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One way of attenuating broad band noise that propagates through ducts or pipe
systems is to use one or more reactive-type acoustic components, each of which is
specifically designed for optimal performance at a particular frequency range.
This paper uses the transfer matrix method for predicting the transmission loss
(TL) of a system with resonators connected to the main duct and a side branch
duct modified with a zero-mean-flow expansion chamber. The method is applied
to different configurations, and the numerical predictions are compared with
the results obtained using finite element methods. Our results indicate that
broadband resonators and a side branch duct with an expansion chamber, fitted
as a countermeasure for broadband noise, can offer significant benefits.
© 2009 Institute of Noise Control Engineering.
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1 INTRODUCTION

In intake systems of internal combustion engines,
side branch-type mufflers are often used, for example,
for turbocharger noise control. Two types of noise
generally occur in turbochargers—blowing or whoosh-
ing noise, and pulsation noise at frequencies of about
1000–3000 Hz. The resulting noise can be very audible
both inside and outside the vehicle.

Recent advances in modeling and accurate perfor-
mance prediction have led to the development of
simulation methods for practical muffler components
in commercial design. Muffler designers need simple,
fast and accurate modeling tools, especially in the
preliminary design evaluation stages. Finite element
and boundary element methods are often used to
provide valid results over a wide range of frequencies.
However, these methods are time-consuming, they
require highly trained personnel, and the commercial
software is usually expensive. Therefore, plane
wave-based models, such as the transfer matrix
method, can quickly offer initial prototype solutions for
muffler designers. However, we note that the transfer
matrix method has a limited frequency range.

A resonator can be an effective acoustic attenuation
device at low frequencies. Recently, Selamet and
co-workers employed several approaches to examine

a) Mechanical Engineering, Istanbul Technical University,
Gümüşsuyu, 34439, Istanbul TURKEY; email:
erolha@itu.edu.tr.

b) Mechanical Engineering, Istanbul Technical University,
Gümüşsuyu, 34439, Istanbul TURKEY.
476 Noise Control Eng. J. 57 (5), Sept-Oct 2009
Helmholtz resonator applications1–4. The Helmholtz
resonator is considered one of the most efficient tuning
methods and is widely used in vehicle exhaust and
intake systems. Modifications have been made to
improve the acoustic attenuation of the Helmholtz
resonator. Birdsong and Radcliff proposed a smart
Helmholtz resonator for use in the vehicle intake
system5. In addition to a Helmholtz resonator, the
Herschel-Quincke (HQ) tube is a simple implementa-
tion of the interference principle in an acoustic attenu-
ation device. Considering the application of HQ tubes
to systems such as compressors and the intake and
exhaust systems of internal combustion engines, the
effect of a mean flow is not negligible. Selamet et al.
modeled the HQ tube, removed many of the geometric
restrictions associated with previous work and
examined innovative new approaches6. Using a three-
dimensional model that took into account the curvature
of the HQ tube, they determined that, with just a plane
wave, the one-dimensional model (which approximates
the tube as being straight) is sufficient. Selamet and
Radavich then examined a side branch expansion
chamber in the context of an HQ tube7. They investi-
gated how geometrical variation of the side branch and
HQ tube influenced the resonant frequencies of the
system. Another innovative use of the HQ tube by
Selamet and Easwaran was to extend the previous
analysis of the two-duct HQ tube without flow8. They
found closed form solutions for the TL and resonance
locations for the n-duct configurations. They also found
that the additional branches increased the frequency
band and the amount of noise attenuation. The effects
of flow on the attenuation characteristics of different



HQ tube configurations have been investigated by
Fuller and Beis9, Torregrosa et al.10 and Zhichi et al.11.
Peaks of high attenuation were seemingly reduced and
shifted in the presence of flow. However, such publica-
tions only examined the effects of plane waves on the
HQ tubes. In more complex systems the effects of
higher order modes on the HQ tube system become
very important. Brady et al. were the first to study the
potential of HQ tubes for attenuating higher order
modes in two-dimensional ducts12. Hallez et al.
extended the two-dimensional analysis of higher order
modes to three dimensions, i.e., hard-walled circular
ducts13. Designs based on HQ tubes have been awarded
many patents for reducing the exhaust noise of internal
combustion engines and have been used in various
practical problems. Strunk investigated a variation of
the HQ tube for hydraulic systems used in off-road
earth-moving vehicle fluid power systems14. Chen and
Hastings used a variation of the HQ tube to examine its
ability to reduce fluid-borne noise in power steering
hydraulic transmission lines15. Gerges et al. used the
transfer matrix method to predict the TL of a muffler
system16. The first suggestion for the combined use of
HQ tubes and quarter-wave resonators appeared in
work by Trochon17. Another interesting implementa-
tion of the HQ concept is described by Graefenstein
and Wenzel18. The basic theory of the HQ tube and
recent contributions to the understanding of the acous-
tical behavior of HQ ducts is available elsewhere19–21.
One of the most popular references on the acoustics of
ducts and mufflers is the work of Munjal22.

This paper uses the transfer matrix method to
predict, with no mean flow, the TL of a system with two
resonators connected to the main duct and a side
branch duct modified with an expansion chamber.
Resonators, in our analytical model, are connected to
the main duct; however, by setting the diameter and
length of the neck, the analytical model can be
converted for direct connection scenarios. The transfer
matrix method is applied to different configurations,
and the numerical predictions are compared with
results from finite element methods. We discuss the
limitations of the plane wave approach. Furthermore,
in this study, for optimal acoustic attenuation perfor-
mance in the 1000–3000 Hz frequency range, we
demonstrate a muffler tuned for the intake system of an
internal combustion engine that features a turbocharger.

