
- p. 1

Novel Methods For Volterra Filter
Representation, Identification and

Realization

Ender M. EKŞİOĞLU, M.Sc.
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Introduction

In this dissertation we deal with
� discrete-time,
� finite-order,
� time-invariant
Volterra filters.
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Introduction

� Firstly, we develop a new representation for the finite-order
Volterra filters. This representation introduces a novel
partitioning of the Volterra kernels.

� Next, we formulate a novel exact identification method for
Volterra filters.

� This identification method is based on the novel
representation we develop and uses deterministic sequences
consisting of impulses with distinct levels.
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Introduction

� We know that the unit impulse response is insufficient to fully
characterize a nonlinear system unlike linear time-invariant
systems.

� The identification method might be considered as a successful
extension of the impulse response of the linear, time-invariant
systems to the realm of nonlinear systems.

� The developed method indeed includes identification using
the unit impulse response as a subcase when the system under
consideration is a linear system.
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Introduction

To our best knowledge, this method is the first full-scale
generalization of the impulse response to the finite order
Volterra type nonlinear systems.
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Introduction

� Our identification method is exact.

� Our method calculates each Volterra kernel individually.
� Our method calculates directly the Volterra kernels, instead of

calculating first some intermediary representation.
� Our method does not introduce and identify any kernels

which are redundant for the regular Volterra filter.
� Our method is parsimonious in the number of kernels

identified and in the length of the input sequence utilized to
identify them.



- p. 7

Introduction

� Our identification method is exact.
� Our method calculates each Volterra kernel individually.

� Our method calculates directly the Volterra kernels, instead of
calculating first some intermediary representation.

� Our method does not introduce and identify any kernels
which are redundant for the regular Volterra filter.

� Our method is parsimonious in the number of kernels
identified and in the length of the input sequence utilized to
identify them.



- p. 7

Introduction

� Our identification method is exact.
� Our method calculates each Volterra kernel individually.
� Our method calculates directly the Volterra kernels, instead of

calculating first some intermediary representation.

� Our method does not introduce and identify any kernels
which are redundant for the regular Volterra filter.

� Our method is parsimonious in the number of kernels
identified and in the length of the input sequence utilized to
identify them.



- p. 7

Introduction

� Our identification method is exact.
� Our method calculates each Volterra kernel individually.
� Our method calculates directly the Volterra kernels, instead of

calculating first some intermediary representation.
� Our method does not introduce and identify any kernels

which are redundant for the regular Volterra filter.

� Our method is parsimonious in the number of kernels
identified and in the length of the input sequence utilized to
identify them.



- p. 7

Introduction

� Our identification method is exact.
� Our method calculates each Volterra kernel individually.
� Our method calculates directly the Volterra kernels, instead of

calculating first some intermediary representation.
� Our method does not introduce and identify any kernels

which are redundant for the regular Volterra filter.
� Our method is parsimonious in the number of kernels

identified and in the length of the input sequence utilized to
identify them.



- p. 8

Introduction

� We show that the input sequence we develop for identification
is persistently exciting for the Volterra filters under
consideration.

� We further prove the equivalence of our identification
algorithm to the least squares solution formulation.
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Introduction

� We apply the novel identification method to the identification
of the Volterra kernels of nonlinear communication channels
modelled as third-order Volterra filters.

� We demonstrate with several simulations that the
identification algorithm can produce better parameter
estimates than some most recent algorithms in the literature.
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Introduction

� A secondary contribution of this dissertation is in the area of
orthogonal realizations for Volterra filters.

� We present a novel fully orthogonal structure for the
realization of Volterra filters. This structure is based on a
recently proposed 2D orthogonal lattice model.
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Volterra Filters

� The use of linear system models has been well established
with successful applications.

� However, there are still a large number of problems where one
has to resort to nonlinear system models.

� Linear systems are fully described by their impulse response.
� There is no such unified framework for the representation of

nonlinear systems. There are various categories for modelling
nonlinear systems.

� In this dissertation we will be dealing with nonlinear
polynomial system models based on the Volterra series
representation.
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Volterra Filters

� Volterra filters based on the Volterra series have been an
attractive nonlinear system class due to some desired
properties.

� Volterra filters bear similarities to the well-developed linear
system theory.

� Volterra filters can approximate a large class of nonlinear
systems with a finite number of coefficients.

� Many real world processes lend themselves to get modelled
naturally by polynomial systems.
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Volterra Filters - Overview

� In this section we will provide an overview of the Volterra
series representation for nonlinear systems.

� The Taylor series expansion with memory is known as the
Volterra series. The naming is due to Vito Volterra, the Italian
mathematician who introduced this polynomial series.
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Volterra Filters - Overview

� For a general continuous-time nonlinear system the
input-output relationship is represented by the following
infinite continuous-time Volterra series integral.

y(t) = b0 +

∫
∞

−∞

b1(τ1)x(t − τ1)dτ1

+

∫
∞

−∞

∫
∞

−∞

b2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2 + . . .

+

∫
∞

−∞

· · ·

∫
∞

−∞

bM (τ1, τ2, . . . , τM )x(t − τ1)x(t − τ2) · · ·x(t − τM )dτ1dτ2 · · · dτM

+ . . .

(1)
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� The equivalent discrete-time Volterra series sum is given as
follows.
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Truncated Volterra Filters

� The truncated or doubly finite Volterra series is obtained by
confining the infinite summations to finite values.

� The truncated Volterra series is suitable for the modelling of a
wide variety of nonlinearities encountered in real-life systems.

� In this thesis we will be concerned with discrete-time, causal,
finite-memory, time-invariant nonlinear systems described by
the discrete-time, truncated Volterra series expansion.
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Truncated Volterra Filters

� The truncated Volterra series is given as

y(n) =
N∑

i1=0

b1(i1)x(n − i1)

+
N∑

i1=0

N∑

i2=i1

b2(i1, i2)x(n − i1)x(n − i2) + . . .

+

N∑

i1=0

N∑

i2=i1

· · ·

N∑

iM=iM−1

bM (i1, i2, . . . , iM )x(n − i1)x(n − i2) · · ·x(n − iM )

(3)
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Truncated Volterra Filters

� This representation is called as the triangular Volterra
representation in the literature.

� In this thesis we will be calling this representation as the
Volterra filter.

� The corresponding kernels will be called simply as the
Volterra kernels to avoid confusion.

� We will use the triangular representation as the starting point
for our studies to develop novel Volterra representations.
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Truncated Volterra Filters

� The output y(n) in (3) can be rewritten as below.

y(n) = N [x(n)] =
M∑

k=0

yk(n) (4)

in which
yk(n) = Bk[x(n)] (5)

� N [ · ] represents the nonlinear system under consideration.
� Bk[ · ] represents a kth-order Volterra subsystem with an

input-output relationship constituting k summations.
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Truncated Volterra Filters

� The input-output relation for each of these subsystems is as
indicated below.

yk(n) = Bk[x(n)]

=
N∑

i1=0

N∑

i2=i1

· · ·

N∑

ik=ik−1

bk(i1, i2, . . . , ik)x(n − i1)x(n − i2) · · ·x(n − ik)

(6)
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Volterra Filter - Figure

x(n) y(n)N [  ]

Figure 1: The input-output relationship of the nonlinear Volterra filter N [ · ].



- p. 22

Volterra Filter - Sum of Subsystems

x(n) +

B1

B2

B3

BM

y(n)

y (n)
1

y (n)
2

y (n)
3

y (n)
M

Figure 2: The nonlinear Volterra filter N as a sum of nonlinear subsystems Bk .
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Novel Representation

� In this section, the M th-order discrete, causal, time-invariant
Volterra system is reformulated, and a new representation for
the Volterra system is given.

� This novel representation will enable us to devise an exact
closed form algorithm, for identifying the Volterra kernels
using deterministic multilevel sequences, in the coming
chapters.
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Novel Representation

� The M th-order nonlinear system, N [ · ], under consideration
can be modelled by the triangular representation.

y(n) = N [x(n)] =
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Novel Representation

� We introduce a new representation for the Volterra system by
rearranging the Volterra kernels.

� We propose that the output y(n) can be considered as the sum
of the outputs of M different multivariate cross-term nonlinear
subsystems, H(`), ` = 1, . . . , M .

y(n) = N [x(n)] =
M∑

`=1

y(`)(n) (8a)

y(`)(n) = H(`)[x(n)] (8b)
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Novel Representation

� The input-output relation for each of the subsystems H(`),
` = 1, 2, . . . , M is as indicated below.

H(1)[x(n)] =
N∑

i=0

h(1)T

(i) x(1)(n − i)

H(`)[x(n)] =

Q1∑

q1=1

· · ·

Q`−1∑

q`−1=1

N−q̄`−1∑

i=0

h(`)T

(q1, . . . , q`−1; i) x(`)(q1, . . . , q`−1; n − i)

for 2 6 ` 6 M

(9)
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x(n) + y(n)
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Figure 3: The novel decomposition for the nonlinear Volterra filter N as a sum of cross-term subsys-
tems H(`), ` = 1, . . . , M .
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� The symbol H(`)[·] is called as an `-D cross-term Volterra
subsystem and h(`)(q1, . . . , q`−1; i) is called as an `-D kernel
vector.

