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Abstract

The effect of mass attachment on the transverse vibration characteristics of a cracked
cantilever beam isinvestigated. Investigation of the cracked beam has been carried out
theoretically. The governing equation for free vibrations of the cracked beam is
constructed from the Bernoulli-Euler beam elements. To model the transverse
vibration, the crack is represented by a rotational spring. The relative changes of the
first three natural frequencies as a function of the location of the attached mass are
shown. The crack was located in two different distances from the fixed end of the
beam. The results for the changes of the natural frequencies of a cracked beam
carrying a point mass are compared with the results of the beam without a crack. In all
calculations the beam has a uniform cross-section and the crack was modeled by
sawing cuts with a width ratio 0.4. 1t is well known that when a crack developsin a
component, it leads to changes in its natural frequencies. The reducing effects of the
cracked beam on the natura frequencies had been more apparent with the mass
attached to the beam in different situations. The results can be used to identify cracks
in simple beam structures.

INTRODUCTION

The existence of a crack in a beam increases the local flexibility of the beam. The
influence of cracks on dynamic characteristics such as changes in natural frequencies,
modes of vibration of structures has been the subject of many investigations. Cracked
structures have been modeled by various methods. Petroski has modeled the crack by
appropriately reducing the section modulus of the beam [1]. This technique has been
used by various investigators to study cracked rotors [2, 3]. Another approach has been
to model the crack by alocal flexibility matrix. The elements of this matrix have been
calculated from relations of linear fracture mechanics, the dimensions of which depend
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upon the degrees of freedom being considered [4]. Dimarogonas and Papadopoulos
have computed the flexibility matrix for a transverse surface crack on a shaft [5].
They have modeled the longitudinal and bending vibrations with 2x2-flexibility matrix
[6]. For stress analysis purposes, Rice and Levy [7] computed the local flexibility
corresponding to tension and bending, including their coupling terms. In the case of
pure bending vibrations of beams, this concept reduces to representing the crack by a
rotational spring. Chondros and Dimarogonas [8], Dimarogonas and Massouros [9],
combined this spring hinge model with fracture mechanics results, and developed a
frequency spectral method to identify cracks in various structures. For a known crack
position, this method correlated the crack depth to the change in natural frequencies of
the first three harmonics of the structure. An extended literature review of these
methods can be seen in reference [10].

The effect of the end mass, the rotational moment of inertia, and the distance
between the mass center of gravity and the tip a cantilever beam on the modal
frequency parameters have been studied in reference [11]. The effects of the support
flexibility and the end mass properties on the modal frequencies and the modal shape
have been investigated for a large variety of classical and non-classical boundary
conditions [12]. The effects of a transverse crack on the modal frequency parameters
of stationary shafts carrying elastically mounted end masses has been studied by
Dannanh and Farghaly [13].

In this study, the effects of mass attachment on the free vibration of cracked
beam carrying a point mass are discussed analytically. Investigation involves in the
calculations of the transverse natural frequencies of the beam with a crack and the
corresponding uncracked beam. The beam has a uniform cross-section and the
calculations are based on the use of rotational spring in order to represent the crack.
The relative changes of the first three natural frequencies as a function of the location
of the attached mass are shown. The crack was located at two different distances from
the fixed end of the cantilever beam. The results of relative natural frequencies can be
adopted to predict of location of the crack.

ELASTIC BEHAVIOR OF A CRACKED BEAM CARRYING A POINT MASS

To model the transverse vibration, the crack is represented by a rotational spring of
stiffness Kr. The presence of the crack adds a loca flexibility to the beam.
Dimaragonas and Paipetis [4] calculated the bending spring constant Kt in the vicinity
of the cracked section of a beam with orthogonal cross-section of width b and the
height h (Figure 1) when alateral crack of uniform depth a exist, from the crack strain
energy function;

< - El

" em(l-9%)ho(a/h) @

- 2804 -



where E is the modulus of elasticity of a beam materia, | is the moment of inertia of

the beam cross-section. The dimensionless local compliance function ®(a/h) is
computed from the strain energy density function and has the form;

®(a/h)=0.6272 (a/h)’ —1.04533 (a/h)’ + 4.5948 (a/h)* —9.973 (a/h)’
+20.2948 (a/h)’ - 33.0351 (a/h)’ +47.1063 (a/h)’ - 40.755 (a/h)’  (2)

+19.6 (a/h)”°
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Figure 1. Cracked cantilever beam with a point mass

The bending vibrations of a uniform Bernoulli-Euler beam are governed by the
partial differential equation;

0*w(x,t) +OA 02w(x,t)

El
ox* P ot?

