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ABSTRACT

Many researchers reported the use of vibration methods to
evaluate crack in beam structures by comparing vibration
amplitude data between the cracked and the uncracked states of
the structures. But, these methods are not applicable if modal
data is not available in prior or the crack is around a nodal
point. In this study, a vibration method, which requires only the
data of nodes for the cracked state of the beam, are proposed. In
this paper, transverse vibrations of a cantilever beam with a
transverse crack are investigated analytically and additionally,
the Bernoulli-Euler beam theory is employed to characterise
transverse surface crack in beams. In formulations, the beam
has a uniform cross-section and the crack was modeled by
sawing cuts. In order to modd the transverse vibration, the
crack isrepresented by arotationa spring. It iswell known that
when a crack develops in a component, it leads to changesin its
mode shapes. The cantilever beam is subjected to a transverse
harmonic force in the vicinity of the node. The changes of the
nodes for the second and third mode are obtained as a function
of the crack location and size. The steady-state amplitude of
motion of the excitation point is computed, and its variation asa
function of the forcing frequency, crack location and size is
investigated. Frequency spectra for the response of the
uncracked and cracked beam are compared to each other under
harmonic forcing.

INTRODUCTION

It iswell known that when a crack develops in a component
it leads to changes in its vibration parameters. Hence it may be
possible to estimate the location and size of the crack by
measuring the changes in vibration parameters. Severd
methods have been developed for non-destructive testing using
vibration techniques. Measurements of amplitudes, natural
frequencies and vibration modes have been used in the
identification of location and the magnitude of a crack in a
beam.
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Cracked gtructures have been modelled by various methods.
Dimarogonas and Papadopoulos have computed the flexibility
matrix for a transverse surface crack on a shaft in reference [1].
Dentsoros and Dimarogonas in reference [2] analysed a
cantilevered beam with a crack at the fixed end. A longitudinal
harmonic force was applied at the free end, and the crack was
modelled as a linear spring. Chondros and Dimarogonas in
reference [3], Dimarogonas and Massouros in reference [4],
combined this spring hinge modd with fracture mechanics
results, and developed a frequency spectral method to identify
cracks in various structures. For a known crack position, this
method correlated the crack depth to the change in natura
frequencies of the first three harmonics of the structure.
Dimarogonas and Papadopoulos considered  coupled
longitudinal and bending vibrations of a cantilevered beam with
atransverse crack. Using a spring model for the crack, the first
three modes of free vibration were determined. In the analysis,
the beam was given alongitudinal, harmonic displacement at its
fixed end and the response was plotted as a function of the
excitation frequency in reference [5]. Rizos, Aspragathos and
Dimarogonas in reference [6] used the analytical results to
relate the measured flexural amplitudes at two points of the
structure vibrating at one of its natura modes to the crack
location and depth. Gounaris and Dimarogonas in reference [7]
used FEM to evauate the dynamic response of a cracked
cantilever beam to harmonic point force excitation. Mermertas
and Erol in reference [8] investigated the effect of mass
attachment on the free vibration of cracked beam. Collins, Plaut
and Wauer in reference [9] anadysed free and forced
longitudinal vibrations of a cantilever bar with a crack. The
steady-state amplitude of the motion of the free end was plotted
as a function of the forcing frequency. Thus, the location and
the compliance of the crack, and frequency spectra were
obtained. Bamnios and Trochides in reference [10] investigated
the influence of a transverse surface crack on the dynamic
behaviour of a cantilever beam both anayticaly and
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experimentally. Modelling the aack as a rotationa spring,
relaions linking the change in natura frequencies and in
mechanicd impedance to the location and depth of the adacdk
were obtained. An extended literature review of these methods
can be seen in reference [11]. Ishak, Liu and Lim in reference
[12] conducted strip element method cdculations and
experimental results to identify the cradk location. In the
theoretical analysis, the beam is divided into domains and a
harmonic load is applied on its surface.

