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Abstract—Magnetic resonance imaging (MRI) reconstruction
is one of the important inverse imaging problems. Unlike the
classical MRI approaches which demand long scanning time
and are prone to reconstruction artifacts, compressed sensing
MRI (CS-MRI) generates the scans data relatively faster and
produces less artifacts for medical diagnosis. Model-based CS-
MRI algorithms require long reconstruction time to obtain
an MR image. On the other hand, although training time
of deep learning techniques for the task is rather long, their
reconstruction time is much shorter compared to iterative model-
based MRI algorithms. Moreover, recent works have shown that
Gaussian denoisers including deep denoisers can be utilized to
solve the inverse problems in a plug-and-play fashion. In this
paper, we propose an iterative convolutional neural network
based Gaussian denoiser as a solver for the CS-MRI problem.
Our experiments show that the proposed method has better
reconstruction ability when compared to some important model-
based and deep learning based methods from the literature.

Keywords—Compressed sensing; deep learning; denoiser prior;
image reconstruction; magnetic resonance imaging

I. INTRODUCTION

Inverse problems in imaging target to recover or reconstruct
a latent signal x from an observed signal y. The forward
observation model for an inverse imaging problem can be
formulated by the following equation

y = Hx+ η. (1)

Here, H is a linear degradation operator and η is an additive
noise. Notice that the observed signal y, the latent signal x,
and the noise η are vectorized in a lexicographical order. If
the operator H is chosen as an identity matrix, the problem is
termed as image denoising. If H is a convolution matrix, Eq.
1 is called image deconvolution. If the problem of interest is
MRI, the corresponding H operator is subsampled Fourier ma-
trix. Inverse problems in imaging typically ill-posed problems
[1]. Ill-posedness means the solution may not exist, it may not
be unique or it is sensitive to small variations in observation.
In order to solve an ill-posed inverse problem efficiently,
regularizing the problem is of paramount importance. It is
well known that regularization corresponds to prior modeling
in the stochastic domain [2]. From the Bayesian viewpoint, the
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solution can be found by solving the following optimization
problem

x̂ = argmin
x

1

2
||y −Hx||2 + τR(x). (2)

The above problem minimizes an objective function which
consists of a data fidelity term 1

2 ||y−Hx||2, and a regulariza-
tion term R(x). Hyperparameter τ is called as regularization
parameter, and it leads to a tradeoff between the data fidelity
and regularization terms in the objective function of Eq. 2.
While the fidelity term of the objective function enforces the
solution to match with the observed data, the regularization
term enforces the model prior on the solution. Among popular
and widely used priors in both image restoration and inverse
problem communities we can list sparsity, low-rankness and
non-local self-similarity priors as important examples [3].
These priors are well-designed priors whose inspiration have
been taken from natural images and require domain expertise.

Magnetic resonance imaging (MRI), a popular member of
the inverse problem family, has a wide area of application in
clinical studies. MRI allows us non-invasive, and quantitative
measurements of tissue, including anatomical and structural
information. Since MR data are measured in k-space (the
Fourier domain), one fundamental challenge of MRI modality
is long acquisition time. The other drawbacks are the inherent
motion and contrast artifacts.

Compressed sensing (CS) targets to reconstruct any signal
from much fewer measurements than the Nyquist-Shannon
sampling criteria. One of the fundamental application area of
CS is magnetic resonance imaging due to lower measurements,
fast acquisition and less artifacts. This fast MRI problem
is called as compressed sensing or accelerated MRI in the
medical imaging literature.

