Implementation of Stimulus-Movement Matching Experiment on a Humanoid Robot

> Workshop on Autonomous Cognitive Robotics 2014

Emeç Erçelik Istanbul Technical University Neuroscience Modelling and Research Group (SIMMAG)

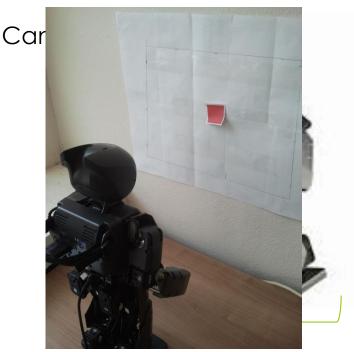
Match a <u>stimulus</u> with an appropriate <u>action</u>

- Inspiration from temporal sequence task of Macaca Monkeys^[1]
- Implementation of learning a reward predicting stimuli
- Dynamical System Approach to model Basal Ganglia-Thalamus-Cortex (BTC) Loop
- Temporal Difference Learning
- Associate a stimulus with an action & <u>rearrange</u> this association

[1] Tanji J. & Shima, K., 1994. Role For Supplementary Motor Area Cells in Planning Several Movements Ahead. Nature 371, 413-416.

Motivation

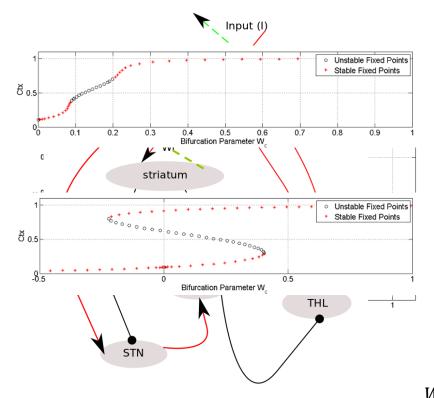
- Using a <u>mobile</u> computer to investigate the BTC model's compatibility to a dynamic environment.
- As a first step, to show that the model due to learning can manage to <u>match</u> the stimulus with different actions <u>online</u>.
- To prepare a suitable platform to test the <u>computational neuroscience models</u> for high level tasks.


Humanoid Robot

Darwin-Op and Environment

Open Platform
C++
Intel Atom 1.6 GHz
Mobile
Vision Processing

Colour Detection


Colour Cards (R-Y-B-G)
Predefined actions

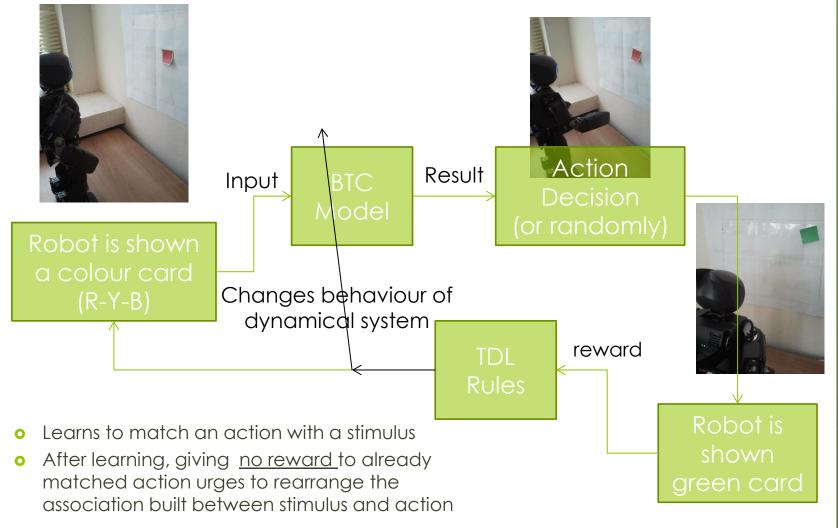
20 servo motors

BTC: Dynamical System Model & Temporal Difference Learning

Bifurcation parameters: Wc & Wr

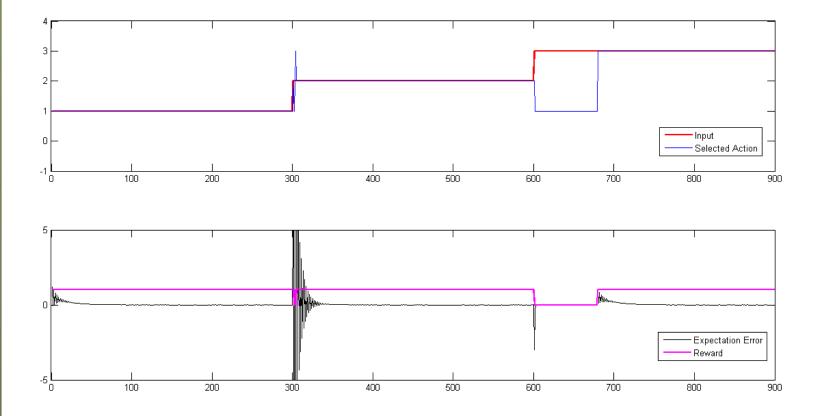
BTC Model Equations

S(k) = WcI(k) $Ctx(k + 1) = f(\lambda Ctx(k) + Thl(k) + S(k))$ Str(k + 1) = Wrf(Ctx(k)) GPe(k + 1) = f(-Str(k)) Stn(k + 1) = f(Ctx(k) - GPe(k)) GPi(k + 1) = f(Stn(k) - Str(k)) Thl(k + 1) = f(Ctx(k) - GPi(k))