� The 1-D kernel vectors h(1)(i) and the corresponding input
vectors x(1)(n) can be given in terms of the triangular kernels
and the input signal x(n), respectively.
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h(1)(i) =










h
(1)
1 (i)

h
(1)
2 (i)

...
h

(1)
M (i)










=










b1(i)

b2(i, i)
...

bM (i, . . . , i)










(10)

x(1)(n) =










x(n)

x2(n)
...

xM (n)










(11)
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Novel Representation

� The `-D input vector in (9) can be expressed in the following
form:

x(`) (q1, . . . , q`−1; n) =










x
(`)
` (q1, . . . , q`−1; n)

x
(`)
`+1(q1, . . . , q`−1; n)

...
x

(`)
M (q1, . . . , q`−1; n)










(12)

in which

x
(`)
` (q1, . . . , q`−1; n) = x(n) x(n − q1) · · · x(n − q1 − · · · − q`−1) (13)
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x
(`)
k (q1, . . . , q`−1; n) ≡

[

x
(p1,··· ,p`)
k (q1, . . . , q`−1; n)

]

σ(p1,...,p`)
(14)

� The subinput vector x
(`)
k (q1, . . . , q`−1; n) for k = `, ` + 1, . . . , M

in (12) consists of all possible input products of degree k.

x
(p1,··· ,p`)
k (q1, . . . , q`−1; n) = xp1(n)xp2(n−q1) · · · x

p`(n−q1−· · ·−q`−1)

(15)
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Example 2.1: We consider ` = 3 and M = 5. x(3) (q1, q2; n) will be
given as

x(3) (q1, q2; n) =






x
(3)
3 (q1, q2; n)

x
(3)
4 (q1, q2; n)

x
(3)
5 (q1, q2; n)




 (16)

Here,
x

(3)
3 (q1, q2; n) = x(n) x(n − q1) x(n − q1 − q2) (17)
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Novel Representation

For x
(3)
4 (q1, q2; n), the

(
3
2

)
= 3 possible combinations can be

written as σ(p1, p2, p3) =
{
(2, 1, 1) (1, 2, 1), (1, 1, 2)

}
.

Hence, x(3)
4 (q1, q2; n) is written as

x
(3)
4 (q1, q2; n) =






x2(n) x(n − q1) x(n − q1 − q2)

x(n) x2(n − q1) x(n − q1 − q2)

x(n) x(n − q1) x2(n − q1 − q2)




 (18)
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Novel Representation

For x
(3)
5 (q1, q2; n), all

(
4
2

)
= 6 possible combinations can be written

as,

σ(p1, p2, p3) =
{
(3, 1, 1) (2, 2, 1), (2, 1, 2), (1, 3, 1), (1, 2, 2), (1, 1, 3)

}

x
(3)
5 (q1, q2; n) =














x3(n) x(n − q1) x(n − q1 − q2)

x2(n) x2(n − q1) x(n − q1 − q2)

x2(n) x(n − q1) x2(n − q1 − q2)

x(n) x3(n − q1) x(n − q1 − q2)

x(n) x2(n − q1) x2(n − q1 − q2)

x(n) x(n − q1) x3(n − q1 − q2)














(19)
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
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� The `-D kernel vectors in (9) can be written in terms of
subkernels as

h(`)(q1, . . . , q`−1; i) =










h
(`)
` (q1, . . . , q`−1; i)

h
(`)
`+1(q1, . . . , q`−1; i)

...
h

(`)
M (q1, . . . , q`−1; i)










(20)

in which

h
(`)
` (q1, . . . , q`−1; i) = h

(1,1,··· ,1)
` (q1, . . . , q`−1; i) (21)
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h
(`)
k (q1, . . . , q`−1; i) ≡

[

h
(p1,p2,···p`)
k (q1, . . . , q`−1; i)

]

σ(p1,p2,...,p`) (22)

� Here, the subkernel vector h
(`)
k (q1, . . . , q`−1; i) corresponds to

the subinput vector x
(`)
k (q1, . . . , q`−1; n − i) defined in (14).

h
(`)
k (q1, . . . , q`−1; i) consists of all the Volterra kernels of degree

k with ` cross-terms.



- p. 37

Novel Representation

Example 2.2: Continuing the previous example, let us consider
` = 3 and M = 5.

h(3) (q1, q2; i) =






h
(3)
3 (q1, q2; i)

h
(3)
4 (q1, q2; i)

h
(3)
5 (q1, q2; i)




 (23)

Here,
h

(3)
3 (q1, q2; i) = h

(1,1,1)
3 (q1, q2; i) (24)
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h
(3)
4 (q1, q2; i) for ` = 3 can be written as,

h
(3)
4 (q1, q2; i) =






h
(2,1,1)
4 (q1, q2; i)

h
(1,2,1)
4 (q1, q2; i)

h
(1,1,2)
4 (q1, q2; i)




 (25)
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h
(3)
5 (q1, q2; i) is written as,

h
(3)
5 (q1, q2; i) =














h
(3,1,1)
5 (q1, q2; i)

h
(2,2,1)
5 (q1, q2; i)

h
(2,1,2)
5 (q1, q2; i)

h
(1,3,1)
5 (q1, q2; i)

h
(1,2,2)
5 (q1, q2; i)

h
(1,1,3)
5 (q1, q2; i)














(26)
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� There exists an equivalent triangular Volterra kernel
bk(i1, i2, . . . , ik) as given in (7) for each component of the
subkernel vector h

(`)
k (q1, . . . , q`−1; i),

� The relationship between the triangular Volterra kernels and
cross-term Volterra kernels is as given below.

h
(p1,p2,...,p`)
k (q1, . . . , q`−1; i) =

bk(i, . . . , i
︸ ︷︷ ︸

p1

, i + q̄1, . . . , i + q̄1
︸ ︷︷ ︸

p2

, . . . , i + q̄`−1, . . . , i + q̄`−1
︸ ︷︷ ︸

p`

) (27)
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Example 2.3: We continue with Example 2.2. We want to find the
representations for the kernel vectors, but this time in terms of
the Volterra kernels. The kernel vectors for ` = 3 and M = 5 can
now be written as

h
(3)
3 (q1, q2; i) = b3(i, i + q1, i + q2) (28)

h
(3)
4 (q1, q2; i) =






h
(2,1,1)
4 (q1, q2; i)

h
(1,2,1)
4 (q1, q2; i)

h
(1,1,2)
4 (q1, q2; i)




 =






b4(i, i, i + q1, i + q2)

b4(i, i + q1, i + q1, i + q2)

b4(i, i + q1, i + q2, i + q2)






(29)
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Novel Representation

h
(3)
5 (q1, q2; i) =














h
(3,1,1)
5 (q1, q2; i)

h
(2,2,1)
5 (q1, q2; i)

h
(2,1,2)
5 (q1, q2; i)

h
(1,3,1)
5 (q1, q2; i)

h
(1,2,2)
5 (q1, q2; i)

h
(1,1,3)
5 (q1, q2; i)














=














b5(i, i, i, i + q1, i + q2)

b5(i, i, i + q1, i + q1, i + q2)

b5(i, i, i + q1, i + q2, i + q2)

b5(i, i + q1, i + q1, i + q1, i + q2)

b5(i, i + q1, i + q1, i + q2, i + q2)

b5(i, i + q1, i + q2, i + q2, i + q2)














(30)
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Example 2.4: Let us give an example for the novel representation
for a system with M = 3 and N = 2. The usual (triangular)
Volterra representation is given in the following form.

y(n) =
2∑

i1=0

b1(i1)x(n − i1) +
2∑

i1=0

2∑

i2=i1

b2(i1, i2)x(n − i1)x(n − i2)

+

2∑

i1=0

2∑

i2=i1

2∑

i3=i2

b3(i1, i2, i3)x(n − i1)x(n − i2)x(n − i3)

(31)
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Novel Representation

y(n) = b1(0)x(n) + b1(1)x(n − 1) + b1(2)x(n − 2) + b2(0, 0)x2(n)

+ b2(1, 1)x2(n − 1) + b2(2, 2)x2(n − 2) + b2(0, 1)x(n)x(n − 1)

+ b2(1, 2)x(n − 1)x(n − 2) + b2(0, 2)x(n)x(n − 2) + b3(0, 0, 0)x3(n)

+ b3(1, 1, 1)x3(n − 1) + b3(2, 2, 2)x3(n − 2) + b3(0, 0, 1)x2(n)x(n − 1)

+ b3(1, 1, 2)x2(n − 1)x(n − 2) + b3(0, 0, 2)x2(n)x(n − 2)

+ b3(0, 1, 1)x(n)x2(n − 1) + b3(1, 2, 2)x(n − 1)x2(n − 2)

+ b3(0, 2, 2)x(n)x2(n − 2) + b3(0, 1, 2)x(n)x(n − 1)x(n − 2)

(32)
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Novel Representation

For this Volterra filter, using (8), the novel representation that we
introduced will be given as follows.

y(n) =
2∑

i=0

h(1)T

(i) x(1)(n − i) +
2∑

q1=1

2−q1∑

i=0

h(2)T

(q1; i)x
(2)(q1; n − i)