=0 3)

where w(x,t) denotes the lateral displacement at point x at time t. A is the cross-
sectional area and p isthe mass density.

The bending displacements in the regions to the left and right of the in-span
attachment of the mass will be denoted as wi(x,t) and w,(X,t) where both are subject to
the differential equation (3). The corresponding matching conditions at the mass
location (B,, =x,, /L) are;
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w, (B 1) =W, By 1), Wi ) =w, B, 1) wi(B,.t)=w;(B,.1) @
El(wi(B,.t)-w;(B,.1))=M,(3,,t)

The aack is assumed to be open and to have uniform depth. The beam can be
conveniently divided into two segments, one on either side of the spring representing
the aadk. The bending displacements in the regions to the left and right of the aack
will be denoted as wy(x,t) and ws(x,t). The continuity of displacement, moment and
shea forces at the aack locaion (B, = x./L) and jump condition in the slope can be

written in the foll owing form:

Wz(Bcv) 3(Bcv )v 2 cv )_Wg cvt)v W'2" cvt):Wg' cvt) (5)
3(Bcv )_ 2(Bcv )+E|Wg cvt)/KT

The boundxry condtions at the fixed and free ends, respedively, are;
w,(0,t)=0, w,(0,t)=0, wi(Lt)=0, wi(Lt)=0 6)
If harmonic solutions are assumed for threeregions
w,(x,t)=Y (x)codwt-¢) =123 7)
The harmonic vibrations on the threeparts of the beam are;

Y,[B)=A,codAB)+A,sin(AB)+A,cosHAB)+ A, sinh(AB)
Y, (B)=AscoddB)+A,sin(AB)+ A, cosHA B)+ A, sinh(A B) 8
Y3(B) = A9 COi)\ B)+ AlO Sin()\ B)+ All COS*‘()\ B)+ A12 Sinh()\ B)

where A; i = 1,.....,12, are abitrary integration constant to be evaluated from the
boundary and matching condtions for wi, w, andws. In order to oltain nonvanishing
solutions for Ag,....A12 , the correspondng determinant of coefficients has to be
equated to zero. The determinant equation in which the following non-dimensional
parameter isintroduced:

=W pAL'/EI, B=x/L, vy, =M/PAL), y.=EI/K,L (9)

Here, w isthe natural angular frequency, x isthe aordinate dong the beam, with

the origin at the damp end, L is the length o the beam. yy and yc represent the mass
ratio and dmensionlesslocd flexibility coefficient, respedively.
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The roats of the determinant, which are obtained numericaly, provide nat only
the dimensionless frequency parameters A, but also the natural frequencies of the
system in Figure 1, by considering the relation (9).

NUMERICAL APPLICATION

The dfea of the @tachment of the point mass on the first threenatural frequencies of
the cantilever beam with a aack is given in form figures. Calculation in this dudy was
caried ou via the following beam data: length 1m, height 0.01 m, width 0.01 m,

Youngs moduus E=2110"Pa, Poison ratio & =0.3, density p=7860kg/m°.
Two dfferent crad locaion parameters 3. =0.5,0.7 together with a cnstant cradk
depth ratio a/h = 0.4 are mnsidered.

