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Abstract 

The effect of mass attachment on the transverse vibration characteristics of a cracked 
cantilever beam is investigated. Investigation of the cracked beam has been carried out 
theoretically. The governing equation for free vibrations of the cracked beam is 
constructed from the Bernoulli-Euler beam elements. To model the transverse 
vibration, the crack is represented by a rotational spring. The relative changes of the 
first three natural frequencies as a function of the location of the attached mass are 
shown. The crack was located in two different distances from the fixed end of the 
beam. The results for the changes of the natural frequencies of a cracked beam 
carrying a point mass are compared with the results of the beam without a crack.  In all 
calculations the beam has a uniform cross-section and the crack was modeled by 
sawing cuts with a width ratio 0.4.  It is well known that when a crack develops in a 
component, it leads to changes in its natural frequencies. The reducing effects of the 
cracked beam on the natural frequencies had been more apparent with the mass 
attached to the beam in different situations. The results can be used to identify cracks 
in simple beam structures. 
 

INTRODUCTION 
 

The existence of a crack in a beam increases the local flexibility of the beam. The 
influence of cracks on dynamic characteristics such as changes in natural frequencies, 
modes of vibration of structures has been the subject of many investigations. Cracked 
structures have been modeled by various methods. Petroski has modeled the crack by 
appropriately reducing the section modulus of the beam [1]. This technique has been 
used by various investigators to study cracked rotors [2, 3]. Another approach has been 
to model the crack by a local flexibility matrix. The elements of this matrix have been 
calculated from relations of linear fracture mechanics, the dimensions of which depend 
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upon the degrees of freedom being considered [4]. Dimarogonas and Papadopoulos 
have computed the flexibility matrix for a transverse surface crack on a shaft [5].  
They have modeled the longitudinal and bending vibrations with 2x2-flexibility matrix 
[6]. For stress analysis purposes, Rice and Levy [7] computed the local flexibility 
corresponding to tension and bending, including their coupling terms. In the case of 
pure bending vibrations of beams, this concept reduces to representing the crack by a 
rotational spring. Chondros and Dimarogonas [8], Dimarogonas and Massouros [9], 
combined this spring hinge model with fracture mechanics results, and developed a 
frequency spectral method to identify cracks in various structures. For a known crack 
position, this method correlated the crack depth to the change in natural frequencies of 
the first three harmonics of the structure. An extended literature review of these 
methods can be seen in reference [10]. 

The effect of the end mass, the rotational moment of inertia, and the distance 
between the mass center of gravity and the tip a cantilever beam on the modal 
frequency parameters have been studied in reference [11]. The effects of the support 
flexibility and the end mass properties on the modal frequencies and the modal shape 
have been investigated for a large variety of classical and non-classical boundary 
conditions [12]. The effects of a transverse crack on the modal frequency parameters 
of stationary shafts carrying elastically mounted end masses has been studied by 
Dannanh and Farghaly [13].  

In this study, the effects of mass attachment on the free vibration of cracked 
beam carrying a point mass are discussed analytically. Investigation involves in the 
calculations of the transverse natural frequencies of the beam with a crack and the 
corresponding uncracked beam. The beam has a uniform cross-section and the 
calculations are based on the use of rotational spring in order to represent the crack.  
The relative changes of the first three natural frequencies as a function of the location 
of the attached mass are shown. The crack was located at two different distances from 
the fixed end of the cantilever beam. The results of relative natural frequencies can be 
adopted to predict of location of the crack. 
 
