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ABSTRACT 
In this paper, robotic manipulator links are modeled with 

finite elements where each element has a uniform cross-section. 
Shear deformations and rotary inertia effects are taken into 
account in this study. Structural damping has also been included 
in the formulation. The dynamic response of the system has been 
analyzed by solving the eigenvalue problem and the modal 
analysis has been used to describe the behavior of the system. 
Considering rigid-body, elastic, normal, Coriolis and tangential 
accelerations result in a nonlinear structural response. Predictor-
corrector procedure in connection with the Newmark method is 
employed for the solution of the resulting matrix differential 
equation. Robotic manipulator has been considered as a 
parallelogram linkage. Elastic displacements of end-effector are 
determined for different length of the links. Results of the 
numerical simulations were compared to tip displacement of the 
planar two-link manipulator. The effect of extension of the 
output link on the deflection has been investigated for a closed-
loop parallelogram manipulator. The tip displacements in the 
vertical and horizontal directions decrease when the center of 
mass of the output link is moved away from the end-effector in 
both trajectories. The tip deflections were compared to the 
planar two-link manipulator with the parallelogram mechanism. 
The tip deflection produced by closed-chain manipulator is 
smaller and less fluctuates than those obtained for open-loop 
manipulator. This characteristic is more pronounced especially 
for horizontal trajectory. 
 

 
INTRODUCTION 

R.C. Winfrey [1] is one of the earliest researchers to study 
elastic links. A plane four-bar mechanism was used for 
developing the equation of motion. In his study, it was shown 
how the methods for determining the motion of a rigid link 

mechanism and methods for analyzing vibration structures 
might be combined, using linear theory. Iman, Sandor and 
Kramer [2] investigated deflections and stress analysis in four-
bar planar mechanism with elastic links. The purpose of their 
paper was to develop a method of Kineto-elastodynamic 
analysis, which was applied to all planar mechanisms, and to 
present a method of dynamic stress analysis of mechanisms 
possessing elastic links. Sadler and Sandor [3] extended the 
lumped parameter approach to the investigation of the lateral 
bending vibrations of machine elements, which can be idealized 
as simply supported beams in planar motion. Also, stress 
analysis was performed with the objective of redesigning a beam 
of given length. Sadler [4] compared the analytical results based 
on non-linear differential equations derived by way of Euler-
Bernoulli beam theory with experimental results. Bahgat and 
Willmert [5] carried out the vibration analysis of planar 
manipulators with links of any complex shape. They used finite 
element technique to evaluate the vibrations of a planar 
mechanism composed of links with turning and sliding pairs. 
The steady state solution of the resulting differential equations 
was obtained using a harmonic series technique. Dubowsky and 
Gardner [6] showed that it is possible to formulate and solve the 
general problem of the interaction between the effects of joint 
clearances and link elasticity in general planar mechanisms. 
Midha, Erdman and Frohrib [7] modeled the linkage with 
uniform cross-sectional area to define the mass and stiffness 
properties of a four-bar linkage. Standard structural analysis 
technique has been pieced together to formulate a systematic 
procedure for the analysis of elastic linkage. Shabana and 
Wehage [8] presented a method based on solving the eigenvalue 
problem of the substructure. From Fourier analysis of the forcing 
functions, an initial estimate of the number of modes to be 
retained was made, and during the simulation additional 
eigenvectors were recalled or deleted as required. Low and 
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Vidyasagar [9] presented a procedure for deriving dynamic 
equations for manipulators containing both rigid and flexible 
links. A two-link manipulator with one rigid link and one 
flexible link was analyzed to ill ustrate the procedure. The 
equations were derived using Hamil ton's principle, and non-
linear integro-differential equations. Benati and Morro [10] 
developed a Lagrangian approach for the dynamics of a chain 
with flexible links. Each link is modeled as a system with a 
finite number of degrees of freedom, one of them describing the 
rotation, the other ones the flexibil ity. Cleghorn and Chao [11] 
modeled four-bar mechanism with finite elements, each having 
linearly varying cross-sectional areas. Steady-state values of 
flexural strains were calculated for mechanism having 
prescribed link geometry, and input rotational speeds. Lee [12] 
formulated the equations of motion in matrix form for a flexible 
rod in a quick return mechanism using Hamilton's principle and 
the assumed mode method. Sharan and Kalra [13] carried out 
the dynamic analysis of finite element modeled robotic 
manipulators using modal analysis. Using the eigenvectors of 
the transposed system diagonalized the non-symmetric system 
matrices of the manipulators having gross motion. Shigang, 
Yueqing and Shixan [14] reported a new flexible rotor beam 
element to study the dynamic behavior of manipulators with 
flexible links and joints. Both link and joint flexibil ity were 
incorporated together by using the finite element model for links 
and a torsional spring model for joints. A planar 3R manipulator 
with flexible links and joints was analyzed as an example. Boyer 
and Khalil [15] presented an exact expression of the finite 
rotation field directly deduced from the centerline displacement 
and torsion fields of a slender beam and applied that result to the 
calculation of the kinematical model of an open chain flexible 
multi-body system subjected to large displacements. Siciliano 
[16] presented an inverse kinematics scheme for a planar two-
link flexible manipulator under gravity whose tip is considered 
by a stiff surface. The computed joint and deflection 
displacements were used as the set point for PD control. 
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Figure 1. The planar manipulator with parallelogram 
mechanism and the trajectory. 