2 THEORY

Figure 1 shows a system diagram. All calculations
assume that a 1D model is valid. This requires that the
maximum duct diameters are sufficiently small for the
investigated frequency range. If the duct diameter is
less than half the wavelength, the waves in the duct can
Noise Control Eng. J. 57 (5), Sept-Oct 2009
be considered plane waves; this means that the 1D
model for wave propagation is valid.

The rigid straight main duct has a constant cross
section, and its diameter is hmd. The length of the main
duct is lmd. The modified side branch duct connected to
the main duct is also divided into 3 elements of lengths lc1

,
lc2

and lc3
. The diameter of each element is hhq, hec and

hhq, as shown in Fig. 1. There are two resonators
connected to the main duct. The neck diameters and
lengths are hn1

, hn2
, ln1

and ln2
. The resonator cavity

lengths and diameters are lhr1
, lhr2

, hhr1
and hhr2

. This
study deals with the transfer matrix method for predicting,
with zero mean flow, the TL of the system. Thus, the
system shown in Fig. 1 is divided into 10 elements: a, b1,
b2, c1, c2, c3, d, e1, e2 and f.

Plane wave propagation in a rigid straight pipe with
length L can be described by its transmission (or
four-pole) matrix, as follows:

�p�0,t�
��0,t� � = �A B

C D
��p�L,t�

��L,t� � , �1�

where p�0, t�, p�L , t�, ��0, t� and ��L , t� are the sound
pressures and volume velocities at the input and the
output; and A, B, C and D are four-pole parameters.

The sound pressure field inside the tube is

p�x,t� = p+ei��t−kx� + p−ei��t+kx�, �2�

where i=�−1, � is the angular frequency in radians per
second, t is the time, k is the wave number or propagation

Fig. 1—System with two resonators connected to
the main duct and a side branch duct
modified with an expansion chamber.
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constant, and x is the plane wave propagation axis. Then
the inlet pressure and volume velocity are

p�0,t� = �p+ + p−�ei�t, �3�

��0,t� =
�p+ − p−�ei�t

�c
, �4�

and the output pressure and volume velocity are

p�L,t� = �p+e−ikL + p−eikL�ei�t, �5�

��L,t� =
�p+e−ikL − p−eikL�ei�t

�c
, �6�

where � is the density, and c is the speed of sound.
Thus, from Eqns. (3)–(6)

�p�L�
��L� � = � cos�kL� − i

�c

S
sin�kL�

− i
S

�c
sin�kL� − cos�kL� ��p�0�

��0� � .

�7�

Equation (7) can be rearranged as

�p�0�
��0� � = � cos�kL� i

�c

S
sin�kL�

i
S

�c
sin�kL� cos�kL� ��p�L�

��L� � ,

�8�

and then

T = �A B

C D
� = � cos�kL� i

�c

S
sin�kL�

i
S

�c
sin�kL� cos�kL� � �9�

is the transfer matrix of the rigid straight pipe. Here, S
is the cross sectional area of the acoustic domains.

The description of the subsystems in terms of their
four-pole parameters is very convenient, because the
output of one system is the input of the next, from
which it follows that the transmission matrix of a
system that features multiple cascaded subsystems can
be formulated in matrix form as

�p0

�0
� = TaT18Tf�p9

�9
�

or
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�p0

�0
� = �Aa Ba

Ca Da
��A18 B18

C18 D18
��Af Bf

Cf Df
��p9

�9
� ,

�10�

where T18 is the transfer matrix of the system between the
inlet “element a” and the outlet “element f.”

For “element a,” the relations between the sound
pressures and the volume velocities are represented by
four-pole parameters as

�p0

�0
� = Ta�p1

�1
� , �11�

where junction points 0 and 1 are the input and the
output of “element a,” respectively.

For “element c,” the relations between the sound
pressures and the volume velocities are represented by
four-pole parameters as Ac, Bc, Cc and Dc

�p4

�4
� = Tc�p5

�5
� , �12�

where Tc is the transfer matrix of the side branch duct
modified with an expansion chamber, which can be
expressed as the multiplication of the transfer matrices
of each of the elements c1, c2, and c3, as

Tc = Tc1
Tc2

Tc3
= �Ac Bc

Cc Dc
� . �13�

Then, for “element f,” the relations between the sound
pressures and the volume velocities are represented by
four-pole parameters as

�p8

�8
� = Tf�p9

�9
� , �14�

where junction points 8 and 9 are the input and the
output of “element f,” respectively.

Similarly, for “element d,” the relations between the
sound pressures and the volume velocities are repre-
sented by four-pole parameters as

�p3

�3
� = Td�p6

�6
� , �15�

where junction points 3 and 6 are the input and the
output of “element d,” respectively.

Conditions of pressure equilibrium and conservation
of volume velocity at the first junction point yield

p1 = p2 = p3 = p4, �16�

�1 = �2 + �3 + �4, �17�

where p1, p2, p3 and p4 are the sound pressures, and �1,
�2, �3 and �4 are the volume velocities. Furthermore, at
the second junction point,

p = p = p = p , �18�
5 6 7 8



�5 + �6 = �7 + �8, �19�

where p5, p6, p7 and p8 are the sound pressures, and �5,
�6, �7 and �8 are the volume velocities.

