmonicdly varying verticd force of the radian frequency

5 ,E%nL“ is ading at the location x = yL, shown in Figure 1,

and the non-dimensionalized damping valueis 0.5.

In the first example, the following dataa = 0.75 andy = 1.0
are chosen which mean that the damper and the harmonic force
ad at the paintsx = 0.75L and at the tip, respectively.

The displacement amplitudes at various sections of the

Fo
5/
L3
Table 1. n represents the non-dimensional postion of the

bean, non-dimensionalized by dividing by are given in

support, whereas X :% denotes the non-dimensional position of
the point, the vibration amplitude of which we are interested in.
The valuesin thefirst columns are values obtained from formula
(22), where n = 15istaken in the series expansion (4) and B, to
[315 in equation (21) taken from reference [4] are @rred up to

twelve decimal places. These eplanations are also valid for
Tables 2 and 3 The values in the second columns are “exact”
values from equation (32), obtained by the direct solution of the
boundary value problem outlined in section 2.2.

n

0,25 0,50 0,75

0,1 0.006068 | 0.006066 | 0.001378 | 0.001379 | 0.000587 | 0.000587
0,2 | 0008123 | 0.008086 | 0004134 | 0004132 | 0001982 | 0.001981
03 | 0017457 | 0017534 | 0006193 | 0.006191 0.003636 | 0.003636
04 | 0079158 | 0079275 | 0005498 | 0.005495 | 0.005009 | 0.005008
05 | 0170389 | 0.170566 0 0 0.005564 | 0.005565
06 | 0284124 | 0284393 | 0011731 0011736 | 0.004786 | 0.004785
0,7 | 04713805 | 0414183 | 0028777 | 0028787 | 0002163 | 0.002160
0,8 | 0553609 | 0554087 | 0.049656 | 0.049666 | 0.002774 | 0.002774
0,9 | 0698720 | 0699298 | 0072943 | 0.072959 | 0.009737 | 0.009739
1,0 | 0845716 | 0846386 | 0.097352 | 0097378 | 0.017717 | 0.017725

x|

Table 1. Dimensionless vibration amplitudes at various sections
of the beam due to the harmonic forcing F,e?' at y = 1.0.

Q=5 E%nL“ and o = 0.75 are chosen.

The second example is based on the datan = 0.25 and y =
1.0 which in turn mean that the beam is supported at x = 0.25L
and the harmonic force acts again at the tip. The non-
dimensionalized vibration amplitudes at various sections of the
beam are given in Table 2 for three different attachment points

of the viscous damper to the beam : x = 0.25L, 0.50L and 0.75L.
The values in the firg and second columns are again vaues
obtained from equations (22) and (32).

a

0,25 0,50 0,75

0,1 0.008465 0.008470 0.008397 0.008401 0.006068 0.006066
0,2 | 0.011333 0.011292 0.011242 0.011200 0.008123 0.008086
0,3 | 0.024355 0.024484 0.024159 0.024286 0.017457 0.017534
0,4 | 0.110440 0.110699 0.109550 0.109804 0.079158 0.079275
0,5 | 0237734 0.238186 0.235817 0.236258 0.170389 0.170562
0,6 | 0.396433 0.397152 0.393239 0.393939 0.284124 0.284393
0,7 | 0577387 0578415 0572738 0573739 0.413805 0.414183
0,8 | 0.772457 0.773794 0.766244 0.767544 0.553609 0.554087
0,9 | 0.974908 0.976559 0.867073 0.968679 0.688720 0.699298
1,0 1.179862 1.181820 1.170488 1.172391 0.845716 0.846386

x|

Table 2. Dimensionless vibration amplitudes at various sections
of the beam due to the harmonic forcing Re'™ aty=1.0.

Q=5 %L“ and n = 0.25 are chosen.

And finally, the third example is concerned with n = 0.25
and a = 0.50, i.e., the beam is supported at x = 0.25L and the
damper attachment point is the midpaoint of the beam. The non-
dimensionalized amplitudes at various beam sections are given
in Table 3 for three acting points of the harmonic force on to the
beam : x = 0.50L, 0.75L and L. The first columns are values
obtained from equation (22) whereas those of the second
columns are determined by equation (32).