In the present study, the robotic manipulator was considered 
as a parallelogram linkage shown in Figure 1. 

The links were taken as beams with shear deformation. The 
elastic displacements of end-effector in x and y directions were 
determined for different length of the links using the finite 
element method. Results of the numerical simulations are 
compared to tip displacement of the planar two-link manipulator 
shown in Figure 2. 
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Figure 2. The planar two-link manipulator and the trajectory. 
 
 
 

BEAM ELEMENT IN PLANE MOTION 
The links of the manipulator taken as general beam 

elements is shown in Figure 3. There are two coordinate 
systems. These are the fixed (OXY) and the rotating (Oxy) 
coordinate systems. The elastic translations and rotations 
relative to the rotating (Oxy) frame as the x-axis are parallel to 
the beam element axis as shown in Figure 3. 
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Figure 3. Deflection variables of the flexible element and the 
coordinate systems. 

 
 

The elastic deformations of the beam element are described 
by six nodal displacements. These are the transverse and 
longitudinal deflections, rotations at each end of the element. 
The following relationships may be written in fixed coordinate 
system. 
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where, XA, YA and φ describe the rigid-body motion of the 
element. Differentiating equation (1) twice with respect to time, 
absolute accelerations of A* may be obtained in fixed coordinate 
system.  

 

1A

1
2

111

1
2

111AA

1
2

111

1
2

111AA

��
sin ��vcos ��vsin ��v2cos �v

cos ��usin ��ucos ��u2sin �uYY

cos ��vsin ��vcos ��v2sin �v

sin ��ucos ��usin ��u2cos �uXX

*

*

*

ϕ������

�������

�����������

�������

�����������

+=
−−−+

+−++=

−+−−

−−−+=

 (2) 

 
The absolute and rigid body accelerations of the element are 
expressed in the rotating frames with the help of following 
transformations. 
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By combining equation (2) and equation (3) and performing the 
similar procedure for node B, one obtains:  
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where the matrix (from left to right) represent the absolute, 
rigid-body, elastic, normal, Coriolis and tangential accelerations. 

The last two vectors in equation (4) are the rigid-body and 
elastic motions coupling terms. 
 
MASS AND STIFFNESS MATRICES 

It is assumed that the dynamic axial forces are not large 
enough to affect the flexural stiffness, there is no coupling 
between the axial and flexural stiffness. The appropriate energy 
expressions for the element shown in Figure 3 are from 
reference [20]. 
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The displacement functions can be represented by a polynomial 
having constants, namely 

 
 ( ) ( )3

4
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 ( ) ( )xccxu 21 +=  (9) 

 
These seven constants of the integration are not independent 
since the solutions (7) and (8) must also satisfy moment 
equilibrium equation. This gives the following relationships: 
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where 
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z
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Substituting the displacement functions into the energy 
expressions gives the element matrices. 

The elemental mass and stiffness matrices can then be 
transformed into a global coordinate frame.  

 

[ ] [ ] [ ][ ]RmRm T= , 

 [ ] [ ] [ ][ ]RkRk T=  (12) 
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where [R] represents the elemental transformation matrix from 

local to global coordinates frame, [ ]m  and [ ]k  are the element 
mass and stiffness matrices. Elemental matrices and 
transformation matrix are given in the Appendix. 