+

1∑

q1=1

2−q1∑

q2=1

2−q̄2∑

i=0

h(3)T

(q1, q2; i) x(3)(q1, q2; n − i)

=

2∑

i=0

h(1)T

(i) x(1)(n − i)

+ h(2)T

(1; 0)x(2)(1; n) + h(2)T

(1; 1)x(2)(1; n − 1) + h(2)T

(2; 0)x(2)(2; n)

+ h(3)T

(1, 1; 0) x(3)(1, 1; n)
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Novel Representation

Here,

h(1)(i) =






h
(1)
1 (i)

h
(2)
2 (i)

h
(3)
3 (i)




 =






b1(i)

b2(i, i)

b3(i, i, i)




 , for i = 0, 1, 2

x(1)(n − i) =






x(n − i)

x2(n − i)

x3(n − i)




, for i = 0, 1, 2
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Novel Representation

h(2)(1; 0) =

[

h
(2)
2 (1; 0)

h
(2)
3 (1; 0)

]

=






h
(1,1)
2 (1; 0)

h
(2,1)
3 (1; 0)

h
(1,2)
3 (1; 0)




 =






b2(0, 1)

b3(0, 0, 1)

b3(0, 1, 1)






x(2)(1; n) =

[

x
(2)
2 (1; n)

x
(2)
3 (1; n)

]

=






x
(2)
2 (1; n)

x
(2,1)
3 (1; n)

x
(1,2)
3 (1; n)




 =






x(n)x(n − 1)

x2(n)x(n − 1)

x(n)x2(n − 1)








- p. 48

Novel Representation

h(2)(1; 1) =

[

h
(2)
2 (1; 1)

h
(2)
3 (1; 1)

]

=






h
(1,1)
2 (1; 1)

h
(2,1)
3 (1; 1)

h
(1,2)
3 (1; 1)




 =






b2(1, 2)

b3(1, 1, 2)

b3(1, 2, 2)






x(2)(1; n − 1) =

[

x
(2)
2 (1; n − 1)

x
(2)
3 (1; n − 1)

]

=






x
(2)
2 (1; n − 1)

x
(2,1)
3 (1; n − 1)

x
(1,2)
3 (1; n − 1)






=






x(n − 1)x(n − 2)

x2(n − 1)x(n − 2)

x(n − 1)x2(n − 2)





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Novel Representation

h(2)(2; 0) =

[

h
(2)
2 (2; 0)

h
(2)
3 (2; 0)

]

=






h
(1,1)
2 (2; 0)

h
(2,1)
3 (2; 0)

h
(1,2)
3 (2; 0)




 =






b2(0, 2)

b3(0, 0, 2)

b3(0, 2, 2)






x(2)(2; n) =

[

x
(2)
2 (2; n)

x
(2)
3 (2; n)

]

=






x
(2)
2 (2; n)

x
(2,1)
3 (2; n)

x
(1,2)
3 (2; n)




 =






x(n)x(n − 2)

x2(n)x(n − 2)

x(n)x2(n − 2)





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Novel Representation

h(3)(1, 1; 0) =
[

h
(1,1,1)
3 (1, 1; 0)

]

=
[

b3(0, 1, 2)
]

x(3)(1, 1; n) =
[

x
(3)
3 (1, 1; n)

]

=
[

x(n)x(n − 1)x(n − 2)
]
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Novel Representation

� The novel cross-product kernel representation presented in
this section does not increase the number of kernels in the
Volterra filter

� We have grouped the Volterra kernels in an novel manner
introducing the concept of delay-wise dimensionality and
cross-term subsystem, rather than using the multiplicational
order of the Volterra kernels to group the kernels.

� This novel grouping enables us to devise an exact closed form
algorithm for identifying the Volterra kernels using
deterministic multilevel sequences.
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Novel Identification Algorithm

� Since Wiener introduced the use of the Volterra series for
nonlinear modelling in engineering problems, researchers
have developed several methods for the estimation of the
Volterra kernels.

� The most common class of Volterra system identification
methods include cross-correlation methods based on random
inputs.
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Novel Identification Algorithm

� We focus on deterministic excitation sequences for the
identification of nonlinear systems modelled using the
truncated Volterra series representation.

� We proposed a novel partitioning of the Volterra kernels. This
representation will result in simple closed form solutions for
the kernels when deterministic multilevel input sequences are
used.
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Novel Identification Algorithm - 1D

� In the novel representation we decomposed the output of the
overall nonlinear system in terms of the outputs of newly
defined cross-term subsystems H(`)[ · ], ` = 1, 2, . . . , M .

� We called the subsystem H(`)[ · ] as the `-D subsystem.
� Multilevel single impulses, x(1)(m1; n) = am1δ(n), for

m1 = 1, 2, . . . ,
(
M
1

)
can be used to obtain the 1-D kernel vectors

in H(1)[ · ].
� Using the novel cross-term representation,the higher

dimensional outputs are zero for these multilevel single
impulses.



- p. 54

Novel Identification Algorithm - 1D

� In the novel representation we decomposed the output of the
overall nonlinear system in terms of the outputs of newly
defined cross-term subsystems H(`)[ · ], ` = 1, 2, . . . , M .

� We called the subsystem H(`)[ · ] as the `-D subsystem.
� Multilevel single impulses, x(1)(m1; n) = am1δ(n), for

m1 = 1, 2, . . . ,
(
M
1

)
can be used to obtain the 1-D kernel vectors

in H(1)[ · ].
� Using the novel cross-term representation,the higher

dimensional outputs are zero for these multilevel single
impulses.



- p. 54

Novel Identification Algorithm - 1D

� In the novel representation we decomposed the output of the
overall nonlinear system in terms of the outputs of newly
defined cross-term subsystems H(`)[ · ], ` = 1, 2, . . . , M .

� We called the subsystem H(`)[ · ] as the `-D subsystem.

� Multilevel single impulses, x(1)(m1; n) = am1δ(n), for
m1 = 1, 2, . . . ,

(
M
1

)
can be used to obtain the 1-D kernel vectors

in H(1)[ · ].
� Using the novel cross-term representation,the higher

dimensional outputs are zero for these multilevel single
impulses.



- p. 54

Novel Identification Algorithm - 1D

� In the novel representation we decomposed the output of the
overall nonlinear system in terms of the outputs of newly
defined cross-term subsystems H(`)[ · ], ` = 1, 2, . . . , M .

� We called the subsystem H(`)[ · ] as the `-D subsystem.
� Multilevel single impulses, x(1)(m1; n) = am1δ(n), for

m1 = 1, 2, . . . ,
(
M
1

)
can be used to obtain the 1-D kernel vectors

in H(1)[ · ].

� Using the novel cross-term representation,the higher
dimensional outputs are zero for these multilevel single
impulses.



- p. 54

Novel Identification Algorithm - 1D

� In the novel representation we decomposed the output of the
overall nonlinear system in terms of the outputs of newly
defined cross-term subsystems H(`)[ · ], ` = 1, 2, . . . , M .

� We called the subsystem H(`)[ · ] as the `-D subsystem.
� Multilevel single impulses, x(1)(m1; n) = am1δ(n), for

m1 = 1, 2, . . . ,
(
M
1

)
can be used to obtain the 1-D kernel vectors

in H(1)[ · ].
� Using the novel cross-term representation,the higher

dimensional outputs are zero for these multilevel single
impulses.



- p. 55

Novel Identification Algorithm - 1D

N [am1δ(n)] = H(1)[am1δ(n)]

H(`)[am1δ(n)] = 0, for ` = 2, . . . , M
(33)

This relation in (33) is shown pictorially in Fig. 4.
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Novel Identification Algorithm - 1D

+ y(n)

H (1)

H (2)

H (3)

H (M)

x  (m ;n)
(1)

1

y  (m ;n)
(1)

1

Z
0

Z
0

Z
0

Figure 4: Pictorial description for (33). The output of the nonlinear system N for x(n) = am1
δ(n)

is equal to the output of the subsystem H
(1).
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Novel Identification Algorithm - 1D

� Hence, the output of the M th-order nonlinear system, when
the input is x(n) = x(1)(m1; n), is given by

y(n) =N
[

x(1)(m1; n)
]

= y(m1; n)

=H(1)
[

x(1)(m1; n)
]

= y(1)(m1; n)

=
N∑

i=0

h(1)T

(i)u(1)(m1; n − i)

(34)
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Novel Identification Algorithm - 1D

u(1)(m1; n)≡










x(1)(m1; n)

x(1)2(m1; n)
...

x(1)M

(m1; n)










=










am1

a2
m1

...
aM

m1










δ(n) (35)
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Novel Identification Algorithm - 1D

� Here, m1 = 1, 2, . . . ,
(
M
1

)
denotes the ensemble index of the

input sequence. Now we can write all
(
M
1

)
outputs in the

ensemble matrix form as follows:

y(1)
e (n) = N

[

x(1)
e (n)

]

= H(1)
[

x(1)
e (n)

]

=
N∑

i=0

U(1)
e (n − i) h(1)(i) (36)

where x
(1)
e (n),y

(1)
e (n) and U

(1)
e (n) denote the ensemble input,

ensemble output vectors and the input matrix, respectively.
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Novel Identification Algorithm - 1D

x(1)
e (n)≡










x(1)(1; n)

x(1)(2; n)
...

x(1)(M ; n)










=










a1

a2

...
aM










δ(n) (37)

y(1)
e (n)≡











N
[

x(1)(1; n)
]

N
[

x(1)(2; n)
]

...