At junction point 0, the sound pressure and the
volume velocity from Eqn. (11) give

p0 = Aap1 + Ba�1, �20�

�0 = Cap1 + Da�1. �21�

The transfer matrix corresponding to resonators
connected to the main duct can be expressed as the
product of the transfer matrices of the elements b1, b2,
e1 and e2 as

Thr1
= Tb1

Te1
, �22�

and

Thr2
= Tb2

Te2
. �23�

Finally,

Thr = �Ahr Bhr

Chr Dhr
� . �24�

Thus, the sound pressure and volume velocity at
junction point 2 (the upper part of the first resonator)
may be obtained from the sound pressure and volume
velocity at junction point 10 (the end of the first resona-
tor).

p2 = Ahr1
p10, �25�

�2 = Chr1
p10. �26�

Junction points 4 and 5 are the input and the output of
the side branch duct modified with an expansion
chamber. From Eqn. (12) the sound pressure and
volume velocity at the junction point 4 can be written
as

p4 = Acp5 + Bc�5, �27�

�4 = Ccp5 + Dc�5. �28�

Examining “element d,” the pressure and velocity
relationships between junction points 3 and 6 are

p3 = Adp6 + Bd�6, �29�

�3 = Cdp6 + Dd�6. �30�

Similarly, the pressure and velocity relationships
between junction point 7 (the upper of the second
resonator) and junction point 11 (the end of the second
resonator) are

p7 = Ahr2
p11, �31�
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�7 = Chr2
p11. �32�

Substituting p7=p8 into Eqn. (31) yields

p8 = Ahr2
p11. �33�

The sound pressure at the end of the second resonator
can be written as

p11 =
p8

Ahr2

. �34�

The volume velocity �7 can be expressed in terms of
the sound pressure p8 as

�7 =
Chr2

Ahr2

p8. �35�

Junction points 8 and 9 correspond to the input and
output of “element f,” respectively. Then,

p8 = Afp9 + Bf�9, �36�

�8 = Cfp9 + Df�9, �37�

Eqns. (28) and (29) give

Adp6 + Bd�6 = Acp5 + Bc�5. �38�

Substituting p5=p6=p8 into Eqn. (38) and rearranging
results in

Adp8 − Acp8 + Bd�6 = Bc�5. �39�

Thus, the volume velocity, �5, at junction point 5 is

�5 =
Ad − Ac

Bc
p8 +

Bd

Bc
�6. �40�

Substituting Eqn. (40) into Eqn. (19) results in

Ad − Ac

Bc
p8 +

Bd

Bc
�6 + �6 =

Chr2

Ahr2

p8 + �8, �41�

giving

�6 = �BcChr2
− Ahr2

�Ad − Ac�

�Bc + Bd�Ahr2

	p8 + � Bc

Bc + Bd
	�8.

�42�

Thus, Eqns. (25) and (29) give

Ahr1
p10 = Adp6 + Bd�6 �43�

Equation (43) may be rearranged further by substitut-
ing p8=p6.

Thus, the sound pressure at the end of the first
resonator is

p10 =
Ad

Ahr1

p8 +
Bd

Ahr1

�6. �44�

Substituting Eqns. (26) and (28) into Eqn. (30) yields
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�1 = Chr1
p10 + Cdp8 + Dd�6 + Ccp5 + Dc�5. �45�

Substituting �5 from Eqn. (40), �6 from Eqn. (42) and
p10 from Eqn. (44) into Eqn. (45) results in

�1 = �AdChr1

Ahr1

+ Cd + Cc

+
BdChr1

Ahr1

BcChr2
− Ahr2

�Ad − Ac�

�Bc + Bd�Ahr2

+
Dd�BcChr2

− Ahr2
�Ad − Ac��

�Bc + Bd�Ahr2

+
Dc�Ad − Ac�

Bc

+
DcBd

Bc

�BcChr2
− Ahr2

�Ad − Ac��

�Bc + Bd�Ahr2

	p8

+ � BdChr1
Bc

�Bc + Bd�Ahr1

+
DbBc

�Bc + Bd�
+

BdDcBc

�Bc + Bd�Bc
	�8.

�46�

Then,

C18 =
AdChr1

Ahr1

+ Cd + Cc +
BdChr1

Ahr1

BcChr2
− Ahr2

�Ad − Ac�

�Bc + Bd�Ahr2

+
Dd�BcChr2

− Ahr2
�Ad − Ac��

�Bc + Bd�Ahr2

+
Dc�Ad − Ac�

Bc

+
DcBd

Bc

�BcChr2
− Ahr2

�Ad − Ac��

�Bc + Bd�Ahr2

, �47�

and

D18 =
BdChr1

Bc

�Bc + Bd�Ahr1

+
DbBc

�Bc + Bd�
+

BdDcBc

�Bc + Bd�Bc
,

�48�

are obtained, where C18 and D18 are two elements of the
transfer matrix T18 as defined by Eqn. (10). These expres-
sions for the elements C18 and D18 imply certain physical
significance. C18 is the ratio of the velocity at the inlet to
the outlet pressure for the hypothetical case of the outlet
being rigidly fixed �Zf→��, and D18 is the ratio of the
velocity at the inlet to the velocity at the outlet for the
hypothetical case of the outlet being totally open or
unconstrained �Zf→0�22.

Equilibrium of volume velocity at the second
junction point yields
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�5 = �7 + �8 − �6 =
Chr2

Ahr2

p8 + �8

− �BcChr2
− �Ad − Ac�Ahr2

�Bc + Bd�Ahr2

	p8 + � Bc

Bc + Bd
	�8.