 
DAMPING AND MODAL ANALYSIS 

By equating the energy in the total manipulator to the sum 
of the energy in each link and after applying corresponding 
boundary conditions the differential equations of motion can be 
written in the matrix form, 

 
 [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }tQtqKtqCtqM =++ ���  (13) 

 
where [M] and [K] are the system mass, stiffness matrices. 

( ){ }tqR��  is the vector of the rigid-body accelerations. The 

damping matrix cannot be constructed from element damping 
matrix, such as the mass and stiffness matrices of the element 
assemblage. The damping matrix associated with any given set 
of modal damping ratios n

�
 can be obtained by pre-and post-

multiplying the diagonal matrix of the generalized damping 
coefficients by the inverse of the mode-shape matrix or its 
transpose [17]. 
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[ ] [ ][ ] [ ]IUMU T = , 

 [ ] [ ][ ] [ ]2
r

T �UKU = , (15) 

 

where [U] is the normalized modal matrix and [ ]2
r

� is the 

diagonal matrix of the natural frequencies squared of the 
undamped system. 

The orthogonal properties of the modal coordinates may be 
used to simplify the equations of motion the multi-degree of 
freedom system. Equation (13) may be written by considering 
the linear transformation 

 
 ( ){ } [ ] ( ){ }t�Utq = , (16) 

 
relating the vectors ( ){ }tq  and ( ){ }t� , where these vectors 

represent two different sets of generalized coordinates. 
Introducing transformation equation (16) into equation (13), 
pre-multiplying the result by [U]T and considering equation (14) 
and equation (15), 

 

 ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }tNt��t�
� �2t� 2 =++ 			 . (17) 

 
The amplitudes of the higher modes of the system are 

usually negligible compared to the first few modes. The 
computational efficiency would be increased if the lower modes 
were calculated rather than all modes. In such a case, modal 
matrix can be written as, 

 
 [ ] { } { } { }[ ]m21 U,......U,UU = , (18) 

 
where m is the number of modes to be used in the solution. In 
this finite element solution 10 modes are considered. Sharan and 
Kalra [13] used only 4 modes to describe the system behavior for 
planar two-link manipulator. Equation (19) represents a set of n 
independent equations of the form, 

 

 ( ) ( ) ( ) ( )tNt��t���2t�
rr

2
rrrrr =++ 			 , (19) 

 
where ( )t�

r  are recognized as the system modal coordinates and 

Nr(t) are associated modal generalized forces. Equation (19) has 
the same structure as the differential equation of motion of a 
single-degree-of freedom system. 

 
THE PREDICTOR-CORRECTOR SCHEME 

In the Newmark integration scheme the equilibrium 
equation (19) is considered at time t+∆t, 
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where ( )�
�
t�

r +  is the rth generali zed modal displacement at 

time t+∆t. The finite difference representation of displacement 
and velocity based on the Newmark method, can be written as 
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where δ and α are parameters to be chosen to obtain optimum 
stability and accuracy. Newmark in reference [19], proposed as 
an unconditionally stable scheme the constant-average-
acceleration method, in which case 0.5

�
≥  and 

( )2�0.50.25� +≥ . 

To initiate the predictor-corrector process within the current 
time step, a value for ( )�
 

t!
r +
""

 in equation (20) needs to be 

assumed. This value may be designed as ( )�
 
t!

r
o +
""

 and can be 

taken as zero, where superscript “o” is the initial value of the 
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predictor-corrector iteration index i. On this basis, from 

equation (21) and equation (22), ( )���
t�

r
o +
�

 and ( )���
t�

r
o +  can 

be computed as 
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determine whether there is any residual force in the system. The 
residual force is 
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halted. Otherwise, the correction procedure is continued. The 
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To initiate the predictor-corrector process needs the initial modal 
displacements ( )0@

r  and velocities ( )0@
r
A

, which are related to 

the actual initial displacements ( )0qr  and velocities ( )0qr
A

. Pre-

multiplying equation (16) by [ ] [ ]MU T  and considering the 

orthogonal properties of the modal vectors, the initial modal 
displacements and velocities can be determined as follows, 

 

( ){ } [ ] [ ] ( ){ }0qMU0@ T= , 

 ( ){ } [ ] [ ] ( ){ }0qMU0@ T AA
= . (30) 

 
Hence, the complete solution of equation (13) can be obtained by 
inserting the modal coordinates equation (26) into equation (16). 