ELASTIC BEHAVIOR OF A CRACKED BEAM CARRYING A POINT MASS 

 
To model the transverse vibration, the crack is represented by a rotational spring of 
stiffness KT. The presence of the crack adds a local flexibility to the beam.  
Dimaragonas and Paipetis [4] calculated the bending spring constant KT in the vicinity 
of the cracked section of a beam with orthogonal cross-section of width b and the 
height h (Figure 1) when a lateral crack of uniform depth a exist, from the crack strain 
energy function; 
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where E is the modulus of elasticity of a beam material, I is the moment of inertia of 
the beam cross-section. The dimensionless local compliance function Φ(a/h) is 
computed from the strain energy density function and has the form; 
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Figure 1.  Cracked cantilever beam with a point mass 

 
The bending vibrations of a uniform Bernoulli-Euler beam are governed by the 

partial differential equation;  
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where w(x,t) denotes the lateral displacement at point x at time t. A is the cross-
sectional area and ρ is the mass density. 

The bending displacements in the regions to the left and right of the in-span 
attachment of the mass will be denoted as w1(x,t) and w2(x,t) where both are subject to 
the differential equation (3). The corresponding matching conditions at the mass 
location ( )LxMM =β  are; 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )t,wMt,wt,wIE

t,wt,w,t,wt,w,t,wt,w

M2M2M1

M2M1M2M1M2M1

β=β′′′−β′′′
β′′=β′′β′=β′β=β ��

  (4) 

 
The crack is assumed to be open and to have uniform depth. The beam can be 

conveniently divided into two segments, one on either side of the spring representing 
the crack. The bending displacements in the regions to the left and right of the crack 
will be denoted as w2(x,t) and w3(x,t).  The continuity of displacement, moment and 
shear forces at the crack location ( )LxCC =β  and jump condition in the slope can be 
written in the following form: 
 

( ) ( ) ( ) ( ) ( ) ( )
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The boundary conditions at the fixed and free ends, respectively, are; 

 
( ) ( ) ( ) ( ) 0t,1w,0t,1w,0t,0w,0t,0w 3311 =′′′=′′=′=    (6) 

 
If harmonic solutions are assumed for three regions 

 
( ) ( ) ( ) 3,2,1itcosxYt,xw ii =ϕ−ω=    (7) 

 
The harmonic vibrations on the three parts of the beam are; 
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where A i i = 1,…..,12, are arbitrary integration constant to be evaluated from the 
boundary and matching conditions for w1, w2 and w3.  In order to obtain non-vanishing 
solutions for A1,….A12 , the corresponding determinant of coeff icients has to be 
equated to zero. The determinant equation in which the following non-dimensional 
parameter is introduced: 
 

( ) LKIE,LAM,Lx,IELA TCM
424 =γρ=γ=βρω=λ   (9) 

 
Here, ω is the natural angular frequency, x is the coordinate along the beam, with 

the origin at the clamp end, L is the length of the beam. γM and γC represent the mass 
ratio and dimensionless local flexibilit y coeff icient, respectively. 
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The roots of the determinant, which are obtained numerically, provide not only 
the dimensionless frequency parameters λ, but also the natural frequencies of the 
system in Figure 1, by considering the relation (9). 
 

NUMERICAL APPLICATION 
 
The effect of the attachment of the point mass on the first three natural frequencies of 
the cantilever beam with a crack is given in form figures. Calculation in this study was 
carried out via the following beam data: length 1m, height 0.01 m, width 0.01 m, 
Young's modulus 11101.2E = Pa, Poisson ratio 3.0=ϑ , density 3m/kg7860=ρ .  
Two different crack location parameters 7.0,5.0C =β  together with a constant crack 

depth ratio 4.0ha =  are considered. 
In Figure 2-4, the variation of the first three relative natural frequencies 

(normalized to the corresponding frequency noω  of a beam without a crack and a point 
mass = noωω ) are depicted as a function of the non-dimensional location parameter of 
the attached mass in the range of zero to one. The mass parameter is kept constant as 

3.0M =γ .  In the absence of the crack i.e. ( )∞→TK  results are obtained for the 
uncracked beam.  
 