�49�

Substituting p1=p4 and p5=p8 into Eqn. (27) results in

p1 = Acp8 + Bc�5. �50�

By substituting �5 from Eqn. (49) into the Eqn. (50),
the sound pressure at the output of “element a” is
found, in terms of p8 and �8, as

p1 = Acp8 +
BcChr2

Ahr2

p8 + Bc�8

−
Bc

2Chr2
− Bc�Ad − Ac�Ahr2

�Bc + Bd�Ahr2

p8 −
Bc

2

Bc + Bd
�8.

�51�

Then,

A18 = Ac +
BcChr2

Ahr2

−
Bc

2Chr2
− Bc�Ad − Ac�Ahr2

�Bc + Bd�Ahr2

�52�

and

B18 = Bc −
Bc

2

Bc + Bd
=

BcBd

Bc + Bd
, �53�

are obtained, where A18 and B18 are the other two
elements of the transfer matrix T18 as defined by Eqn.
(10). The elements A18 and B18 have individual physical
meaning. A18 is the ratio between the inlet pressure and
the outlet pressure for the hypothetical case of the outlet
being rigidly fixed �Zf→��, and B18 is the ratio of the
inlet pressure to the velocity at the outlet for the hypotheti-
cal case of the outlet being totally open or unconstrained
�Zf→0�22. Za and Zf are the impedances of “element a”
and “element f,” respectively. A18, B18, C18 and D18 are
frequency-dependent complex quantities embodying the
acoustical properties of the system. These parameters are
depending on the system geometry, and they are not
affected by connections to elements upstream or
downstream, as long as the system elements can be
assumed to be linear and passive16.

On the other hand, in this study, the characteristic
impedances are assumed to be equal at the inlet and the
outlet: Za=Zf=Z. The transfer matrix of the system
shown in Fig. 1 is obtained as T18.

Transmission loss involves neither the source nor the
radiation impedance. It is an invariant property of the



element. Since it is independent of the terminations, TL
finds favor with researchers who are interested in
finding the acoustic transmission behavior of an
element or set of elements in the context of isolated
terminations22.

Finally, the TL of the system can be expressed as

TL = 20Log10
1

2
�A18 +

B18

Z
+ ZC18 + D18	
 .

�54�

3 RESULTS AND DISCUSSION

This section is devoted to the numerical evaluations
of the expressions given in the preceding section and
the finite element models. In order to determine the
multi-dimensional effects on the acoustic performance
of the system, a finite element method model was
developed using the MSc. Actran software package.

In each of the finite element analysis applications,
we first built a solid model of the system using a 3D
CAD program, Unigraphics Nx-4. Then, the solid
model was exported to MSc.Patran in parasolid format.
This solid model consists of the air in the pipe system,
which is called the cavity in this paper. The cavity is
meshed using first order tetrahedral solid elements. In
numerical acoustic analysis, the mesh size must be
smaller than one sixth of the wavelength (mesh size
�� /6). The frequency range examined in this work is
0–3000 Hz. The minimum wavelength is �=0.113 m,
and the mesh size used in our numerical analysis is
0.012 m. After meshing the cavity using solid elements,
the input and output faces of the cavity were meshed with
first order triangular elements. Two local coordinates with
the same x-direction were assigned to these new faces, to
give the input and output. Our goal was to be able to read
the input and output sound power values after the analysis.
A sound pressure value of 1 Pa was set for the nodes on
the input face of the cavity. Then, we created a material
with the default values of air. The density was
1.225 kg/m3, and the sound speed was 340 m/s. Using
the default values in the software, the damping effect of
air was not taken into account and was also not considered
in our analytical model. We processed the output data in
order to obtain the TL of the system. The results were then
compared with the analytical analyses.

The transfer matrix method based on the plane wave
propagation model is valid when the influence of
higher order modes can be neglected.

In view of the many possibilities and variations in
terms of the dimensions and number of acoustical
elements, our present study focuses on structures with
certain discrete duct lengths and diameters.

The duct lengths are significant to reach the
Noise Control Eng. J. 57 (5), Sept-Oct 2009
expected frequency response of the system. The
bandwidth of the modified HQ tube developed by
Selamet and Easwaran8 and later used by Trochon17 is
dependent on the center frequency of the filter. This is
related to the fixed ratios of the constituent pipe
lengths.

The resonance of a duct that is open at both ends
occurs when the frequency is

f =
c

2lhq
p, p = 1,2,3, . . . �55�

where c is the speed of sound. Setting the design length
of the side branch duct, lhq, to 200 mm, the first, second
and third resonance frequencies of the duct are approxi-
mately 850, 1700 and 2,550 Hz, respectively.

The resonance frequencies of the system consisting
of a side branch duct connected to the main duct can be
estimated as

f =
c

2�lhq − ld�
�2p + 1�, p = 0,1,2,3, . . . �56�

and

f =
c

�lhq + ld�
p, p = 1,2,3, . . . �57�

Setting the lengths of the side branch duct, lhq, and the
main duct, ld, to 200 mm and 100 mm, the resonance
frequencies of the system can be calculated as approxi-
mately 1125, 1700 and 2,250 Hz, respectively. These
parameters remain constant throughout our analysis. At
these frequencies, the theoretical transmission loss of the
system becomes infinite.

The starting configuration of the system was
suggested based upon results found in the
literature7,8,17,19 and was consistent with our initial
resonance calculations.