The solutions of equation (13) are dependent on the [M], 
[K] and [C] matrices, which are determined by input angles. 
Hence the trajectory can be divided into segments over which 
the system mass, damping and stiffness matrices are constant. 
The solution at the end of a segment would be the initial 
conditions for the next segment. In the mathematical algorithm 
presented in this paper, the trajectory is divided into ten 
segments. 
 
NUMERICAL SIMULATIONS 

Figure 2 shows a manipulator arm consisting of a closed-
loop planar parallelogram mechanism. One actuator is fixed to 
the base link; the other is fixed to the link 1 and drives the two 
input links. Link 4 is the output link, where an end-effector is 
attached. 

The motion profile was created using the following 
equations:  
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where T0 is the total time of the trajectory (1.4s) and Θ is the 
magnitude of rotation. The beams are uniform with cross-section 
of 10mm x 15 mm, mass per unit length 1.17 kg/m, moment of 
inertia 2.8125x10-9 m4 and made of material that gives a 
modulus of elasticity 2.1x1011 N/m2. The mass of the motor is 
taken as 5 kg. 
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To verify the theoretical model, the manipulator is divided 
into twenty elements. The trajectory is divided into ten segments 
over which the system mass, damping and stiffness matrices are 
constant. Ten modes are considered to describe the system 
behavior for parallelogram and two-link manipulator. Several 
examples are solved to illustrate the effects of the length of the 
output link and trajectory of the endpoint on the tip deflection in 
the vertical and horizontal direction. The results are presented in 
a series of Figures plotted in term of the oscill ation time. All 
links of the manipulators shown in Figure 1 and 2 were 
considered to be flexible and the tip deflections are determined 
with the effect of gravitational forces. 

Numerical examples are separated into two parts. The first 
part deals with the endpoint trajectory that is simulated by 
prescribing certain horizontal motion from point (1.2m, 0.5m) 
to (1.2m, 0.9m), while the second part treats the problem using 
prescribed vertical direction from point (1.2m, 0.5m) to (1.6m, 
0.5m). The results of the first part can be seen in Figure 4-7 and 
the results of second part are plotted in Figure 8-11. 
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 Two-link manipulator. 

 
  Parallelogram 

manipulator. 

Figure 4. Tip deflections of manipulator with parallelogram 
mechanism and two-link manipulator for horizontal trajectory in 

x direction.  (L1= 0.9m, L2= 0.3m). 
 
 

In order to investigate the effects of the length of the output 
link, the length of L2 is varied from 0.1m to 0.5 m, while the 
other lengths of the manipulator are kept constant at 0.9m. The 
tip deflections are presented in Figure 6,7,10,11. Comparison of 
these Figures shows that deflections of closed-loop manipulator 
with short and long extension of the output link are quite 
different, although other lengths are the same in all cases. The 
tip displacement in the vertical and horizontal direction 
decreases when the center of mass of the output link is moved 
away from the end-effector in both trajectories.  
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 Two-link manipulator. 

 
  Parallelogram 

manipulator. 

Figure 5. Tip deflections of manipulator with parallelogram 
mechanism and two-link manipulator for horizontal trajectory in 

y direction.  (L1= 0.9m, L2= 0.3m). 
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L2= 0.1m, 

 
L2= 0.3m, 

 
L2= 0.5m. 

Figure 6. Tip deflections of manipulator with parallelogram 
mechanism for horizontal trajectory in x direction. (L1= 0.9m). 

 
 

The deflections for the closed-loop manipulator for the case 
of L2 = 0.3m with the present model are compared with the 
results of planar two-link manipulator with the same length of 
the other links (L1 = 0.9m) in Figure 4,5,8,9. It can be seen from 
these Figures that the tip deflection produced by closed-chain 
manipulator are smaller and fluctuate less than those obtained 
for open-loop manipulator in both trajectory. This verifies the 
fact that this type of planar two-link manipulators presents 
drawback. Their elastic flexibility is high due to the cantilever-
type of their links. Flexibility introduces positioning 
inaccuracies and undesired dynamical side effects because only 
one of the motors is fixed, the remaining one, accounting for a 
substantial part of the inertial load is moving. 
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L2= 0.1m, 

 
L2= 0.3m, 

 
L2= 0.5m. 