Y

0,50 0,756 1,00

0,1 0.001863 0.001864 0.004933 0.004936 0.008397 0.008401
0,2 | 0.002495 0.002485 0.006605 0.006580 0.011242 0.011200
0,3 | 0.005346 0.005376 0.014186 0.014262 0.024159 0.024286
0,4 | 0.023953 0.024013 0.064187 0.064338 0.109550 0.109804
0,5 | 0.050687 0.050791 0.137736 0.137999 0.235817 0.236258
0,6 | 0.082927 0.082925 0.228812 0.229229 0.393239 0.393939
0,7 | 0.118851 0.119083 0.331769 0.332364 0572738 0573739
0,8 | 0.157010 0.157313 0.441561 0.442337 0.766244 0.767544
0,9 | 0.196253 0.196626 0.554433 0.555390 0.867073 0.968679
1,0 | 0235817 0.236258 0.668217 0.669348 1.170488 1.172391

x|

Table 3. Dimensionless vibration amplitudes at various sections
of the beam due to the harmonic forcing R,e® at three acting

points. Q = 5 %L“ ,N =0.25and o = 0.50 are chosen.
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The agreement of the values in both columnsin Tables 1 to
3 justifies the epresdon (22) along with equations (20) and
(21), obtained on the basis of a formula established for the
receptance matrix of viscoudy damped discrete systems subject
to several constraint eguations. It is worth nothing that the
agreements of the numbers in both columns become ecellent if

many more decimal places are considered in Bi values.

CONCLUSIONS

This dudy is concerned with the determination of the
frequency response function of a viscoudy damped, cantil evered
Bernoulli-Euler beam, which is smply supported in-span. The
frequency response function is obtained through a formula,
which was edablished for the receptance matrix of discrete
systems aubjected to linea constraint equations. The mmparison
of the numerical results obtained with those via aboundary value
problem formul ation justifies the approach used here.
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Thematrix A in equation (30) :

Where
A =-i

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

Q . - e
—zSiNAal. —cosA ol
EIA

cQ
—3

EIA

SinhA oL +coshA oL, ,

1

0

SianL Cosz_\r]L sinthL costhL

0

003an —sinl_\nL costhL sinthL

—sian]L —cosz_\nL sinthL costhL

0

0

0

0 0

0 0

0 0
sinX nL cosX nL
cosX nL sinX nL
sinX nL cosX nL
sinX aL cosX aL
cosX aL -sinX aL
—sinX aL cosX aL

A Az

0 0

0 0

0 0

0 0

0 0

0 0

sinhX nL

coshX nL

—sinhX nL

sinhX aL

cosh A ol

sinhX aL
Az

0

APPENDIX

0 0

0 0

0 0
coshX nL 0
—sinhX nL 0
coshX nL 0
cosh Aol -sinAal
sinhX aL cosz_\ aL
cosh Aol snAal

Ae cos A al.

0 sianL

0 cos A YL

0 —sinl_\yL

0 —cosz_\yL

0 0

0 0

Q cosA ol, +sinA al, ,

Ay =-i——;
EIA
. cQ - e
A4 =—i——coshAaL +sinhA oL .
EIA

0051_\ aL
snAal
cosX aL
snAal
cosz_\yL
—sinl_\yL
cosX yL
sianL
0

0
—sinhX aL
-cosh A al
—sinhX aL
-cosh A al
sinhX yL
coshX yL
sinhX yL
coshX yL

0

0

0

-cosh A al
—sinhX aL
-cosh A al
—sinhX aL
coshX yL
sinhl_\yL
coshX yL
sinhl_\yL
0

0

—sinX yL
cosX yL
sinX yL
cosX yL
SnAL

cosA L

cosX yL
sinl_\ yL
cosX yL
—sinX yL
CosA L

sinXL
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