Figures 2–4 show the effects of the diameters of the
main duct and the side branch duct on the acoustic
attenuation performance of the system, for geometries
(hmd=18 mm, hhq=3 mm), (hmd=36 mm, hhq=18 mm)
and (hmd=36 mm, hhq=36 mm), respectively. In these
three cases, the length of the main duct and the length of
the side branch duct are taken into account as ld

=100 mm and lhq=200 mm. In our figures, the analytical
and numerical results are shown together. There are three
peaks in the TL curves across several related frequency
bandwidths. For these cases, the initial resonance calcu-
lations show that the resonance frequencies are 850 Hz
from Eqn. (55) for lhq=200 mm, 1700 Hz from Eqns.
(55)–(57) and 2550 Hz from Eqn. (55). From the figures,
the effect of the diameters of the main duct and the side
branch duct on the TL is very clear. For small diameter
ratios of the main duct and the side branch duct, the TL
481



frequency bandwidths are narrow, but we note that the
greater the ratio of the diameters, the wider the TL
frequency bandwidth. Furthermore, our comparisons
show that given the small diameter ratios, our analytical
and numerical results are in good agreement. For greater
diameter ratios, our results are in satisfactory agreement
in the related frequency bandwidth. We note again that the
transfer matrix method can only be used for plane-wave
conditions.

The resonance frequencies of the quarter wave
resonator can be calculated as

f =
c

4lhr
�2p + 1�, p = 0,1,2,3, . . . �58�

Figures 5 and 6 indicate the TL treatment of the system
consisting of a side branch duct and one and two
quarter wave resonators, separately, both connected to
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the main duct, for geometries, hmd=36 mm, hhq

=18 mm, lhr=50 mm, ld=100 mm and lhq=200 mm.
For these cases, the initial calculations indicate that the
resonance frequencies are 850 Hz from Eqn. (55) for
lhq=200 mm, 1700 Hz from Eqns. (55)–(57) and
2550 Hz from Eqn. (55). Furthermore, setting the length
of the quarter wave resonator, lhr, to 50 mm, the first
resonance frequency of the quarter wave resonators can be
calculated as approximately 1700 Hz. In the figures, the
analytical and numerical results are shown together. There
are three peaks in the TL curves in the related frequency
bandwidth. Both analytical and numerical TL curves
reveal the same characteristics, and the results are in
agreement. The effect of the attachment of a one quarter
wave resonator is analyzed in Fig. 5. Comparison of Fig.
3 and Fig. 5 shows that the quarter wave resonator elimi-
nates any significant changes in TL levels. The effect of
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the attachment of one more quarter wave resonator is
analyzed in Fig. 6. Comparison of Fig. 5 and Fig. 6
indicates that the three TL peaks move approximately
50 Hz downwards, and significant changes in TL levels
and frequency bandwidths are not observed.

In order to indicate the effects of the diameters of
two quarter wave resonators on the TL characteristic of
the system, TL behaviors are compared in Fig. 7. This
figure shows our analytical results. The TL frequency
bandwidths tend to decrease in the side branch duct and
the resonator diameters increase. A minimum of 10 dB
of TL between 1050–1600 Hz can be obtained with the
geometry shown in the figure. In addition, we note that
with a greater diameter of the side branch duct, the first

Fig. 4—TL of the system consisting of a side branc
only hhq increases, hmd, ld, and lhq are kept
=36 mm, ld=100 mm, lhq=200 mm. – – –
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Fig. 5—TL of the system consisting of a side branc
main duct. In this case, hmd, hhq, ld, and lhq
wave resonator is connected to the main du
l =100 mm, l =200 mm. – – – Numerica
d hq
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TL peak moves approximately 100 Hz upwards, and the
third TL peak moves approximately 100 Hz downwards
at the same time.

Figure 8 shows the effect of a side branch duct
modified with an expansion chamber connected to the
main duct in terms of the acoustic attenuation perfor-
mance of the system. The illustration shows results for
geometries hmd=18 mm, hhq=3 mm, hec=6 mm, ld

=100 mm, lec=67 mm and lhq=200 mm. Both analyti-
cal and numerical TL curves show the same trends and the
results are in good agreement. Comparison of Fig. 2 and
Fig. 8 shows that the first TL peak moves approximately
300 Hz downwards, the second peak moves approxi-
mately 300 Hz upwards, and there is no change in the

ct connected to the main duct. In this case, while
tant according to Fig. 3. hmd=36 mm, hhq
erical, — Analytical.
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frequency of the third peak. In this case, there is a new
peak at 3000 Hz. The TL levels are higher than the first
case.

Comparison of Fig. 8 and Fig. 9 demonstrates that
when two quarter wave resonators are connected to the
main duct a new resonance peak appears at approxi-
mately 1700 Hz. Calculations indicate that the new
resonance peak results from the quarter wave resonators
given hhr=3 mm, lhr=50 mm.

Figures 9 and 10 show the TL behaviors of the
system consisting of two quarter wave resonators and a
side branch duct modified with an expansion chamber

Fig. 6—TL of the system consisting of a side branc
the main duct. In this case, hmd, hhq, ld, and
quarter wave resonators are connected to t
ld=100 mm, lhq=200 mm. – – – Numerica
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Fig. 7—TL of the system consisting of a side branc
the main duct. hmd=36 mm, lhr=50 mm, ld
=27 mm.
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and all connected to the main duct, for geometries
(hmd=18 mm, hhq=3 mm, hec=6 mm, hhr1,hr2=3 mm)
and (hmd=18 mm, hhq=9 mm, hec=18 mm, hhr1,hr2

=9 mm), respectively. In these two cases, the dimensions
that are held constant are lhr=50 mm, ld=100 mm, lec

=67 mm and lhq=200 mm. In the figures, both the
analytical and numerical results are shown together.
Comparisons show that for small diameters, analytical
and numerical results are in good agreement; in addition,
for the larger diameters, results are in satisfactory agree-
ment across related frequency bandwidths because of the
limitations of the plane wave approach. Specifically, there

ct and two quarter wave resonators connected to
are kept constant according to Fig. 3, and two
ain duct. hmd=36 mm, hhq=18 mm, lhr=50 mm,
Analytical.
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are five peaks in the TL curves for a related frequency
bandwidth given the geometries taken into consideration.
Comparisons between Fig. 9 and Fig. 10 show that for
small diameters of the resonators and the side branch duct,
the TL frequency bandwidths are narrow, but we note that
the greater the diameters, the wider the TL frequency
bandwidths. Additionally, there are no significant changes
in the frequencies of the first three peaks, but the fourth
TL peak moves approximately 100 Hz downwards.
Furthermore, the TL levels are higher.