Typically, CS-MRI problem can be formulated as in Eq. 3
if we substitute H for subsampled Fourier matrix Fu

min
x

1

2
∥y −Fux∥22 + τR(x). (3)

Before the deep learning era, model-based methods have
attained great success for CS-MRI task. As a first successful
algorithm for compressed sensing MRI, Sparse-MRI [4] uses
the Total Variation seminorm as a prior in the objective
function in Eq.3. PANO [5] (Patch-based Nonlocal Operator)
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Fig. 1. Flowchart of the proposed method. F−1, D(.), and P(.) denote the inverse Fourier Transform operator, fidelity and denoiser prior modules,
respectively.

proposes nonlocal self-similarity based prior for the task and
achieves great success. BM3D-MRI [6], by making use of
the well designed block matching 3D denoiser (BM3D) in a
plug-and-play fashion, has been state-of-the-art image recon-
struction algorithm in the MRI literature. However, model-
based methods suffer from slow reconstruction speed due to
the optimization procedure. Deep ADMM-Net [7] is a first and
representative algorithm example of deep unrolling techniques
which means each step and each operation in a successful
iterative image reconstruction algorithm can be thought of
as deep stages and deep layers. Deep ADMM-Net achieves
highly competitive results for magnetic resonance imaging.
Aside from ADMM-Net, DAGAN [8] and Deep Cascaded
MRI [9] can be shown as the other successful deep learning
based MRI methods.

Using the variable splitting techniques from the optimization
literature such as the Half-Quadratic Splitting (HQS) and
Alternating Direction Method of Multipliers (ADMM), the ob-
jective function in Eq.2 can be seperated into two subproblems.
While the first one, dubbed as the data fidelity subproblem,
can be solved with the aid of least squares techniques, the
latter one which is called prior subproblem can be solved with
a Gaussian denoiser in an implicit manner. Inspired by this
implicit solver step, we propose deep CNN denoiser prior to
Eq. 3 instead of the regularization term R(·). We choose a
powerful deep Gaussian denoiser as the solver of the prior
problem.

The main contribution of this work is to propose an iterative
CNN-based Gaussian denoiser as the solver of the prior
subproblem to reconstruct MR images. The proposed method
achieves superior results to the deep-learning based and model-
based algorithms.

II. PLUG-AND-PLAY (PNP) DENOISERS

To make use of any denoiser prior in a plug-and-play fash-
ion, numerous variable splitting techniques such as Alternating
Direction Method of Multipliers (ADMM), Augmented La-
grangian Method (ALM), and Half-Quadratic Splitting (HQS)
are utilized. By using these techniques, the objective function
in Eq.3 is decoupled into two parts. In the method HQS,
the function in Eq.3 is added an auxiliary variable z as a
constrained optimization problem as follows

x̂ = argmin
x

1

2
∥y −Fux∥2 + τR(z) s.t. z = x. (4)

Notice that Eq. 4 can be rewritten as an unconstrained opti-
mization problem.

Lα(x, z) =
1

2
∥y −Fux∥2 + τR(z) +

α

2
∥z − x∥2. (5)

where α is a penalty parameter which is a nonnegative number
and varies in each iteration in a non-descending order. Eq. 5
can be divided into the following two subproblems:

xk+1 = argmin
x

∥y −Fux∥2 + α ∥x− zk∥2 , (6a)

zk+1 = argmin
z

α

2
∥z − xk+1∥2 + τR(z)., (6b)

The equations 6a, and 6b are called data fidelity, and
prior problems, respectively. Notice that the CS-MRI objective
function in Eq. 3 is decoupled into two smaller objective
functions, each of which will be optimized seperately. The data
fidelity subproblem can be considered as a regularized least-
squares problem and a direct solution for this subproblem is
obtained by

xk+1 =
(
Fu

HFu + αI
)−1 (

Fu
Hy + αzk

)
. (7)

where FH
u denotes the adjoint operator for the subsampled

Fourier matrix Fu. It is well known that the matrix Fu can be
diagonalized by the full Fourier transform matrix as follows:

FFH
u FuFH = Λ (8)

Λ is a diagonal matrix with ones and zeros on its diagonal,
operator F is the full Fourier transform matrix which is also
unitary matrix. The diagonal matrix Λ is only nonzero at
the diagonal entries ℓ ∈ Ω, where Ω denotes the set of
indices for Fourier data included in the image y. By utilizing
the diagonalizability property of a subsampled Fourier matrix
from Eq. 8, we obtain the following equation:

F x̂k+1 =

{
Fxk , if ℓ /∈ Ω
FFH

u y+αFxk

1+α , if ℓ ∈ Ω
(9)

Eq. 9 is the solution of the data fidelity subproblem in Eq. 6a.
If Eq. 9 is written in an input-output relationship, we achieve
the following symbolic formula

xk+1 = D
(
xk,y,FH

u , α, ℓ
)
. (10)

Here, D(·) is the inverse Fourier Transform of Eq. 9 and called
Data Fidelity Module.
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TABLE I. QUANTITATIVE RESULTS ON BRAIN, HEAD AND BUST IMAGES WITH 20% SAMPLING RATES OF THE PSEUDO RADIAL SAMPLING MASK.

Brain Head Bust

Method NMSE PSNR SSIM Time NMSE PSNR SSIM Time NMSE PSNR SSIM Time

Zero Filling 0.1366 27.8488 0.5674 0.001 0.1524 26.1148 0.6278 0.001 0.2935 23.8083 0.4496 0.001

TV 0.0747 33.3192 0.8809 1.135 0.1138 28.8253 0.7796 1.052 0.1731 28.4468 0.7385 1.842

PANO 0.0612 35.1004 0.9265 46.592 0.0996 30.0037 0.8200 46.343 0.1455 29.9608 0.8386 73.044

BM3D-MRI 0.0506 36.7685 0.9477 18.067 0.0856 31.3510 0.8628 18.719 0.1128 32.2116 0.9263 18.454

ADMM-Net 0.0562 35.8272 0.9424 2.038 0.0925 30.6378 0.8505 1.996 0.1338 30.6630 0.8846 1.830

IRCNN-MRI 0.0480 37.2286 0.9492 11.577 0.0896 30.9532 0.8601 11.636 0.1051 32.8249 0.9338 14.093

Fig. 2. Test images used in our simulations and 20% radial sampling mask
shown at the bottom-right of the figure.

When we go back to Eq. 6b, it can be rewritten by

zk+1 = argmin
z

1

2(
√
τ/α)2

∥xk+1 − z∥2 +R(z). (11)

The work [10] suggest that Eq. 11 corresponds to denoising
the image xk+1 by a Gaussian denoiser with the noise level√
τ/α. The authors of the work term this type of denoiser as

a Plug-and-Play (PnP) denoiser. By this paradigm, a powerful
Gaussian denoiser can be used as the solver of Eq. 11. Like
in Eq. 10, we can write Eq. 11 in the symbolic expression as
follows:

zk+1 = P (xk+1, σ) . (12)

where P(.) denotes any Gaussian denoiser (model-based or
learning-based) and is called Prior Module. Parameter σ =√
τ/α is the noise level of the denoiser.
Utilizing the module expressions (10), and (12), the general

block diagram of our proposed method can be illustrated in
Fig.1. The zero-filled k-space data can be seen at the very left

of the block diagram. Our method takes the zero-filled image
FH

u y of the measured signal y as the input and processes it
iteratively passing through the data fidelity and prior modules.

III. EXPERIMENTAL STUDY

In this part, we present and evaluate our PnP based deep
denoiser model. As a denoiser which is based on deep
learned models in the prior module, we select a vanilla CNN
architecture which consists of seven layers. Except for the
first and last layers, the remaining layers have the composite
Convolution (Conv in short) + Batch Normalization (BNorm
in short) + Rectified Linear Unit (ReLU in short) block.
The first and the last layers include Conv + ReLU and
Conv blocks, respectively. The network which were used has
different dilation factors for each layer. Starting from the first
layer to the last one, the dilation factors are determined as 1, 2,
3, 4, 3, 2, and 1, respectively. The number of feature maps in
the middle layers is specified as 64. For the experiments in this
paper, we directly use the publicly avaliable models provided
by the authors of [11] instead of retraining 25 denoisers from
scratch which necessitates high compute resources and long
computation time. The noise level σ of all the denoisers is
determined incrementing by 2 on the interval between 2 and
50. In the proposed algorithm, we choose the regularization
parameter τ as 8e−4, determined after multiple experiments.
We specified the iteration number K as 200. We set the
parameter α to the values from 49 to 1 in an exponentially
decaying manner.