In this gudy, modelling the aack as a rotational spring,
relations linking the dhange in nodes and frequency spectra to
the location and depth of the crack are obtained. It was assumed
that the aack remained open during vibration. The cantil ever
bean is subjected to a transverse harmonic force in the vicinity
of the node. The changes of the nodes for the second and third
mode are obtained as a function of the aadk locaion and size.
The stealy-state amplitude of the motion of the excitation point
is computed, and its variation as the function of the forcing
frequency, the crack location and size ae investigated.
Frequency spectra for the response of the uncradked and cracked
bean under harmonic forcing are mwmpared to ead cther. The
method is based on the examination of the change in nodes can
be used for cradk identification in smple beam structures.

THEORY

In order to model the transverse vibrations, the aad is
represented by a rotational spring of stiffnessK. The existence
of a cradk in a bean increases the locd flexibility of the beam.
Dimaragonas and Paipetis in reference [13] calculated the
bending spring constant K+ in the vicinity of the aacked section
of a beam with orthogonal cross-section of width b and the
height h as can be seen in Figure 1, when a lateral cradk of
uniform depth a exist, from the cradk strain energy function;
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- 6n(1-9%)hd(a/h) @

T

where E is the modulus of dasticity of a beam material, | isthe
moment of inertia of the beam cross-section. The dimensionless
local compliance function ®(ah) is computed from the strain
energy density function and has the form,

®(a/h) = 0.6272(a/h)? —1.04533(a/h)® + 4.5948 (a/h)*
-9.973(a/h)° +20.2948(a/h)® - 33.0351(a/h)’
+47.1063(a/h)® - 40.755(a/h)° +19.6 (a/h)° (2

The bending vibrations of a uniform Bernoulli-Euler beam
are governed by the partia differential equation,

a*w(x,t) a°w(x,t)
El +pA =0 3
axt PN ©

where w(x,t) denotes the lateral displacement at point x at time
t. A isthe cross-sectional area and p is the mass density.

ANMARARRRANNY

< >

Figure 1. Cracked cantilever beam subjecting a harmonic
force

The locations of the driving force and of the crack divide the
beam in three parts. Depending on the location of the driving
force one has to solve two problems with different boundary
conditions. If the force is between crack and clamped end, the
bending displacements in the regions to the left and right of the
in-span excitation will be denoted as wy(x,t) and wx(x,t) where
both are subject to the differential equation (3). The
corresponding matching conditions at the excitation,

Wi(Be ) =Wo(Be, ), Wi(Be 1) = WH (B, 1),

Wi ) =Wh(Be ), ElWIBe. 1) - w(Be, D)= F, sinot
@

where

The crack is assumed to be open and to have uniform depth.
The beam can be conveniently divided into two segments, one
on either side of the spring representing the crack. The bending
displacements in the regions to the left and right of the crack
will be denoted as w,(x,t) and ws(x,t). The continuity of
displacement, moment and shear forces at the crack location

(Bc :XTC) and jump condition in the slope can be written in
the following form,
W, Be.t)=ws(Be. 1), wh(Be,t)=ws(Bc.t)

wh C’t):Wg C’t)’
wh(Bc, t)=wh (B, 1)+ Elwi(Be, t)/ Ky (5
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If the driving force is between free end and crack, the boundary
conditions are,

wi(Be.t)=wo(Be.t), wilBe,t)=wh(Bc,t),
wy C’t):Wg C!t)!
w5(Be,t)=wiBe, t)+Elws(Be, t)/Kr
W, (B, ) =wa(Be,t),  Wo(Be,t)=wi(Br, 1),
W5 F’t):W’é F’t)!
El(wh(Be.t)-wi(Be, t) = F, sinot (6)

The boundary conditions at the fixed and free ends, respectively,
ae

w,(0,t)=0, w;(0,t)=0,
wi(1,t)=0, wj(,t)=0. @)

If harmonic solutions are asumed for threeregions,
wi(x,t)=Y;(x)sinot, i=123. (8)
The displacement on ead part of the beam is assumed as

