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Abstract

This study is concerned with the determination of the eigenvalues and
“eigenfunctions” of an axially vibrating, viscously damped elastic rod, carrying a tip
mass and consisting of two parts having different physical parameters. The
eigencharacteristics of the rod are determined via an original application of the
separation of the variables method. The reliability of the method used is justified on a
sample system, the eigenvalues of which are also calculated numerically by a finite
element model.

INTRODUCTION

Recently, an interesting study [1] was published in which the eigencharacteristics of a
continuous beam model with damping, are determined using the separation of
variables approach. The beam considered has different stiffness, damping and mass
properties in each of its two parts. Motivated by this publication, in [2], the present
authors dealt with an axially vibrating rod consisting of two parts as a counterpart of
that publication. Unlike the cited publication where overdamped and underdamped
“modes” are investigated separately, both of them were handled simultaneously in
[2], again via separation of variables approach. The present study is more general
then the previous one because here, the rod is assumed to carry a tip mass as well.

THEORY

Let it be assumed that an axially vibrating rod carrying a tip mass M consists of two
parts, one of length L; with axial rigidity E;A;, viscous damping coefficient c;, and
mass per unit length m;, and the second of length L,, with corresponding parameters
E»As, ¢, and my. These parameters are assumed to be constant along each rod
segment, and contain contributions from the rod and any surrounding medium. Figure
1 shows the rod diagrammatically.
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Figure 1. Axially vibrating elastic rod having two parts and carrying a tip mass.

Due to the presence of external viscous damping it is more appropriate to work with
complex variables. It will be assumed that the axial displacements wi(x,t), (i = 1,2) of
both parts of the rod are the real parts of the some complex quantities denoted as
zi(x,t). Keeping in mind that actually, one is interested only in the real parts of the
expressions below, the equations of motion of the rod can be written as

k.z/(x,t)-m,Z,(x,t)-c,z,(x,t) =0, i=1,2 (1)

1

with ki= E;A;, where E;A; denotes the axial rigidity of the ith portion and x is the axial
position along the rod. Dots and primes denote partial derivatives with respect to time
t and position coordinate x.

The corresponding boundary conditions are
z,(0,t)=0,
Zl(Llat):Zz(Llat)s klz;(Llat):kzzrz(Llat): (2)
k,z,(L,t)+MZ,(L,t)=0.

Let it be assumed that
z.(x,t)=Z,(x)D;(t), i=1,2 (3)

according to the separation of the variables approach, where both functions Z;j(x) and
Dj(t) are complex functions in general. Substituting (3) into equations (1) gives
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k, Z! m;
ek, @)

m; Z_1 D,

1

where the k; are complex constants to be determined. Here, primes and dots denote
derivatives with respect to position x and time t. To satisfy the second and third of the
boundary conditions (2) these time functions must be equal, so that D;(t) = Dy(t) =
D(t). Thus, the differential equations for Zi(x) may be written using equation (4) as
follows:
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The time function is assumed now as an exponential function
D(t) =e" (6)
where A represents an eigenvalue of the system which is complex in general. With
this D(t), the second equality in (4) gives

K,Z,(x)=0, i=12. (5)

K= A0, =12 (7)
m,;
with the abbreviation
V=i =12 (8)
ki
the first equation in (4) can be written as
Z2'(x)-v:Z.(x)=0, i=1.2. 9)

The general solutions of the differential equations (9) can be expressed as
Z.(x)=Ae"™ +Bie™, i=1.2. (10)

where A; and Bi denote complex constants to be determined. In terms of the Zi(x),
and with the aid of equation (6) the boundary conditions in equation (2) can be
formulated as

Z,(0)=0,
Zl(Ll):ZZ(Ll)a klzi(L1)=kzZ'z(L1),
k,Z,(L)y+MA* Z,(L)=0. (11)

The substitution of the expressions (10) into (11) yields the following set of four
homogeneous equations for the determination of A; and Bi:

1 1 0 0 A] [O

0 0 (k,v, + MR —(k,v, ~MAZ k™ | B, | |0
ev|Ll e-v|Ll _esz1 _ e-sz| Kz = 0 (12)

k,ve"™ -kyve'h -k,v,e"" k,v,e™" B2 |0

Let the matrix of the coefficients be denoted by A. For a nontrivial solution, the
determinant of the matrix A should be zero:

1 1 0 0
0 0 k,v, + MAZ kY —(k,v, —MAZ "
detA(Vl’VZ)z eV1L1 e'VILl ( ’ z_eVle k ( ’ Z_e‘Vle k =0
klvlev'L' -klvle-vlLl 'kzvzeVZLl kzvze-VZLl
(13)
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If in equation (13) the tip mass M goes to infinity, then the characteristic equation of
the axially vibrating elastic rod fixed at both ends is obtained, which is given in
reference [2]. Equating to zero the tip mass M yields the characteristic equation of the
fixed-free rod.

Using the definitions given by (7) and (8), v; and v, can be expressed as functions of
the eigenvalue A

v,(0) = i\/%[(c—lﬁwkz} v, = i\/%{(c—z)k+k2} L (14

1 ml 2 m2

Hence equation (13) becomes
det A(v,(A),v,(L))=det A(L)=0 (15)

from which A can be obtained, which is a complex number in general. Now via (14)
v; and v, can be obtained. If these v; and v, are substituted into the coefficients

matrix A in equation (12) the unknowns A and B (1= 1,2) can be determined up to
an arbitrary constant. Hence, Zi(x) in equation (10) are obtained.