N
[

x(1)(M ; n)
]











=










y(1)(1; n)

y(1)(2; n)
...

y(1)(M ; n)










(38)
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Novel Identification Algorithm - 1D

U(1)
e (n)≡










u(1)T

(1; n)

u(1)T

(2; n)
...

u(1)T

(M ; n)










(39)
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Novel Identification Algorithm - 1D

� U
(1)
e (n − i) in (36) can be replaced with

U
(1)
e (n − i) = U

(1)
e δ(n − i), and the matrix U

(1)
e is written as

U(1)
e =










a1 a2
1 · · · aM

1

a2 a2
2 · · · aM

2
...

...
. . .

...
aM a2

M · · · aM
M










(40)
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Novel Identification Algorithm -1D

� Hence, we get

y(1)
e (n) =

N∑

i=0

U(1)
e h(1)(i) δ(n − i) = U(1)

e h(1)(n) (41)

� Provided the inverse of the M × M matrix U
(1)
e exists, the 1-D

kernel vectors can be obtained as

h(1)(n) =
[

U(1)
e

]
−1

y(1)
e (n), for n = 0, 1, . . . , N (42)

� Fig. 5 depicts the identification method for 1-D kernels as
outlined in this section and finalized in (42).
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Novel Identification Algorithm - 1D

N
x e

(1)(n) y e
(1)(n) h(1)(n)

e
[    ]U

(1) -1
d(n)

Ma

Figure 5: Method used for identification of 1-D Volterra kernels, h(1)(n).

� Note that the linear FIR filter identification via the impulse
response is covered by this method as the special case M = 1.
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Novel Identification Algorithm - 1D

� In order to guarantee the Vandermonde like input matrix U
(1)
e

in (40) to be nonsingular, the levels of the multilevel ensemble
inputs must be chosen to be distinct and nonzero,

i.e., ai 6= 0

and ai 6= aj , ∀ i 6= j.
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in (40) to be nonsingular, the levels of the multilevel ensemble
inputs must be chosen to be distinct and nonzero, i.e., ai 6= 0
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Novel Identification Algorithm - 2D

� Now we are interested in computing the 2-D kernel vectors,
h(2)(q1; i) for q1 = 1, . . . , N and i = 0, 1, . . . , N − q1.

� We use 2-D ensemble inputs which consist of two impulses
with distinct amplitudes.

� The following sequence consisting of two impulses with
distinct amplitudes will only excite the 2-D kernel vector
h(2)(q1; n − q1) and the 1-D kernel vectors h(1)(n) and
h(1)(n − q1).
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Novel Identification Algorithm - 2D

x(2)
(
(m1, m2), q1; n

)
= x(1)(m1; n) + x(1)(m2; n − q1)

= am1δ(n) + am2δ(n − q1)

for m1 = 1, . . . , M − 1; m2 = m1 + 1, . . . , M

(43)

� It is possible to show that the 2-D input signal in (43) does not
excite the Volterra kernels having more than two cross-terms,
i.e.,

H(`)
[

x(2)
(
(m1; m2), q1; n

)]

= 0 for ` > 3. (44)

� (44) is depicted in Fig. 6.
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Novel Identification Algorithm - 2D

H (1)

H (2)

H (3)

H (M)

Z
0

y  ((m ,m ),q ;n)(2)

1 2 1
x  ((m ,m ),q ;n)(2)

1 2 1

(2,1)

1 2 1
   v   ((m ,m ),q ;n)

Z
0

+

(2,2)

1 2 1
   v   ((m ,m ),q ;n)

Figure 6: Pictorial description for (44). The output of the nonlinear system N , for x(n) =

am1
δ(n) + am2

δ(n − q1), is equal to the sum of the outputs of subsystems H(1) and H
(2).
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Novel Identification Algorithm - 2D

� Hence, the output for the input in (43) can be written as

N
[

x(2)
(
(m1, m2),q1; n

)]

= y(2)
(
(m1, m2), q1; n

)

=H(1)
[

x(2)
(
(m1, m2), q1; n

)]

+ H(2)
[

x(2)
(
(m1, m2), q1; n

)]

(45)

� where

H(2)
[

x(2)
(
(m1, m2), q1; n

)]

= v(2,2)
(
(m1, m2), q1; n

)
(46)
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Novel Identification Algorithm - 2D

H(1)
[

x(2)
(
(m1, m2), q1; n

)]

= v(2,1)
(
(m1, m2), q1; n

)

= v(1,1)(m1; n) + v(1,1)(m2; n − q1)
(47)

with
v(1,1)(mi; n) = H(1)

[

x(1)(mi; n)
]

.
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Here,

v(i,j)
(
(m1, . . . , mi), q1, . . . , qi−1; n

)
= H(j)

[

x(i)
(
(m1, . . . , mi), q1, . . . , qi−1; n

)
]

(48)
The output of the 2-D subsystem can be obtained from (45), (46)
and (47) as

v(2,2)
(
(m1, m2), q1; n

)
= N

[

x(2)
(
(m1, m2), q1; n

)]

−
[

v(1,1)(m1; n) + v(1,1)(m2; n − q1)
]

(49)
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� The output of the 2-D subsystem is obtained by subtracting
the appropriate previously computed 1-D outputs from the
overall nonlinear system output.

� We observe the outputs for
(
M
2

)
distinct 2-D ensemble inputs

which are given in the matrix form as follows:

x(2)
e (q1; n) = T

(M)
2,1 x(1)

e (n) + T
(M)
2,2 x(1)

e (n − q1) (50)

where

x(1)
e (n) =

[

a1 a2 · · · aM

]T
δ(n)
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� The constant T
(M)
2,1 and T

(M)
2,2 matrices with

(
M
2

)
rows and

(
M
1

)

columns are used to determine the necessary
(
M
2

)

combinations of
(
M
1

)
= M ensemble inputs when taken two at

a time.

� These matrices are called as the ensemble input formation
matrices.
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� Similar to the single-input single-output case in (45), using the
2-D ensemble input vector in (50), we can determine the
corresponding output vectors of 1-D and 2-D subsystems,
v

(2,1)
e (q1; n) = H(1)

[

x
(2)
e (q1; n)

]

and

v
(2,2)
e (q1; n) = H(2)

[

x
(2)
e (q1; n)

]

, respectively.

� The notation v
(i,j)
e (q1, . . . , qi−1; n) will denote the output of the

j-D subsystem for an i-D input ensemble.

v(i,j)
e (q1, . . . , qi−1; n) = H(j)

[

x
(i)
e (q1, . . . , qi−1; n)

]

(51)
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The response of the 1-D system to the 2-D input ensemble can be
decomposed in terms of the 1-D responses as

v(2,1)
e (q1; n) = H(1)

[

T
(M)
2,1 x(1)

e (n)
]

+ H(1)
[

T
(M)
2,2 x(1)

e (n − q1)
]

= T
(M)
2,1 v(1,1)

e (n) + T
(M)
2,2 v(1,1)

e (n − q1)
(52)
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The response of the 2-D subsystem can be obtained by
subtracting the response of the 1-D subsystem from the
nonlinear system output y

(2)
e (q1; n) = N [x

(2)
e (q1; n)]

v(2,2)
e (q1; n) = y(2)

e (q1; n) − v(2,1)
e (q1; n)

= y(2)
e (q1; n) −

[

T
(M)
2,1 v(1,1)

e (n) + T
(M)
2,2 v(1,1)

e (n − q1)
]

(53)
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It is possible to write the 2-D subsystem equation for the
ensemble input case,

v(2,2)
e (q1; n) =

N−q1∑

i=0

U(2)
e (q1; n − i)h(2)(q1; i)

= U(2)
e h(2)(q1; n − q1)

(54)

Similar to the 1-D case, U(2)
e (q1; n − i) is replaced with

U
(2)
e δ(n − q1 − i). U

(2)
e has the dimension

(
M
2

)
×

(
M
2

)
, and it is

written in terms of the amplitude levels, a1, a2, . . . , aM .
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As an example, for M = 3 and M = 4, the U
(2)
e matrices will be

given respectively as follows.