Y,(3)= A, codi.p)+ A, sin(hp)+ A, cosh(Lp)+A , sinh(Lp)
Y,(p)= Agcodip)+Agsin(hp)+ A, cosHrp)+Agsinh(Lp)
Y3(8)=AgcoshB)+ Asgsin(Lp)+ A, coshli. p)+ Ay, sinh(ip)

)

where A; i = 1,...,12, are arbitrary integration constant to ke
evaluated from the boundary and matching conditions for wy,
w, and ws. The system given by equation (9) and boundary and
matching conditions was solved and analytical expressons for
the receptance at different driving pdnts were obtained. In
order to obtain non-vanishing solutions for A; to Ajp, the
corresponding determinant of coefficients has to be equated to
zeo yieds the dharaderistic equation. This equality is satisfied
for an infinite number of the sysem’'s natura frequencies.
Substituting any one of these back into equation (9) yieds a
corresponding set of relative values for A; i = 1,...,12, i.e,
{Ai}:, the so-cdled mode shape wrresponding to that natural
frequency. The following non-dimensional parameter is
introduced,

2 4
4 _0°pAL _X
=, B=— 10
£ P=T (10)

A

where, wis the angular excitation frequency, x is the coordinate
aong the beam with the origin at the clamp end and L is the
length of the beam.

NUMERICAL APPLICATION

In Figure 2 second and third mode shapes and their nodes
are viewed. The variations in the first three nodes versus the
crack location parameter for a cracked cantilever beam with
depth ratio a’lh = 0.6 are given in Table 1. The values of the
cracked beam obtained at the free end (Bc = 1) are the same
with those of the uncracked beam.

Bc 0 0250 | 0.500 | 0.775 | 1.000
By | 0.7733 | 0.7836 | 0.7825 | 0.789 | 0.7834
B. | 0.4838 | 0.4966 | 0.5032 | 0.5153 | 0.5035
B.s | 0.8624 | 0.8651 | 0.8676 | 0.8715 | 0.8676

Table 1. The variation in the first three nodes with respect to the
crack location parameter for a cantilever cracked beam with
depth ratio a/h = 0.6.

=]

0.2 04 0.6 0.8
g

(a) The second mode.

—

o)
=)
b
e
=
=
(=3
o)
=]
—

(b) The third mode.
Figure 2. Plot of the second and third mode shapes of the
cantilever beam.

For forced vibration, the variations in receptance on a
logarithmic scale for second and third mode are depicted as a
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function of non-dimensional forcing frequency in Figure 3-8.
The location of the node is chosen as the paint for forcing. The
crack locaion parameter of B = 0.775 together with a constant
crack depth ratio a’h = 0.6 is considered. Calculation in this
study was carried out via the following beam data: length 1m,
height 0.01 m, width 0.01 m, Young's modulus E=2.11x10""Pa,
Poisson ratio 9 = 0.3, density p = 7860 kg/m>. If the beam is
uncradked, when it is excited at its first node, a peak with the
receptance value is not seen at the point where we accepted to
see the second natural frequency. If the beam is cracked, a jump
is observed in the receptance with alower frequency (Figure 3.)
This result is aso valid for the other two nodes of the third
mode shape (Figures5 and 7.)
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Figure 3. Receptance plots for cracked and uncracked cantilever
beams with depth ratio a/lh = 0.6
(BC: 0775! BF: Bnl(uncra:ked) = 07834)
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Figure 4. Receptance plots for cracked and uncracked cantilever
beams with depth ratio a’h = 0.6
(BC: 0775, B|:= Bnl(cracked) = 07896)