 
 
Figure 2.  The relative changes of the first natural frequency as a function of the mass 
location for a cantilever beam.            , uncracked;              ,βC =0.5;              ,  βC =0.7 
(a/h = 0.4, γM = 0.3). 
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Figure 3.  The relative changes of the second natural frequency as a function of the 
mass location for a cantilever beam          , uncracked;         ,βC =0.5;                βC =0.7 
(a/h = 0.4, γM = 0.3). 
 
 
 

 
Figure 4.  The relative changes of the third natural frequency as a function of the mass 
location for a cantilever beam           , uncracked;           ,βC =0.5;                   , βC =0.7 
(a/h = 0.4, γM = 0.3). 
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As can be seen in the figures 2, 3 and 4, mass attachments to the both cracked 
and uncracked beams have led to declines in all three natural frequencies.  It is known 
that the crack reduces the natural frequencies. The reducing impact of the current crack 
on the natural frequencies with the mass attached to the beam in different situations 
becomes more evident.  

In figure 3, the variation of the first natural frequency is seen. As the location of 
the mass attachment moves from the fixed end to the free end, the first natural 
frequency for both the cracked and uncracked beam continuously falls. If the location 
of the crack is close to the fixed side (βC=0.5), this reduction is higher than the case of 
its location farther (βC=0.7) from the fixed side.  If the crack will be determined via the 
observation the first natural frequency, it is appropriate to attach the mass to the free 
end, since it will l ead to the highest change.   

In figure 4, the variation of the second natural frequency is given. As the mass 
moves closer to the free end, the second natural frequency initially declines, later it 
displays an increasing trend and at 0.8, it becomes indifferent to the mass.  The change 
in the frequency at the creak's βC=0.5 position is higher than the change at its position 
of βC=0.7. In terms of providing the highest change in the second natural frequency, 
the most effective point is observed at βM = 0.4, where the mass is defined as 
dimensionless situation parameter.  

In figure 5, the variation of the third natural frequency depending on the situation 
of the mass attachment is given. Until the mass reaches the end, the natural frequency 
first declines, then increases and at βM = 0.5 it becomes unresponsive. After this point, 
as the mass moves to the free end, first an increase than again a decrease are observed, 
while it is indifferent around βM = 0.85. If the crack is at βC=0.5 position, at βM = 0.5 
and βM = 0.85 points the third natural frequency reaches its levels at beam's uncracked 
position without mass attachment. It will be impossible to determine the position of the 
crack with the analysis at these points. Small differences are recorded at the other 
situations of the mass. If information is required about the situation of the crack 
depending on the variations in the third natural frequency, it can be said that the crack 
position at βC=0.5 will not lead to a significant change with the mass attachment. If the 
crack is at βC=0.7 position, its reducing impact on the natural frequency is seen for all 
locations of the mass. It is seen in figure 5 that mass attachment at around βM = 0.25 
will l ead to the highest variation in the third natural frequency.  
 

CONCLUSIONS 
 
The relative changes of the first three natural frequencies as a function of the location 
of the attached mass are investigated. The crack was located at two different distances 
from the fixed end of the beam.  The results for the changes of the natural frequencies 
of a cracked beam carrying a point mass are compared with the results of the beam 
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without a crack.  In all calculations the beam has a uniform cross-section and the crack 
was modeled by sawing cuts with a width ratio 0.4. 

In some cases it is observed that the mass attachment has no impact on the 
frequencies for the beams with cracks. These unresponsive cases alter according to the 
observed frequency. The distance of the crack from the fixed end also creates different 
effects depending on the frequency. For the cantilever beam, the second natural 
frequency is mostly affected with the crack position at βC = 0.5, while in some 
situations of the mass, the third natural frequency reaches its without mass and crack 
levels. The mass is most effective at the free end of the beam for the first natural 
frequency, at βM = 0.4 point from the fixed end for the second natural frequency and at 
βM = 0.25 point for the third natural frequency.   

It is observed that with the mass attachment in various situations, cracks in 
structures have a clearer decreasing impact on the natural frequencies. The results can 
be used to identify cracks in simple beam structures. 
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