U(2)
e =






a1a2 a1a
2
2 a2

1a2

a1a3 a1a
2
3 a2

1a3

a2a3 a2a
2
3 a2

2a3






U(2)
e =














a1a2 a1a
2
2 a2

1a2 a1a
3
2 a2

1a
2
2 a3

1a2

a1a3 a1a
2
3 a2

1a3 a1a
3
3 a2

1a
2
3 a3

1a3

a1a4 a1a
2
4 a3

1a4 a1a
3
4 a2

1a
2
4 a3

1a4

a2a3 a2a
2
3 a2

2a3 a2a
3
3 a2

2a
2
3 a3

2a3

a2a4 a2a
2
4 a2

2a4 a2a
3
4 a2

2a
2
4 a3

2a4

a3a4 a3a
2
4 a2

3a4 a3a
3
4 a2

3a
2
4 a3

3a4













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The 2-D Volterra kernel vectors are obtained as

h(2)(q1; n − q1) =
[

U(2)
e

]
−1

v(2,2)
e (q1; n) (55)

for q1 = 1, . . . , N and n = q1, q1 + 1, . . . , N, provided the inverse
exists.
Fig. 7 depicts the identification method for 2-D kernels as
outlined in this section and in (55).
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N

N

x e
(1)(n)

x e
(2)(q ;n)

1 y e
(2)(q ;n)

1

v e
(1,1)  (n)

ve
(2,2)  (q ;n)

1
(2)h  (q ;n-q )

1 1+
T2,2

(M)

T2,1
(M)

e
[    ]U

(2) -1

Ma x e
(1)(n)

+

+
+

-

T2,1
(M) T2,2

(M)

z-q
1

z-q
1

d(n)

ve
(2,1)  (q ;n)

1

Figure 7: Method used for identification of 2-D Volterra kernels, h(2)(q1; n).
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� The 3-D kernel vectors h(3)(q1, q2; i) are determined by using
the 3-D ensemble responses along with the responses of the
1-D and 2-D subsystems.

� The following 3-D ensemble input with three distinct impulses
excites only 1-D, 2-D and 3-D subsystems.

x(3)
e (q1, q2; n) = T

(M)
3,1 x(1)

e (n)+T
(M)
3,2 x(1)

e (n−q2)+T
(M)
3,3 x(1)

e (n−q1−q2)

(56)
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The T
(M)
3,1 , T(M)

3,2 and T
(M)
3,3 input formation matrices with

(
M
3

)

rows and
(
M
1

)
columns are used to determine the necessary

(
M
3

)

combinations of the multilevel impulse functions, when taking
triplets at a time.
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The output of the nonlinear system can be written as the sum of
the outputs of the exited subsystems,

y(3)
e (q1, q2; n) =N

[

x
(3)
e (q1, q2; n)

]

=
3∑

i=1

H(i)
[

x
(3)
e (q1, q2; n)

]

=

3∑

i=1

v(3,i)
e (q1, q2; n)

(57)

The input-output relationship in (57) is depicted pictorially in
Fig. 8.
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H (M) Z
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H (3)
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x e
(3)(q ,q ;n)

1 2

v e
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1 2

v e
(3,2)  (q ,q ;n)

1 2

v e
(3,3)  (q ,q ;n)

1 2 y e
(3)(q ,q ;n)

1 2

Figure 8: Pictorial description for (57). The output of the nonlinear system N for the 3-D input
ensemble x

(3)
e

(q1, q2; n), is equal to the sum of the outputs of subsystems H(1), H(2) and H
(3).
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� The output of the 1-D subsystem for the 3-D ensemble input
can be written as a sum of the 1-D ensemble outputs.

v(3,1)
e (q1, q2; n) =

(3
1)∑

j=1

S
(M)
31,j v

(1,1)
e (n − n

(3,1)
j ) (58)

� The matrices S
(M)
31,j for j = 1, 2, 3 are used to pick up the

appropriate 1-D ensemble output values.
� We call these matrices as the output pick-up matrices.
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It is also possible to determine the responses of the 2-D
subsystem for the 3-D ensemble inputs,

v(3,2)
e (q1, q2; n) =

(3
2)∑

j=1

S
(M)
32,j v

(2,2)
e (q

(3,2)
j ; n − n

(3,2)
j ) (59)

where the output pick up matrices S
(M)
32,j for j = 1, 2, 3, which

have
(
M
3

)
rows and

(
M
2

)
columns, are used to determine the

appropriate 2-D ensemble output values for x
(3)
e (q1, q2; n).
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The output of the 3-D subsystem v
(3,3)
e (q1, q2; n) can be written as

v(3,3)
e (q1, q2; n) = U(3)

e h(3)(q1, q2; n − q1 − q2) (60)

The matrix U
(3)
e has the dimensions

(
M
3

)
×

(
M
3

)
.

As an example, for M = 4 and ` = 3, the matrix U
(3)
e will be given

as

U(3)
e =









a1a2a3 a1a2a
2
3 a1a

2
2a3 a2

1a2a3

a1a2a4 a1a2a
2
4 a1a

2
2a4 a2

1a2a4

a1a3a4 a1a3a
2
4 a1a

2
3a4 a2

1a3a4

a2a3a4 a2a3a
2
4 a2a

2
3a4 a2

2a3a4








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From (57)-(60), we get the desired calculation formula for the 3-D
kernel vectors.

h(3)(q1, q2; n − q1 − q2) =
[

U
(3)
e

]
−1

v(3,3)
e (q1, q2; n) (61)

where,

v(3,3)
e (q1, q2; n) = y(3)

e (q1, q2; n)

−

( 3∑

j=1

S
(M)
31,j v

(1,1)
e (n − n

(3,1)
j ) +

3∑

j=1

S
(M)
32,j v

(2,2)
e (q

(3,2)
j ; n − n

(3,2)
j )

)

(62)
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Fig. 9 depicts the identification method for 3-D kernels as
described by (61) and (62).
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Figure 9: Method used for identification of 3-D Volterra kernels, h(3)(q1, q2; n).
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� Now, we try to identify the `-D kernel vectors by using the
response of the nonlinear system for the `-D ensemble input
vector and all the previously computed subsystem outputs,
v

(k,k)
e (q1, . . . , qk−1; n).

� Similar to 1-, 2-, and 3-D ensemble input vectors, the `-D input
ensemble vector can be written using the input formation
matrices and the 1-D input ensemble.

x(`)
e (q1, . . . , q`−1; n) =

∑̀

i=1

T
(M)
`,i x(1)

e (n − n
(`)
i ) (63)
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� Now, we try to identify the `-D kernel vectors by using the
response of the nonlinear system for the `-D ensemble input
vector and all the previously computed subsystem outputs,
v

(k,k)
e (q1, . . . , qk−1; n).

� Similar to 1-, 2-, and 3-D ensemble input vectors, the `-D input
ensemble vector can be written using the input formation
matrices and the 1-D input ensemble.

x(`)
e (q1, . . . , q`−1; n) =

∑̀

i=1

T
(M)
`,i x(1)

e (n − n
(`)
i ) (63)
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� The response of the nonlinear system to the ensemble input in
(63) can be written in terms of the outputs of the subsystems,

y(`)
e (q1, . . . , q`−1; n) =N

[

x
(`)
e (q1, . . . , q`−1; n)

]

=
∑̀

k=1

H(k)
[

x
(`)
e (q1, . . . , q`−1; n)

]

=
∑̀

k=1

v(`,k)
e (q1, . . . , q`−1; n)

(64)

� Fig. 10 draws a picture of (64), by showing that for an `-D
input ensemble, the outputs of all subsystems H(k), for k > `,
are equal to zero.
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Z
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Figure 10: Pictorial description for (64). The output of the nonlinear system N for the `-D input
ensemble x

(`)
e

(q1, . . . , q`−1; n), is equal to the sum of the outputs of subsystems H
(1) through

H
(`).
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v
(`,k)
e (q1, . . . , q`−1; n) for k = 1, . . . , ` − 1 can be obtained from the

previous subsystem outputs.

v
(`,1)
e (q1, . . . , q`−1; n) =

(`

1)∑

j=1
S

(M)
`1,j v

(1,1)
e (n − n

(`,1)
j )

...

v(`,k)(q1, . . . , q`−1; n) =
(`

k)∑

j=1
S

(M)
`1,j v

(k,k)
e (q

(`,k)
j,1 , . . . , q

(`,k)
j,k−1; n − n

(`,k)
j )

(65)
for k = 2, 3, . . . , ` − 1.
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The output of the `-D subsystem can be written as

v(`,`)
e (q1, . . . , q`−1; n) = H(`)

[

x(`)
e (q1, . . . , q`−1; n)

]

=

N−q̄`−1∑

i=0

U(`)
e (q1, . . . , q`−1; n − i)h(`)(q1, . . . , q`−1; i)

(66)
The input matrix U

(`)
e (q1, . . . , q`−1; n − i) is replaced with

U
(`)
e δ(n − q̄`−1 − i). The matrix U

(`)
e has the dimension

(
M
`

)
×

(
M
`

)

and can be written in terms of the amplitudes a1, a2, . . . , aM .
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As an example, for M = 5 and ` = 4, the matrix U
(4)
e will be given

as,

U(4)
e =















a1a2a3a4 a1a2a3a
2
4 a1a2a

2
3a4 a1a

2
2a3a4 a2

1a2a3a4

a1a2a3a5 a1a2a3a
2
5 a1a2a

2
3a5 a1a

2
2a3a5 a2

1a2a3a5

a1a2a4a5 a1a2a4a
2
5 a1a2a

2
4a5 a1a

2
2a4a5 a2

1a2a4a5

a1a3a4a5 a1a3a4a
2
5 a1a3a

2
4a5 a1a

2
3a4a5 a2

1a3a4a5

a2a3a4a5 a2a3a4a
2
5 a2a3a

2
4a5 a2a

2
3a4a5 a2

2a3a4a5














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The `-D Volterra kernel vectors can be written in the following
form.