After this first step, where whether or not the beam is
cracked is resolved, the location of the node on the cracked

beam is determined. By moving the forcing point to the left and
right, the point where peak disappears in the frequency response
function is found. This process is repeated for al of the
considered nodes at the observed frequency intervals. The
receptance obtained at the new forcing points of the cracked
beam depending on the frequency are drawn in Figures 4,6 and
8 in comparison with the uncracked beam. In this case the
second and the third natural frequencies of the uncracked beam
are attained. Since the first mode shape does not include a node,
there is no excitation point on the beam to remove the firs
natural frequency, whether the beam is cracked or not.
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Figure 5. Receptance plots for cracked and uncracked cantilever
beams with depth ratio a’h = 0.6
(BC: 0775! BF: an(uncra:ked) = 05035)
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Figure 6. Receptance plots for cracked and uncracked cantilever
beams with depth ratio a/h = 0.6
(BC: 0775, B|:= an(cracked) = 05153)

In Figure 9, the variation in the node of the second mode
versus the location of the crack for the cantilever beams which
have crack depth ratio a/h=0.4 and a/h=0.6 is given. In Figures
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10 and 11, changes in the two nodes of the third mode relative
to the crack location on the cantil ever beam is presented for the
same cantil ever beans compared to the uncradked beam. Asthe
crack depth rises, the variation in the nodes is higher in the
cracked beam than the uncracked beam. Although certain nodes
do not change at some of the positions of the aad, thereis no
crack location where all of the nodes remain unchanged.
Therefore, more than one node should be observed in order to
determine whether the beam is cracked o uncraded.
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Figure 7. Receptance plots for cracked and uncracked cantilever
beams with depth ratio a’lh = 0.6
(Bc=0.775, Br= Bnauncracked) = 0.8676).
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Figure 8. Receptance plots for cracked and uncracked cantilever

beams with depth ratio a’h = 0.6
(BC: 0775, B|:= Bng(crakgj) = 08715)
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Figure 9. The variation in thefirst node (3,1) versus the crack
location parameter for a cracked cantilever beam.
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Figure 10. The variation in the second node (3,,2) versusthe
crack location parameter for a cracked cantilever beam.

The diagrams given in the Figures 9-11 are employed to
determine the crack location and depth by solving the problem
reverse. For this purpose, previously obtained three nodes are
evaluated for the selected crack depth and the possible crack
locations that give these nodes are determined. Given node can
be met by more than one location. The correct result is the
position that provides all of the three nodes. If there is no
harmony between the probable points for the crack depth under
scrutiny, then the same investigation is carried out for another
crack depth. Crack depth and the size that gives the common
point give the expected solution. For a more sensitive solution,
similar comparisons for nodes at higher modes can be carried
out with elevated frequencies.
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Figure 11. The variation in the third node (3,,3) versusthe crack
location parameter for a cracked cantil ever beam.

CONCLUSIONS

The @ntilever beam is subjected to a transverse harmonic
force in the vicinity of the node. The tanges of the nodes for
the second and third mode are obtained as a function of the
crack locaion and size The stealy-state anplitude of motion of
the excitation point is computed, and its variation as a function
of the forcing frequency, cradk locaion and size is investigated.
Frequency spectra for the response of the uncracked and cracked
bean under harmonic forcing are mwmpared to ead cther. The
method is based on the examination of the change in nodes can
be used for crack identification in simple bean sructures. It
would be useful to verify the results experimentally. The method
is composed of the fall owing steps:

1. If the bean is cracked, when excited from the first node
of the uncradked beamn, a ped will be observed signalling the
second natural frequency. However, for the uncradked beam, a
pe&k in the variation of the receptance depending on the
frequency is not seen.

2. After this first step, where whether or not the beam is
cracked is determined, the force gplicaion point is moved to
the right and left in order to find out the paint where the peak
disappeasin the frequency response function.

3. Three nodes of the second and the third mode shapes are
evaluated for the selected cradk depth. Given node can be met
by more than one location. The crack location providing all of
the three nodes is the searched solution.

4. If there is no harmony between the possble aack
locations for the invettigated crack depth, the same search is
caried out for another crad depth.

5. For a more sendtive solution, similar comparisons for
nodes a higher modes can be arried out with devated
frequencies.
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