In Figure 2-4, the variation d the first three relative natural freguencies
(normalized to the mrrespondng frequency w,, of a beam withou a cadk and a point

mass= w/w ) are depicted as afunction d the nondimensional locaion parameter of

the atadched massin the range of zero to ore. The mass parameter is kept constant as
Y, =0.3. In the asence of the aad i.e. (K, — ) results are obtained for the

uncradked beam.
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Figure 2. The relative changes of the first natural frequency as a function of the mass
location for a cantilever beam. ,uncracked; — — ,c=05, — — ——Bc=0.7
(a/h = 0.4, yu = 0.3).
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Figure 3. The relative changes of the second natural frequency as a function of the
mass location for a cantilever beam ., uncracked; . —,3c=0.5_ — ——Bc=0.7
(a’lh = 0.4, y = 0.3).
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Figure 4. The relative changes of the third natural frequency as a function of the mass

location for a cantilever beam —_ ,uncracked; . - ,Bc=0.5, == = =  [(:=0.7
(a/h= 0.4, y = 0.3).
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As can be seen in the figures 2, 3 and 4 mass attachments to the both cracked
and urcracked beams have led to dedinesin all threenatural frequencies. It is known
that the aadk reduces the natural frequencies. The reducing impad of the aurrent crack
on the natural frequencies with the mass attached to the beam in dfferent situations
beaomes more evident.

In figure 3, the variation d the first natural frequency is ®en. As the location of
the mass attadhment moves from the fixed end to the free ed, the first natura
frequency for both the aacked and uncracked beam continuously falls. If the location
of the dadk is close to the fixed side (Bc=0.5), this reduction is higher than the case of
its location farther (3c=0.7) from the fixed side. If the aadk will be determined viathe
observation the first natural frequency, it is appropriate to attach the massto the free
end, sinceit will | ea to the highest change.

In figure 4, the variation d the second retural frequency is given. As the mass
moves closer to the free ed, the second natural frequency initially dedines, later it
displays an increasing trend and at 0.8, it becomes indiff erent to the mass The change
in the frequency at the aed&'s 3c=0.5 pasition is higher than the dhange & its position
of Bc=0.7. In terms of providing the highest change in the second retural frequency,
the most effedive point is observed a Bw = 0.4, where the mass is defined as
dimensionless ftuation parameter.

Infigure 5, the variation o the third netural frequency depending on the situation
of the massattachment is given. Until the mass reades the end, the natural frequency
first dedines, then increases and at By = 0.5 it becomes unresponsive. After this paint,
as the massmoves to the free @d, first an increase than again a deaease ae observed,
while it isindifferent around3y = 0.85. If the crac is at c=0.5 pasition, at By = 0.5
and Bu = 0.85 pants the third netural frequency reades its levels at beam's uncracked
paosition withou massattachment. It will be impaossble to determine the position d the
crack with the analysis at these points. Small differences are recorded at the other
stuations of the mass If information is required abou the situation of the aack
depending on the variations in the third natural frequency, it can be said that the aack
pasition at Bc=0.5 will not lead to a significant change with the massattachment. If the
crack is at Bc=0.7 pasition, its reducing impact on the natural frequency is seen for all
locations of the mass It is seen in figure 5 that massattachment at around 3y = 0.25
will | ead to the highest variation in the third natural frequency.

CONCLUSIONS
The relative changes of the first threenatural frequencies as a function d the location
of the dtached mass are investigated. The crack was located at two different distances

from the fixed end of the beam. The results for the changes of the natural frequencies
of a aadked beam carrying a point mass are compared with the results of the beam
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without a crack. Inall calculations the beam has a uniform cross-section and the crack
was modeled by sawing cuts with awidth ratio 0.4.

In some cases it is observed that the mass attachment has no impact on the
frequencies for the beams with cracks. These unresponsive cases alter according to the
observed frequency. The distance of the crack from the fixed end also creates different
effects depending on the frequency. For the cantilever beam, the second natural
frequency is mostly affected with the crack position at Bc = 0.5, while in some
situations of the mass, the third natural frequency reaches its without mass and crack
levels. The mass is most effective at the free end of the beam for the first natural
frequency, at Bu = 0.4 point from the fixed end for the second natural frequency and at
Bm = 0.25 point for the third natural frequency.

It is observed that with the mass attachment in various situations, cracks in
structures have a clearer decreasing impact on the natural frequencies. The results can
be used to identify cracks in simple beam structures.
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