In this case, we analyze the effects of the position
and the length of the expansion chamber on the TL
behavior of a system consisting of two quarter wave
resonators and a side branch duct modified with an
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Fig. 8—TL of the system consisting of a side branc
to main duct. In this case, hmd, hhq, ld, and
pansion chamber is located at the side bru
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Fig. 9—TL of the system consisting of a side branc
quarter wave resonators connected to the m
hhr1,hr2=3 mm, lhr=50 mm, ld=100 mm, l
cal.
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expansion chamber, all connected to the main duct.
Figures 11 and 12 compare the TL behaviors of the
system in order to show the effects of the geometric
parameters on the TL characteristic, for geometries
(lec=40 mm, lec=60 mm, lec=80 mm) and (lc1

=20 mm, lc1=40 mm, lc1=60 mm, lc1=80 mm, lc1

=100 mm), respectively. In these two cases, the dimen-
sions that are held constant are hmd=18 mm, hhq

=9 mm, hec=18 mm, hhr1,hr2=9 mm, lhr=50 mm, ld

=100 mm, lec=67 mm and lhq=200 mm. The major
effect of the length of the expansion chamber lies in shift-
ing the TL peak frequencies of the system. With the
change of the position of the expansion chamber, no
systematic or noticeable change occurs in TL levels.
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However, the major effect of the position of the expansion
chamber to the TL curve is to shift the resonant frequen-
cies.

The resonance frequencies of the Helmholtz resona-
tors were based on the volume of the cavity and the
radius of the opening, which after some rearrangement
is given by

f =
c

2�
� hn

2

hhr
2 lhrln

. �59�

In the next case, we analyze the diameter and length of
the neck on TL behavior of the system consisting of
two Helmholtz resonators connected to main duct and a

Fig. 10—TL of the system consisting of a side bran
quarter wave resonators connected to the
hhr1,hr2=9 mm, lhr=50 mm, ld=100 mm,
lytical.

Fig. 11—TL of the system consisting of a side bran
quarter wave resonators connected to the
hhr1,hr2=9 mm, lhr=50 mm, ld=100 mm
— – — l =80 mm.
ec
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side branch duct. Figures 13 and 14 present the TL
behaviors of the system for geometries (hmd=36 mm,
hhq=36 mm, ld=100 mm, lhq=200 mm, hn1,n2

=12 mm, hhr1,hr2=36 mm, ln1,n2=15 mm, lhr1,hr2

=45 mm) and (hmd=18 mm, hhq=18 mm, ld=100 mm,
lhq=200 mm, hec=24 mm, lec=67 mm, hn1,n2=12 mm,
hhr1,hr2=36 mm, ln1,n2=12 mm, lhr1,hr2=50 mm),
respectively. For the case in Fig. 13, initial calculations
indicate that the resonance frequencies are 690 Hz from
Eqn. (59), 1125 Hz from Eqn. (55), 1700 Hz from Eqns.
(56) and (57) and 2250 Hz from Eqn. (55). For the case in
Fig. 14, calculations show that the resonance frequencies
are 730 Hz from Eqn. (59), 1125 Hz from Eqn. (55),

uct modified with an expansion chamber and two
n duct. hmd=18 mm, hhq=9 mm, hec=18 mm,
67 mm, lhq=200 mm. – – – Numerical, — Ana-

uct modified with an expansion chamber and two
n duct. hmd=18 mm, hhq=9 mm, hec=18 mm,

q=200 mm. – – – lec=40 mm, — lec=60 mm,
ch d
mai
lec=
ch d
mai
, lh



1700 Hz from Eqns. (56) and (57) and 2250 Hz from
Eqn. (55). These configurations exhibit frequency bands
where the transmission loss is high. The width of the
attenuation bands near resonances is considerable, which
may prove to be useful for noise control. Comparison of
Fig. 4 and Fig. 13 shows the effect of the Helmholtz
resonators connected to main duct. They carry a new TL
peak into the related frequency range. The contributions
of the necks are also positive in terms of the frequency
behavior of the system.

Figures 15–20 illustrate analytical results from
parametric studies on the TL behaviors of the system.