Figure 7. Tip deflections of manipulator with parallelogram 
mechanism for horizontal trajectory in y direction. (L1 = 0.9 m). 

 
 

It can also be observed from Figure 4 and 5 that, the 
difference between the deflection curve of closed and open-loop 
manipulators increases while the time reaches to the end of the 
trajectory time in both directions for horizontal trajectory. 
However, the difference is less remarkable for vertical trajectory 
shown in Figure 8 and 9. 
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 Two-link manipulator. 

 
  Parallelogram 

manipulator. 

Figure 8. Tip deflections of manipulator with parallelogram 
mechanism and two-link manipulator for vertical trajectory in x 

direction.  (L1= 0.9m, L2= 0.3m). 
 
 

The residual vibrations behave after the time is reached to 
the end of the trajectory time. The motion is the result of initial 
conditions, which is equal to the final conditions at the end of 
this time. At that point damped free vibrations wil l occur since 
there is loss energy throughout the motion of the system. 
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 Two-link manipulator. 

 
  Parallelogram 

manipulator. 

Figure 9. Tip deflections of manipulator with parallelogram 
mechanism and two-link manipulator for vertical trajectory in y 

direction.  (L1= 0.9m, L2= 0.3m). 
 
 

� ��� � ��� � ��� � ��� � � ��� � ��� �	�
 ��
 � ��
�� �
� ��� ����'
� ��� �����
� ��� �����

�
��� �����
��� �����
��� ����'

�� �

��� � ��
�� � 

! "#

 

 
L2= 0.1m, 

 
L2= 0.3m, 

 
L2= 0.5m. 

Figure 10. Tip deflections of manipulator with parallelogram 
mechanism for vertical trajectory in x direction. (L1= 0.9m). 

 
 

CONCLUSIONS 
The dynamic behavior of planar a manipulator with 

parallelogram mechanism has been analyzed theoretically by 
means of the finite element method with the effect of damping 
taken into account. Each element has a uniform cross-section. 
Shear deformation and rotary inertia effects have also been 
included in the formulation. The consideration of rigid-body, 
elastic, normal, Coriolis and tangential accelerations results in a 
nonlinear structural response. Predictor-corrector procedure in 
connection with the Newmark method is employed for the 
solution of the resulting matrix differential equation. The 
trajectory is divided into ten segments over which the mass, 
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stiffness and damping matrices are constant. The modal analysis 
has been used to describe the system behavior. Ten modes are 
considered for calculation of tip deflection in horizontal and 
vertical trajectory. 
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L2= 0.1m, 

 
L2= 0.3m, 

 
L2= 0.5m. 

Figure 11. Tip deflections of manipulator with parallelogram 
mechanism for vertical trajectory in y direction. (L1= 0.9m). 

 
 

The effect of extension of the output link on the deflection 
has been investigated for a closed-loop parallelogram 
manipulator. The tip displacement in the vertical and horizontal 
direction decreases when the center of mass of the output link is 
moved away from the end-effector in both trajectories. 

 The tip deflections are compared to the planar two-link 
manipulator with the parallelogram mechanism. The tip 
deflection produced by closed-chain manipulator is smaller and 
less fluctuates than those obtained for open-loop manipulator. 
This characteristic is more pronounced especially for horizontal 
trajectory. 
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APPENDIX 
The mass and stiffness matrices for a uniform element are 
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where 
 

m1 = 156 + 882 β + 1260 β2 
m2 = ( 44 + 231 β + 315 β2 ) (L/2) 

m3 = 54 + 378 β + 630 β2 
m4 = ( -26 - 189 β - 315 β2 ) (L/2) 
m5 = ( 16 + 84 β + 126 β2 ) (L/2)2 
m6 = ( -12 - 84 β - 126 β2 ) (L/2)2 

m7 = 18 
m8 = (3 - 45 β ) (L/2) 

m9 = ( 8 + 30 β + 180 β2 ) (L/2)2 
m10 = ( -2 - 30 β + 90 β2 ) (L/2)2 