In the simulations, we pick three frequently used test images
from the CS-MRI literature. The first image is T1-weighted
brain image which is shown at the top left of Fig. 2. Our
second test image reveals a brain image on the sagittal plane
shown at the top right of Fig. 2. The final bust image is shown
at the bottom left part of the same figure. All of the images
used in the experiments are real and positive valued. The
sampling in the Fourier domain is realized by using radial
downsampling mask. The downsampling ratio is chosen as
20%. For our simulation setting, we assume that there is no
observation noise.

The implementation of our proposed method has been
performed by MatConvNet [12] package, Matlab based highly
optimized deep learning package. All experiments were sim-
ulated in MATLAB (2019a) on a laptop computer with an
Intel Core i7-4720k CPU, 64-bit operating system, and 8GB
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Fig. 3. Example reconstruction results on the brain data with 20% sampling rate. The images show the ground truth image, zero-filled image, TV [4], PANO
[5], BM3D-MRI [6], ADMM-Net [7], and our, from the left to right.

memory and a GeForce GTX960 GPU. We have used the
publicly avaliable codes for all of the compared methods.
We choose the Normalized Mean Square Error (NMSE), the
Peak Signal-to-Noise Ratio (PSNR, measured in dB) and the
Structural Similarity Index (SSIM) as the performance metrics
of all the algorithms compared in this paper. Like many CS-
MRI based settings, the reconstructed fully sampled k-space
data were used as ground truth (GT) for validation. Zero-filled
image was considered initial reconstructed image for all the
methods in this paper.

We compare our proposed algorithm with some represen-
tative algorithms. Specifically, three model-based approaches,
the TV method [4], the PANO method [5], and the BM3D-
MRI method [6] and the ADMM-Net method [7], a deep
learning based reconstruction algorithm, are utilized to com-
pare with our proposed method. Note that BM3D-MRI and
ADMM-Net algorithms are the powerful CS-MRI algorithms.

The measured NMSE, PSNR and SSIM results on the three
MR test images are shown in Table I. From the table, one
can infer that the proposed method outperforms all model
based MRI methods but BM3D-MRI algorithm. The proposed
method surpasses the BM3D-MRI algorithm in the brain and
bust images by a large margin. However, in the head image,
BM3D-MRI technique is superior to the proposed model by
a relatively smaller margin. Visual results also prove the
superiority of the proposed CNN denoiser based model as seen
in Fig. 3. Our model can reconstruct the brain image with less
artifacts. Due to the different algorithm implementations in
various deep learning packages, our comparisons could not be
extended to the other deep learning based CS-MRI algorithms.
In the future work, we will get deeper our experiments for
showing the superiority of the proposed method to the other
deep learning algorithms.

IV. CONCLUSION

In this paper, we have proposed a PnP-based deep CNN
denoiser model for reconstructing magnetic resonance images.
Our model aims to incorporate a deep CNN denoiser as a
subsolver of the reconstruction algorithm. For that purpose,
firstly we designed a latent objective function incorporating
deep CNN based Gaussian denoiser priors, and we provided
an analysis of its optimization process using the HQS variable
splitting technique. Then, by decoupling the prior terms and
data fidelity terms as sub-problems, each problem is solved

on its own. While the data fidelity problem has a closed-
form solution, the prior problem has been solved by a deep
Gaussian denoiser implicitly . Finally, in order to validate
the proposed models for the CS-MRI task, numerous experi-
ments were conducted. The quantitative and qualitative results
have shown that our method has given the best performance
when compared with some state-of-the-art model-based and
learning-based algorithms.
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