Temporal Difference Learning Rules

V(k) = Wv(k)I(k) $\delta c(k) = r_c + \mu V(k-1) - V(k)$ $Wv(k+1) = Wv(k) + \eta_c \delta c(k)I(k)$ $Wc(k+1) = Wc(k) + \eta_c \delta c(k)Ctx(k)I(k)$ $Wr(k+1) = Wr(k) + \eta_c \delta c(k)Ctx(k)Str(k)$

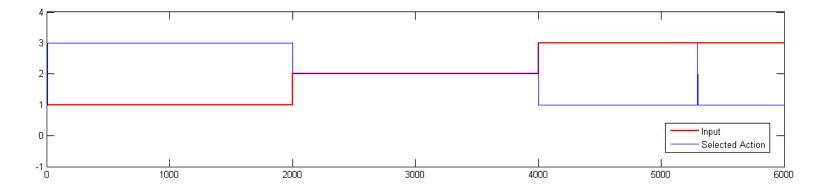
Denizdurduran, B., http://www.simmag.itu.edu.tr/yayinlar/denizdurduran_Msc_Thesis.pdf


Implementation

Link between action and stimulus

Simulations

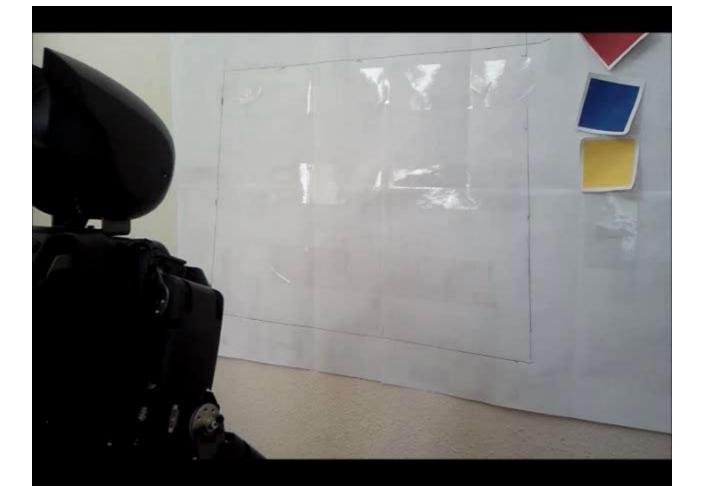
MATLAB-First Maching



Simulations

Matlab-Rearrange First Matching

1st action6 ⇔_3rd1stimutus 2nelaction ⇔ 288 stimutus 3rd action ⇔_hststimutus


$$Wr1 = \begin{bmatrix} 1\\1\\0.5497 \end{bmatrix} Wr2 = \begin{bmatrix} 1\\0.5167\\1 \end{bmatrix} Wr3 = \begin{bmatrix} 0.5498\\1\\1 \end{bmatrix}$$

Video

- A dynamical system model of BTC loop with learning has been realized <u>on a</u> <u>humanoid robot</u> in real time successfully.
- The dynamical system is forced to converge to a specific fixed point through learning. The learning is accomplished by modifing the bifurcation parameters.
- The more an action is reinforced, it is <u>harder to suppress</u> the learnt connection
- After showing the compatibility of the model and robot, the <u>SNN model</u> and <u>pattern recognation module</u> can be implemented.

- [1] Tanji J. & Shima, K., 1994. Role For Supplementary Motor Area Cells in Planning Several Movements Ahead. Nature 371, 413-416.
- [2] Denizdurduran B., Sengor N.S., 2012. A Realization of Goal-Directed Behavior-Implementing a Robot Model Based on Cortico-Striato-Thalamic Circuits. ICAART 2012, Algarve, Portugal.
- [3] Prescott, T. J., Montes-Gonzalez, F. M., Gurney, K., Humpries, M. D., Redgrave, P., 2006. A Robot Model of the Basal Ganglia: Behaviour and Intrinsic Processing. Neural Networks, 1-31.

Acknowledgement:

This work is supported by project TUBITAK 1001 no: 111E264.

Questions?

Thank you...

• www.simmag.itu.edu.tr