h(`)(q1, . . . , q`−1; n − q̄`−1) =
[

U(`)
e

]
−1

v(`,`)
e (q1, . . . , q`−1; n) (67a)

Here,

v(`,`)
e (q1, . . . , q`−1; n) = y(`)

e (q1, . . . , q`−1; n)−

(`

1)∑

j=1

S
(M)
`1,j v(1,1)

e (n−n
(`,1)
j )

−

`−1∑

k=2

(`

k)∑

j=1

S
(M)
`k,j v

(k,k)
e (q

(`,k)
j,1 , . . . , q

(`,k)
j,k−1; n − n

(`,k)
j ) (67b)
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(67) shows that our algorithm can form the estimate for any
Volterra kernel independent from other kernels.
Let us define the following output pick-up operators for
k = 1, 2, . . . , ` − 1:

S
(M)
`,k

[

v(k,k)
e (q1, . . . , qk−1; n)

]

=

(`

k)∑

j=1

S
(M)
`k,j v

(k,k)
e (q

(`,k)
j,1 , . . . , q

(`,k)
j,k−1; n−n

(`,k)
j )

(68)
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With this definition, (67b) can be rewritten in a more compact
form.

v(`,`)
e (q1, . . . , q`−1; n) = y(`)

e (q1, . . . , q`−1; n)−

`−1∑

k=1

S
(M)
`,k

[

v(k,k)
e (q1, . . . , qk−1; n)

]

(69)

Fig. 11 depicts the identification of the Volterra kernels of orders
one through M using the proposed algorithm. In this figure the
output pick-up operators S

(M)
`,k [ · ] are utilized to simplify the

picture.
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Figure 11: Proposed Volterra kernel identification method using multilevel deterministic sequences
as inputs.
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Deterministic Sequence Example

� We consider as an example the identification of a Volterra filter
with M = 3 and N = 2.

� The overall deterministic input sequence which should be
applied to identify the kernels of this system is shown in Fig.
12.

� This figure depicts all the input ensembles utilized for the
identification of the 1-D, 2-D and 3-D nonlinear subsystems.
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x  (1;n)
(1) x  (2;n)

(1) x  (3;n)
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Figure 12: Deterministic multilevel input sequence
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We present two numerical simulations to illustrate the
performance of our novel identification procedure, where the
setup for the examples are taken from Zhou and Giannakis
(1997) and Nowak and Van Veen (1994b).
Simulation 1: We simulate a second order Volterra filter with
memory length N = 2.

y(n) =
2∑

i1=0

b1(i1)x(n− i1)+
2∑

i1=0

2∑

i2=i1

b2(i1, i2)x(n− i1)x(n− i2) (70)

The average input power is unity for both PRMS and our
multilevel sequence. Independent GWN of power 0.1 is added to
the system output to represent observation noise.
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In Table 104 the averaged squared error between the estimated
and true kernels and the number of floating point operations
required are given for four different input sequence lengths. The
squared kernel error averaged over independent trials is defined
as

error =
N−1∑

i1=0

[

b1(i1) − b̂1(i1; n)
]2

+
N−1∑

i1=0

N−1∑

i2=i1

[

b2(i1, i2) − b̂2(i1, i2; n)
]2

From the results in Table 104, it is clear that our algorithm uses
less operations and gives better results than the PRMS method
(Nowak and Van Veen, 1994b).
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Averaged Squared Error of Estimates for Simulation 1

PRMS of Nowak and Van Veen (1994b) proposed deterministic input sequence

length error flops length error flops

27 7.80 × 10−1 1.22 × 103 15 2.26 ×10−1 0.12 ×103

64 9.93 × 10−2 1.64 ×103 60 5.42 × 10−2 0.29 × 103

125 2.89 × 10−2 2.24 × 103 120 2.84 × 10−2 0.53 × 103

343 6.18 × 10−3 4.12 ×103 330 9.70 × 10−3 1.34 × 103
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Simulation 2: We simulate a fourth-order Volterra filter with
memory length N = 3 after the example 2 in
Zhou and Giannakis (1997).

y(n) = x(n)4 + 4.8x(n)3x(n − 1) + 4.8x(n)2x(n − 1)2

− 6x(n)2x(n − 1)x(n − 2) + 14.4x(n)x(n − 1)x(n − 2)x(n − 3)

Average input power is set to 4 and additive independent
AGWN observation noise with variance 0.5 is present. The data
length for the PSK input is 4096. Our multilevel sequence is of
length 211 and we send it through 19 times; thus our total input
length is 4009.
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Table 107 shows the true values for the non-redundant kernels
and the mean and the standard deviations of the estimates from
our algorithm and the PSK input method of Zhou and Giannakis
(1997).
There are five nonzero Volterra kernels, and the values are taken
from (Zhou and Giannakis, 1997). The results for PSK and the
results for our algorithm are averaged over 200 independent
trials.
The results for our algorithm are better than those for PSK inputs
and our estimates are very accurate despite the high order of
nonlinearity and the presence of noise.
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Results for Simulation 4.2

(i1, i2, i3, i4) (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 1) (0, 0, 1, 2) (0, 1, 2, 3)

true b4 (i1, i2, i3, i4) 1.0000 4.8000 4.8000 -6.0000 14.4000

mean of b̂4 (i1, i2, i3, i4) for PSK 0.9944 4.7927 4.8006 -6.0084 14.3892

std of b̂4 (i1, i2, i3, i4) for PSK 0.2013 0.1940 0.1745 0.1766 0.1004

mean of b̂4 (i1, i2, i3, i4) for our alg. 1.0002 4.7999 4.8000 -6.0003 14.4001

std of b̂4 (i1, i2, i3, i4) for our alg. 0.0024 0.0042 0.0021 0.0038 0.0069
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Persistence of Excitation

� We will prove that the multilevel input signals as persistently
excite a Volterra filter.

� We start by rewriting the input-output relation of the `-D
cross-term subsystem, H(`).

y(`)(n) = H(`)
[
x(n)

]
=

( N

`−1)∑

p=1

N−sum(qp)
∑

i=0

h(`)T

(qp; i) x(`)(qp; n − i),

(71)

� We can reformulate the output in (71)

y(`)(n) = H(`)
[
x(n)

]
=

( N

`−1)∑

p=1

h(`)T

(qp)x
(`)
n (qp) (72)
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h(`)(qp) and x
(`)
n (qp) are column vectors. h(`)(qp) is a

concatenation of the kernel vectors h(`)(qp; i), whereas x
(`)
n (qp) is

a concatenation of the expanded input vectors x(`)(qp; n − i).

h
(`)(qp) =











h
(`)(qp; 0)

h
(`)(qp; 1)

...

h
(`)

(
qp; N − sum(qp)

)











x
(`)
n (qp) =











x
(`)(qp; n)

x
(`)(qp; n − 1)

...

x
(`)

(

qp; n −

(
N − sum(qp)

))











(73)
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We can rewrite the linear combination in (72) as a single vector
product,

y(`)(n) = H(`)
[
x(n)

]
= h(`)T

x(`)(n) (74)

by rearranging the vectors h(`)(qp) and x
(`)
n (qp). h(`) and x(`)(n)

are column vectors generated by concatenating respectively the
vectors h(`)(qp) and x

(`)
n (qp) for all

(
N

`−1

)
possible delay structures

qp together.

h
(`) =












h
(`)(q1)

h
(`)(q2)

...

h
(`)

(
q(

N

`−1

)
)












x
(`)(n) =












x
(`)
n (q1)

x
(`)
n (q2)

...

x
(`)
n

(
q(

N

`−1

)
)












(75)
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The length of the vector h(`) is
(
M
`

)(
N+1

`

)
.

Suppose we begin observing the output of the `-D subsystem at
some time n and collect data over an observation period τ > 0.
The output for times n through n + τ can be written as a single
vector.

y(`)(n) =
[

y(`)(n) y(`)(n + 1) · · · y(`)(n + τ)
]H

The output vector is related to the input by

y(`)(n) = X(`)(n)h(`)∗ (76)
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Persistence of Excitation

X(`)(n) is the data matrix as defined below.

X(`)(n) =










x(`)(n)H

x(`)(n + 1)H

...
x(`)(n + τ)H










(77)

( · )H denotes the Hermitian transpose, and ( · )∗ denotes
complex conjugation.
(76) defines the input-output relation of the `-D subsystem H(`)

as a single matrix product.
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Persistence of Excitation

� This equation is a pseudo-linear regression equation, since
although it is linear with respect to the kernels, the expanded
input matrix X(`)(n) consists of nonlinear products of x(n).

� For this pseudo-linear regression problem we can formulate
the least-squares solution. The optimal least-squares solution
for the kernel vector in (76) can be written as below.

ĥ(`)∗ = R̂
(`)−1

d̂ (78)

� (76) and (78) are portrayed in Fig. 13.
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Figure 13: Graphical description for (76) and (78).
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Persistence of Excitation

In (78), R̂
(`)

is the time-averaged autocorrelation matrix for the
input, and d̂ is the time-averaged cross-correlation vector
between the input and the output. They are defined as given
below.