Fig. 12—TL of the system consisting of a side bran
quarter wave resonators connected to the
hhr1,hr2=9 mm, lhr=50 mm, ld=100 mm,
=40 mm, — – – — lc1=60 mm, - - - lc1=

Fig. 13—TL of the system consisting of a side bran
the main duct. In this case, hmd, hhq, ld, an
Helmholtz resonators are connected to th
lhq=200 mm, hn1,n2=12 mm, hhr1,hr2=36
— Analytical.
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The effect of the length of the side branch duct is
investigated and shown in Fig. 15, for geometries lhq

=198 mm, lhq=204 mm, lhq=210 mm, lhq=216 mm
and lhq=222 mm, respectively. In these cases, the dimen-
sions that are held constant are hmd=36 mm, hhq

=36 mm, ld=100 mm, hn1,n2=12 mm, hhr1,hr2=36 mm,
ln1,n2=15 mm and lhr1,hr2=45 mm. There is no signifi-
cant change in the frequency and the level of the first
peak, but the other peaks shift downwards. The consider-
able contribution of the length of the side branch duct is
seen in the third TL peak. As indicated in the initial
resonance calculations from Eqn. (59), the resonance

uct modified with an expansion chamber and two
n duct. hmd=18 mm, hhq=9 mm, hec=18 mm,
67 mm, lhq=200 mm. — lc1=20 mm, — – lc1
m, – – – lc1=100 mm.

uct and two Helmholtz resonators connected to
are kept constant according to Fig. 3, and two
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ch d
mai
lec=
80 m
ch d
d lhq

e ma
mm
487



frequencies change between 1730 Hz for lhq=198 mm
and 1390 Hz for lhq=222 mm; the second and the third
TL peaks are affected mainly by the length of the side
branch duct. TL levels increase in the low frequency
range, whereas the levels decrease at high frequencies, as
shown in the figure. At higher frequencies, the collapse of
the TL consistent with the length of the side branch duct is
evident.

In the next case, we analyze the length of the neck,
as shown in Fig. 16, for geometries ln1,n2=5 mm,
ln1,n2=10 mm, ln1,n2=15 mm, ln1,n2=20 mm and ln1,n2

=25 mm. In these cases, the dimensions that are held
constant are hmd=36 mm, hhq=36 mm, ld=100 mm,

Fig. 14—TL of the system consisting of a side bran
Helmholtz resonators connected to the ma
=200 mm, hec=24 mm, lec=67 mm, hn1,n
=50 mm. – – – Numerical, — Analytical.

Fig. 15—TL of the system consisting of a side bran
the main duct. hmd=36 mm, hhq=36 mm,
=15 mm, lhr1,hr2=45 mm. — lhq=198 mm
=216 mm, — – – — l =222 mm.
hq
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hn1,n2=12 mm, hhr1,hr2=36 mm, lhr1,hr2=45 mm and
lhq=200 mm. The main effects of the length of the neck
are especially evident in the first TL peak. Comparison of
the results shows that the longer the length, the lower the
frequency of the first TL peak. There is no significant
change in the TL levels, especially for the first TL peak.
From Eqn. (59), the resonance frequencies vary between
1200 Hz for ln=5 mm and 530 Hz for ln=25 mm; the
first TL peak is affected mainly by the length of the neck.
The frequency bandwidth of the first TL peak narrows
while the resonance frequencies decrease.

The contribution of the lengths of the Helmholtz
resonators is studied in Fig. 17 for geometries lhr1,hr2

uct modified with an expansion chamber and two
uct. hmd=18 mm, hhq=18 mm, ld=100 mm, lhq
2 mm, hhr1,hr2=36 mm, ln1,n2=12 mm, lhr1,hr2

uct and two Helmholtz resonators connected to
100 mm, hn1,n2=12 mm, hhr1,hr2=36 mm, ln1,n2
— lhq=204 mm, – – – lhq=210 mm, — – — lhq
ch d
in d

2=1
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n2
=35 mm, lhr1,hr2=40 mm, lhr1,hr2=45 mm, lhr1,hr2

=50 mm and lhr1,hr2=55 mm. In these cases, the dimen-
sions that are held constant are hmd=36 mm, hhq

=36 mm, ld=100 mm, lhq=200 mm, hn1,n2=12 mm
and ln1,n2=15 mm. Meaningful changes in the frequen-
cies and TL levels are not observed in the figure,
especially for those frequencies higher than 1000 Hz. The
main effects of the length of the Helmholtz resonators are
especially pronounced in the first TL peak. Comparison of
our results shows that the longer the length, the lower the
frequency of the first TL peak. This figure shows that the
first TL peak essentially results from the resonators. From
Eqn. (59), the resonance frequencies appear between

Fig. 16—TL of the system consisting of a side bran
Helmholtz resonators connected to the ma
hn1,n2=12 mm, hhr1,hr2=36 mm, lhr1,hr2=
=10 mm, – – – ln1,n2=15 mm, — – — ln1,

Fig. 17—TL of the system consisting of a side bran
Helmholtz resonators connected to the ma
=200 mm, hn1,n2=12 mm, ln1,n2=15 mm.
=45 mm, — – — l =50 mm, — – – —
hr1,hr2 hr
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790 Hz for lhr=35 mm and 620 Hz for lhr=55 mm; the
first TL peak is affected mainly by the length of the
Helmholtz resonators. There are no significant changes in
the frequency bandwidth of the first TL peak.

A similar analysis can be carried out using the
results depicted in Fig. 18 for the geometries hn1,n2

=6 mm, hn1,n2=12 mm, hn1,n2=18 mm, hn1,n2=27 mm
and hn1,n2=36 mm. In these cases, the dimensions that
are held constant are hmd=36 mm, hhq=36 mm, ld

=100 mm, lhq=200 mm, ln1,n2=15 mm, hhr1,hr2

=36 mm and lhr1,hr2=45 mm. Figure 18 shows the effect
of diameters of the necks on the acoustic attenuation
performance of the system. Increasing the neck diameter

uct modified with an expansion chamber and two
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1,n2
shifts the first TL peak upwards and expands the
frequency bandwidth. In the middle frequency range, the
TL behavior of the system with extended necks is better
than in the case of the directly connected resonators,
except for certain narrow frequency bands associated with
resonant peaks. From Eqn. (59), the resonance frequen-
cies change between 340 Hz for hn=6 mm and 2100 Hz
for hn=36 mm, and the first TL peak is affected mainly
by the diameter of the neck.