Returning to equation (3) considering equation (10) and introducing

}\‘:)\‘re+.]>\'im9 Vi :Vire+.]viim9

Ai=Aie+ jAin,  Bi=BictBin, (=+-1) (16)

the axial displacements of the two rod portions wi(x,t) are determined, after lengthy
calculations as

w, (X, 1) = Relz, (x, )] = ™'S, (x)cosh,, t - "' Q, (X)sinA,, t (17)
where the following abbreviations are introduced
S.(x)=¢e"" (Kl COSV, X - Ai sinv, x)+ g (ﬁ oSV, X+ Bi. sinv, x),
Q(x)=¢""" (Kim sinv, X+ Ai cosv, x)+ g (Eiim CoSV, X — Bi_ sinv, x).(18)

The expressions of the axial displacements can be put in a more compact form, as

W, (x,1) = e"'C, (X)cos(h, t - &; (X)) (19)

C.(x) =/S20+ Q2 (x), tane,(x) = % 0)

wi(x,t), 1 = 1,2 determine the axial displacement distribution over the length of the
viscously damped rod carrying a tip mass when it vibrates at an eigenvalue A. Due to
the apparent presence of a phase which is a function of the position coordinate x, the
authors preferred to use the expression “mode” or “eigenfunction” as seldom as
possible. Whenever necessary, those words were used in quotation marks.

with
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NUMERICAL EVALUATIONS

This section is devoted to the numerical evaluation of the expressions obtained. The
computation will be demonstrated using a rod with the parameters given in Table 1.
The eigenvalues and “eigenfunctions” are computed using the procedure outlined
above, and also using a finite element model for comparison. The finite element
model has 45 elements of equal length, giving a total of 90 degrees of freedom.

Table 1. Physical parameters for the numerical example.

Case 1 Case2
M =50kg Rod 1 Rod 2 Rod 1 Rod 2
L; [m] 1 2 1 2
m; [kg/m] 10 20 10 20
c; [kg/ms] 500 500 1000 0
EA; [N] 100 200 100 200

Two cases are considered: In the first case, it is assumed that both parts of the rod are
subjected to the same external viscous damping action of ¢;= c;= 500 kg/ms. In case
2, the first part of the rod is subjected to the damping action of ¢;= 1000 kg/ms
whereas the second part is undamped.

Table 2 gives the “first” six eigenvalues of the system for both cases. It is seen that
both cases lead to both overdamped and underdamped modes. The numerical values
in the first columns of each case represent the results of the present methodology
whereas those of the second columns are results of a finite element model.

The upper part of Figure 2 shows for case 1 the three dimensional plots of wi(x,t) for
the first three overdamped eigenvalues. In the lower part, as representatives of the
damped “eigenbehavior”, those curves are plotted which result from the intersection
of this “eigensurfaces” above with the t = 0 plane. These curves could be viewed as
“eigenfunctions”. It is seen from Figure 2 that the amplitudes of the intersection
curves corresponding to increasing t values decrease in accordance with the damped
character of the system.

As in Figure 2, the upper part of Figure 3 shows for case 1, the wi(x,t) surfaces for the
“first” three underdamped eigenvalues. The lower part gives the “eigenfunctions” in
the sense explained above.

The Figures 4 and 5 are concerned with case 2 in which the second part of the rod is
undamped, whereas the first part is damped strongly. As in Figures 2 and 3, the upper
parts of Figures 4 and 5 reflect the wi(x,t) plots of the first three overdamped and
underdamped eigenvalues, respectively. The lower parts give the corresponding
“eigenfunctions”.

The comparison of the surfaces in Figures 2 and 4 reveals that the surfaces in Figure 4
tend to level at zero more rapidly than those in Figure 2, which is due to the fact that
the absolute values of the eigenvalues corresponding to Figure 4 are much higher than
those of Figure 2. The comparison of the surfaces in Figures 3 and 5 shows that the
situation is reversed this time.
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Table 2. “lower” eigenvalues of the numerical example.

Case 1
Continuous Model Finite Element Model
-0.06802 -0.06802
-0.87203 -0.87203
-2.60611 -2.60619
-1.78869 + 2.832031 -1.78869 + 2.83203i1
-14.58138 £ 4.338631 -14.57964 + 4.34106i

-14.20533 + 12.746771

-14.12624 + 12.714831

Case 2
Continuous Model Finite Element Model
-0.25891 -0.25891
-2.60406 -2.60442
-7.58911 -7.59736
-0.13054 £ 1.10190i -0.13054 £ 1.10190i
-0.41502 + 4.840371 -0.41506 + 4.84023i

-0.58731+9.40117i -0.58748 + 9.40037i

On the other hand, as in reference [1], in accordance with the fact that in case 2 the
first part of the rod is damped strongly whereas the second part is not, one observes
that the majority of the displacements in the “lower” underdamped “modes” is local
to the undamped, namely second part of the rod.

The “eigencurves” corresponding to lower overdamped eigenvalues in cases 1 and 2
behave similarly, regarding the number of the nodes, which can be seen from
comparison of Figures 2 and 4. On the contrary, “eigencurves” corresponding to
lower underdamped “eigenvalues” in both cases behave differently. The number of
nodes in case 2 is much less than that in case 1, as can be seen from the comparison
of Figures 3 and 5.

CONCLUSIONS

This study is concerned with the establishment of a method to compute the
eigenvalues and “eigenfunctions” of a continuous, viscously damped rod, carrying a
tip mass and consisting of two parts having different physical parameters.

Both the overdamped and the underdamped eigenvalues and corresponding
“eigenfunctions” have been computed for two different sets of damping parameters.
For high damping the lower underdamped “modes” seem to be local to the undamped
part of the rod.
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