R̂
(`)= 1

τ
X(`)H

(n) X(`)(n) =
1

τ

n+τ∑

m=n

x(`)(m) x(`)H

(m) (79)

d̂ =
1

τ
X(`)H

(n) y(`)(n) =
1

τ

n+τ∑

m=n

x(`)(m) y∗(m) (80)
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Persistence of Excitation

� The least squares solution as formulated in (78) and (??) has a

unique solution if the autocorrelation matrix R̂
(`)

is invertible.
This brings us to the definition of persistence of excitation.

� Basically signals, for which the time-average autocorrelation
matrix is nonsingular for all times, are said to persistently
excite a system.

� We formulate the persistence of excitation condition for the
`-D cross-term subsystem H(`).
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Persistence of Excitation

� Definition: Persistence of Excitation for H(`)

Let τ > 0 be a fixed observation period of choice. Let λmax and
λmin denote the largest and smallest eigenvalues of the

time-average correlation matrix R̂
(`)

, as defined in (79). If
there exist positive constants ρ1,ρ2 > 0 such that for every time
instant k

ρ1 6 λmin 6 λmax 6 ρ2 (81)

then the input signal x(n) is said to be persistently exciting
(PE) for the `-D cross-term subsystem H(`).
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Persistence of Excitation

� It can be shown that the time-average correlation matrix, R̂
(`)

for our deterministic `-D ensemble input signals x
(`)
e becomes

a block diagonal matrix.

R̂
(`)

=
1

τ














[

R̂(`)
] [

0(M

` )×(M

` )

]

· · ·
[

0(M

` )×(M

` )

]

[

0(M

` )×(M

` )

] [

R̂(`)
] . . .

...

...
. . . . . .

[

0(M

` )×(M

` )

]

[

0(M

` )×(M

` )

]

· · ·
[

0(M

` )×(M

` )

] [

R̂(`)
]














(82)
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τ














[

R̂(`)
] [

0(M

` )×(M

` )

]

· · ·
[

0(M

` )×(M

` )

]

[

0(M

` )×(M

` )

] [

R̂(`)
] . . .

...

...
. . . . . .

[

0(M

` )×(M

` )

]

[

0(M

` )×(M

` )

]

· · ·
[

0(M

` )×(M

` )

] [

R̂(`)
]













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Persistence of Excitation

� R̂(`) in (82) has a size of
(
M
`

)
×

(
M
`

)
.

� R̂(`) can be written as

R̂(`) =
[

U(`)H

e U(`)
e

]T
(83)

where U
(`)
e is the `-D ensemble input matrix.

� Hence, for our deterministic input ensemble the eigenvalues of

the sample correlation matrix R̂
(`)

=
1

τ
X(`)H

(n)X(`)(n) are

equal to the eigenvalues of the matrix R̂(`) =
[

U
(`)H

e U
(`)
e

]T
.
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Persistence of Excitation

� A matrix is said to be positive definite if all of its eigenvalues
are positive. Under this definition, positive definiteness of R̂(`)

is necessary and sufficient for the persistence of excitation
condition given in (81).

� The Hermitian matrix R̂(`) =
[

U
(`)H

e U
(`)
e

]T
will be a positive

definite matrix if and only if the square matrix U
(`)
e is

nonsingular.
� Therefore, the `-D input sequence is PE for the subsystem H(`)

if and only if the input ensemble matrix U
(`)
e is nonsingular.
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Persistence of Excitation

� Hence, the multilevel input sequence will be PE for the overall
nonlinear system N if and only if all the input ensemble
matrices U

(`)
e , 1 ≤ ` ≤ M are nonsingular, for which the

nonsingularity of U
(1)
e is a sufficient condition.

� The input ensemble is assured to be PE when we choose distinct
and nonzero amplitude levels a1, a2, . . . , aM . �
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Least Squares Solution

� In the case of a general nonspecific input sequence, the
least-squares solution, if it exists, requires the calculation of

the inverse of an autocorrelation matrix R̂
(`)

, of size
(
M
`

)(
N+1

`

)
×

(
M
`

)(
N+1

`

)
.

� However, for our specific `-D input sequences, the
autocorrelation matrix greatly simplifies and attains the very
sparse form of a block diagonal matrix.

� It is only necessary to calculate the inverse of the matrix R̂(`) of
size

(
M
`

)
×

(
M
`

)
.

� Hence, our identification algorithm provides a very special
input sequence for which the least squares solution always
exists and is much easier to calculate than the case of general
inputs.
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Communication Channel Identification

� Nonlinear channel identification is important in mitigating the
effects of nonlinear distortions and for the equalization of the
nonlinear communication channels

� The performance of the efforts for compensation of
nonlinearities and channel equalization are highly dependent
on the accuracy of the nonlinear channel estimate.

� Hence, nonlinear channel identification has been a subject of
significance.
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Communication Channel Identification

� We have applied the novel identification method to the
identification of communication channels with nonlinearities.

� We have modelled the channel as a third-order discrete
Volterra filter and the Volterra kernels are measured using
deterministic input sequences and the corresponding channel
outputs.

� We present two numerical examples to illustrate the
performance of our novel identification procedure.
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Communication Channel Identification

Simulation 5.1: We simulate a linear-quadratic-cubic Volterra
channel with memory length N = 2.

y(n) = x(n) + 0.5x(n − 1) − 0.8x(n − 2) + x(n)2+

0.6x(n)x(n − 1) − 0.3x(n − 1)2 + x(n)3 + 1.2x(n)2x(n − 1)

+ 0.8x(n)x(n − 1)2 − 0.5x(n − 1)3 + x(n)x(n − 1)x(n − 2)

We use QPSK modulated signals as the input, where the
deterministic input levels are chosen from the set
4ej(2πk/4+π/4), k = 0, 1, 2, 3.
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Communication Channel Identification

Additive independent GWN observation noise with unit
variance is present.
Table 1 shows the true values for the non-redundant kernels and
the mean and the standard deviations of the estimates from our
algorithm and the PSK input method of (Zhou and Giannakis,
1997).
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Communication Channel Identification

Table 1: Results for Simulation 5.1

(i1) (0) (1) (2)

true b1 (i1) 1.0000 0.5000 -0.8000

mean of b̂1 (i1) for Zhou and Giannakis (1997) 0.9955 0.4886 -0.8150

mean of b̂1 (i1) for our method 1.0045 0.5108 -0.8164

std of b̂1 (i1) for Zhou and Giannakis (1997) 0.5195 0.3758 0.3326

std of b̂1 (i1) for our method 0.1219 0.1266 0.1237

(i1, i2) (0, 0) (0, 1) (1, 1)

true b2 (i1, i2) 1.0000 0.6000 -0.3000

mean of b̂2 (i1, i2) for Zhou and Giannakis (1997) 1.0035 0.6026 -0.2958

mean of b̂2 (i1, i2) for our method 1.0009 0.5984 -0.3035

std of b̂2 (i1, i2) for Zhou and Giannakis (1997) 0.1148 0.1335 0.0788

std of b̂2 (i1, i2) for our method 0.0014 0.0764 0.0050



- p. 128

Communication Channel Identification

(i1, i2, i3) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) (0, 1, 2)

true b3 (i1, i2, i3) 1.0000 1.2000 0.8000 -0.5000 0.6000

mean of b̂3 (i1, i2, i3) for

Zhou and Giannakis (1997)
0.99995 1.2005 0.7993 -0.5009 0.5997

mean of b̂3 (i1, i2, i3) for our method 1.0002 1.2006 0.8019 -0.4997 0.6036

std of b̂3 (i1, i2, i3) for

Zhou and Giannakis (1997)
0.0164 0.0235 0.0215 0.0281 0.0204

std of b̂3 (i1, i2, i3) for our method 0.0077 0.0196 0.0185 0.0082 0.0285
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Bandpass Communication Channel

The bandpass Volterra series is employed in the baseband
representation of narrow-band communication channels.
The bandpass Volterra filter including nonlinearities up to third
order is given as:

y(n) =

N∑

i1=0

b1(i1)x(n − i1)+

N∑

i1=0

N∑

i2=0

N∑

i3=i2

b3(i1, i2, i3)x
∗(n − i1)x(n − i2)x(n − i3)

(84)
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Bandpass Communication Channel

We can easily modify the identification method we developed for
the regular Volterra filter to the bandpass Volterra channel case.
Simulation 2: We simulate a linear-cubic “bandpass” Volterra
filter, where the input-output relationship for the bandpass
Volterra filter is given in (84).

y(n) = x(n) + (0.5 + 0.5j)x(n − 1) − 0.6x(n − 2) + x(n)∗x(n − 1)2

+ (0.4 + 0.4j)x(n − 1)∗x(n)2 − 0.4x(n − 1)∗x(n − 2)2

+ 0.6x(n − 2)∗x(n − 1)2 + (0.6 + 0.7j)x(n − 2)∗x(n)2

+ 0.5x(n)∗x(n − 2)2 + (0.3 + 0.4j)x(n)∗x(n − 1)x(n − 2)