In the next case, we investigate the diameters of the
side branch duct and two Helmholtz resonators, as
shown Fig. 19, for geometries hhq,hr1,hr2=12 mm,
hhq,hr1,hr2=18 mm, hhq,hr1,hr2=24 mm, hhq,hr1,hr2

Fig. 18—TL of the system consisting of a side bran
Helmholtz resonators connected to the
lhq=200 mm, ln1,n2=15 mm, hhr1,hr2=36
=12 mm, – – – hn1,n2=18 mm, — – — hn

Fig. 19—TL of the system consisting of a side bran
Helmholtz resonators connected to the ma
ln1,n2=15 mm, lhr1,hr2=45 mm, hn1,n2=1
– – – h =24 mm, — – — h
hq,hr1,hr2 hq,hr1,hr2

490 Noise Control Eng. J. 57 (5), Sept-Oct 2009
=30 mm and hhq,hr1,hr2=36 mm. In these cases, the
dimensions that are held constant are hmd=36 mm, ld

=100 mm, lhq=200 mm, ln1,n2=15 mm, lhr1,hr2

=45 mm and hn1,n2=12 mm. In each case, the diameters
of both the resonators and the side branch duct are identi-
cal. The main effects of the size of the diameters are
especially pronounced in the first TL peak. Comparison of
the results shows that increasing the diameter shifts the
first TL peak downwards and decreases the frequency
bandwidth, whereas at the middle frequencies, the
collapse of the TL behavior of the system associated with
the size of diameters is evident, especially for the frequen-
cies in between 1000 Hz and 1500 Hz. In addition, there

uct modified with an expansion chamber and two
n duct. hmd=36 mm, hhq=36 mm, ld=100 mm,
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27 mm, — – – — hn1,n2=36 mm.
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is no meaningful change in the TL levels, especially for
the frequencies higher than 2250 Hz. The initial
resonance calculations from Eqn. (59) show that the
resonance frequencies are intermediate, 2100 Hz for hhr

=12 mm and 690 Hz for hhr=36 mm, and the first TL
peak is affected mainly by the diameter of the neck. The
frequency bandwidth of the first TL peak narrows while
the resonance frequencies decrease.

Finally, the influence of the distance between the
junction points is examined in Fig. 20 for geometries
ld=100 mm, ld=110 mm and ld=120 mm. In these
cases, the dimensions that are held constant are hmd

=36 mm, hhq=36 mm, hn1,n2=12 mm, hhr1,hr2=36 mm,
lhr1,hr2=45 mm, lhq=200 mm and ln1,n2=15 mm. For the
case in Fig. 20, the calculations show that the resonance
frequencies are 690 Hz from Eqn. (59), 1130 Hz,
1700 Hz and 2250 Hz from Eqns. (56) and (57) for ld

=100 mm, 690 Hz from Eqn. (59), 1100 Hz, 1550 Hz
and 1890 Hz from Eqns. (55)–(57) for ld=110 mm and
finally, 690 Hz from Eqn. (59), 1050 Hz, 1410 Hz and
2100 Hz from Eqns. (55)–(57) for ld=120 mm. The
results are consistent. Figure 20 shows that the change in
the distance between the junction points does not affect
the character of the TL curves, whereas the TL peaks shift
downwards together with the increase in the distance,
particularly at higher frequencies. There is no significant
change in the TL levels and bandwidths.

In general, our results show that increasing the duct
diameters leads to more extensive attenuation patterns.
We generally found good agreement between the trans-
fer matrix method and the finite element method
results. As expected, some divergences were identified
in regions near the cut-off frequency of the system.

In terms of applications, the solid models that we

Fig. 20—TL of the system consisting of a side bran
Helmholtz resonators connected to the ma
hhr1,hr2=36 mm, lhr1,hr2=45 mm, lhq=200
– – – ld=110 mm, — – — ld=120 mm.
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explored using the finite element method exhibit more
detailed geometries and accurate dimensions than the
models that we used with the transfer matrix method.
Therefore, in some cases the deviations of the TL peaks
seemed to result from the slight differences between
the assumed dimensions and geometries. We conclude
that the junction point is not a point in the solid models.

It is possible to use the transfer matrix method to
predict the acoustic behavior of systems in the
relatively low frequency range with geometries that are
not too complex, at least in cases where the effects of
higher order modes can be neglected.

4 CONCLUSIONS

We wished to construct an engineering design tool
for the quick but moderately accurate determination of
the TL of a system with two resonators connected to the
main duct and the side branch duct modified with an
expansion chamber. We derived an analytical model
that uses the transfer matrix method for plane wave
conditions and with no mean flow.

We apply our method to multiple different configu-
rations, and we compare our numerical predictions
with the results obtained using finite element methods.
We discuss the limitations of our plane wave approach.
In general, we find that the analytical and numerical
results are in good agreement.

Numerical applications show that the 1D analytical
approach yields satisfactorily accurate approximations
in the 0–3000 Hz frequency range. Our results indicate
that it is possible to manufacture a broadband muffler by
using reactive type acoustic attenuation devices such as
quarter wave resonators, Helmholtz resonators and side
brunch ducts designed to certain optimal dimensions.

uct modified with an expansion chamber and two
uct. hmd=36 mm, hhq=36 mm, hn1,n2=12 mm,
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We note that the effect of extending the duct
diameters is to widen the frequency bands of attenua-
tion. Thus, we conclude that the method presented in
this paper may be useful in examining the acoustical
behavior of these structures in broadband noise control
applications.
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