- p. 131

Bandpass Communication Channel

The channel model we simulate has a memory length of N = 2.
We use QPSK modulated signals as the input, where we choose
the input levels for our deterministic sequence from the set
2ej(2πk/4+π/4), k = 0, 1, 2, 3.
Additive independent GWN observation noise with variance 0.5
is present.
We also realized the method for bandpass Volterra kernel
identification as given in Cheng and Powers (2001) for the
simulation setup given above.
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Bandpass Communication Channel

Table 2 shows the true values for the non-redundant bandpass
Volterra kernels and the mean and the standard deviations of the
estimates from our algorithm and the method detailed in
(Cheng and Powers, 2001).
The results for our algorithm are better than those for the
method of Cheng and Powers (2001) even though our method
employed an input sequence of shorter length.
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Table 2: Results for Simulation 5.2

(i1) (0) (1) (2)

true b1 (i1) 1.0000 0.5000+0.5000j -0.6000

mean of b̂1 (i1) for

Cheng and Powers (2001)
0.9995+0.0065j 0.5091+0.4971j 0.5967+0.0076j

mean of b̂1 (i1) for our method 0.9999 + 0.0005j 0.5003 + 0.4994j -0.5999+0.0006j

std of b̂1 (i1) for

Cheng and Powers (2001)
0.1131 0.1086 0.1050

std of b̂1 (i1) for our method 0.0183 0.0193 0.0184
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(i1, i2, i3) (0, 1, 1) (1, 0, 0) (1, 2, 2) (2, 1, 1)

true b3 (i1, i2, i3) 1.00 0.40+0.40j -0.40 0.60

mean of b̂3 (i1, i2, i3) for

Cheng and Powers (2001)
0.9995+0.0024j 0.4017+0.3998j -0.3993+0.0016j 0.5987-0.0004j

mean of b̂3 (i1, i2, i3)

for our method
1.0000-0.0007j 0.3995+0.3999j -0.4000+0.0004j 0.6002+0.0001j

std of b̂3 (i1, i2, i3) for

Cheng and Powers (2001)
0.0270 0.0320 0.0297 0.0259

std of b̂3 (i1, i2, i3)

for our method
0.0166 0.0144 0.0160 0.0139
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(i1, i2, i3) (2, 0, 0) (0, 2, 2) (0, 1, 2)

true b3 (i1, i2, i3) 0.60+0.70j 0.50 0.30+0.40j

mean of b̂3 (i1, i2, i3) for

Cheng and Powers (2001)
0.5995 + 0.6995j 0.4996 - 0.0010j 0.3002 + 0.4003j

mean of b̂3 (i1, i2, i3)

for our method
0.6005 + 0.7002j 0.5000 + 0.0007j 0.2993 + 0.3993j

std of b̂3 (i1, i2, i3) for

Cheng and Powers (2001)
0.0243 0.0263 0.0260

std of b̂3 (i1, i2, i3)

for our method
0.0138 0.0160 0.0217
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Lattice Realization for Volterra

� We present a novel method for realizing nonlinear Volterra
filters using the reduced-order 2-D orthogonal lattice filter
structure.

� This method provides an orthogonal structure for arbitrary
input signals and is capable of handling arbitrary lengths of
memory for the system model.

� A recursive least squares adaptive-second order Volterra filter
based on this structure is included to verify the performance.
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Consider the nonlinear system with the input-output relation
based on the truncated second-order Volterra series expansion.

d(n) =
N−1∑

i1=0

b1 (i1; n) x(n − i1)+
N−1∑

i1=0

N−1∑

i2=i1

b2 (i1, i2; n) x(n − i1)x(n − i2)

(85)

It is possible to describe the input-output relationship given in
(85) as a pseudo-linear regression in the form of a vector product.

d(n) = XT
2 (n)B2(n) (86)
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X2(n) will be of the form as described in the following equation.

X2(n) =




















x(n)

x(n − 1)
...

x(n − N + 1)

x(n)2

x(n)x(n − 1)
...

x(n − N + 1)2




















(87)
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B2(n) is a vector which contains all the Volterra kernels as
required in (85). B2(n) will be given as,

B2(n) =




















b1(0; n)

b1(1; n)
...

b1(N − 1; n)

b2(0, 0; n)

b2(0, 1; n)
...

b2(N − 1, N − 1; n)




















(88)
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Lattice Realization for Volterra

� The direct form realization as indicated by (85) and (86) can
suffer from ill conditioning, especially in nonlinear adaptive
filtering applications.

� In the literature, attempts have been made to find numerically
robust alternative realization methods for the truncated
Volterra filter (Lee and Mathews, 1993; Mathews, 1991;
Ozden et al., 1996a; Syed and Mathews, 1994).

� Both methods in Syed and Mathews (1994) and Ozden et al.
(1996a) are based on the multichannel lattice structure as
developed in Ling and Proakis (1984).
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Lattice Realization for Volterra

� These methods convert the input signal vector as given in (87)
into a multichannel signal and apply orthogonalization onto
the multichannel signal while calculating the nonlinear output.

� We restructure the expanded input signal vector X2(n) into a
2D array rather than using a multichannel setup.

� It is possible to realize the Volterra system as a joint-process
estimator with a lattice-ladder structure instead of the direct
form realization as in (85).
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Lattice Realization for Volterra

� We reshape the vector X2(n) into a 2D array using the
proposed ordering as in Fig. 14.

� Fig. 15 shows the indexing arrangement we chose for the
input array.

� Fig. 16 depicts the 2-D orthogonal lattice structure-based
nonlinear joint-process estimator.

� The depicted full-complexity nonlinear joint-process estimator
is complete with the lattice predictor part and the ladder
section.
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x(n)x(n-N+1)

x(n)x(n-N+2)

x(n)x(n-1) x(n-1)x(n-2)

x(n-1)x(n-N+1)

x(n-2)x(n-3) x(n-N+2)
x(n-N+1)

x(n)2 x(n-1)2 x(n-2)2 x(n-N+2)
2

x(n-N+1)
2

x(n) x(n-1) x(n-2) x(n-N+2) x(n-N+1)

Figure 14: Ordering scheme for the 2-D input array.
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k1

k
2

0 1 2

2N-1N+2N+1N

N-1N-23

M-1

M

M-2

Figure 15: Indexing scheme for the 2-D input array.
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Figure 16: Full complexity nonlinear joint-process estimator.
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+

+
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Figure 17: Internal structure of the basic lattice module utilized in the nonlinear joint process esti-
mator.
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� The backward prediction errors b
(0)
0 (n), b

(1)
1 (n), . . . , b

(M)
M (n)

generated using the 2D lattice filter are orthogonal to each
other (Kayran, 1996b).

� This result provides the main advantage of our structure over
the multichannel lattice structure in (Syed and Mathews,
1994). For the structure in Syed and Mathews (1994), although
the backward prediction errors in different channels are
orthogonal to each other, the elements within each channel are
not orthogonalized.

� However, in our structure the backward prediction errors are
fully orthogonalized to each other. This will result in faster
and less input dependent adaptation.
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Simulation 1: The setting for the simulations is shown in Fig. 18.
In the simulation the adaptive filter was run with the same
memory length N as that of the second-order Volterra filter to be
identified.
The Volterra system we identify has N = 4, hence there are 4
linear and 10 quadratic coefficients.
The desired response signal d(n) was obtained by adding white
Gaussian noise uncorrelated with the input signal to the output.
The variance of the observation noise was chosen to obtain an
SNR of 20 dB.
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Lattice Realization for Volterra

� We present the learning curves in Fig. 19, for our lattice
structure, the multichannel lattice structure in
Syed and Mathews (1994) and the direct form transversal
realization (Mathews, 1991), all with RLS adaptation in Fig. 19.
The error curves are mean squared for 500 cycles and
λ = 0.9975.

� The novel lattice-based structure maintains the excellent
numerical behavior of the lattice models. Our structure
exhibits better performance than both the transversal
realization and the multichannel lattice structure.
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Desired
 signal

d(n)
^
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Error
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e(n)

+

+

Figure 18: The general setup for the adaptive second-order Volterra filter identification simulations.
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Figure 19: Learning curves for different models; (i) multichannel lattice structure, (ii) transversal
direct-form realization, (iii) model based on 2-D lattice structure.
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Concluding Remarks

� This dissertation considered the design of a novel
representation for the discrete-time, time-invariant,
finite-order Volterra filters.

� We also developed a novel extension of the unit impulse
response to the case of the identification of nonlinear Volterra
filters.

� We applied the developed identification algorithm
successfully to the nonlinear communication channels and
baseband Volterra communication channels with
communication signals as inputs.
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Concluding Remarks

� Future work on identification might be by fusing the novel
Volterra system representation with the use of random
sequences as inputs, rather than deterministic sequences.

� The novel representation might be also applied in the efficient
implementation of Volterra filters and in transform domain
structures.

� Another direction might be the use of the identification
algorithm in the implementation of nonlinear compensators
and nonlinear system inverses and equalization.
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Concluding Remarks

� The work on the novel orthogonal quadratic Volterra filter
realization based on the 2D lattice structure can be adapted to
the realization of Volterra filter with higher order
nonlinearities.

� The orthogonal structure can be also utilized in the realization
of polynomial systems with feedback such as bilinear systems.
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