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Introduction

� We consider a signal sensing scheme where the underlying
signal is observed through a bank of measurement channels
working at differing sampling rates.

� Here, we consider the case where the underlying signal to
be observed through this kind of a mechanism is
compressible in some transform domain.

� Compressive sensing is based on the premise that under
the compressibility (sparsity) condition it is possible to
reconstruct the signal from a number of measurements far
fewer than its dimensionality.
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Introduction

� We show the that the multichannel multirate signal
acquisition mechanism can actually be thought of as a
compressive sensing type data sensing method.

� We present numerical results which confirm that when the
signal to be observed through the multichannel multirate
system is compressible in the DCT domain, compressive
sensing based reconstruction from the measurements works
effectively.
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� We assume a signal acquisition setting where a directly
unobservable message signal x(n) is observed through a
bank of K sensors working at individual sampling rates.

� Each sensor bank consists of an FIR filter followed by a
downsampler with downsampling ratio, Nk.
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Figure 1: Multirate multichannel signal observation mechanism.
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Compressive Sensing Prior Art

� Signal processing based on sparse representations has
been a subject of active research.

� A novel signal sensing and reconstruction paradigm based
on sparse representation has been developed under the title
of "compressive sensing" (or alternately "compressive
sampling").

� For a discrete signal x ∈ R
n, the compressive sensing (CS)

data acquisition step is realized by projecting the signal onto

a set of sensing vectors
{

φj

}m

j=1
.
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Compressive Sensing Prior Art

� The data acquisition step can be summarized in the form of
the underdetermined equation

y = Φx (1)

where y ∈ R
m denotes the observation vector.

� The reconstruction part of the compressive sensing
paradigm handles the ill-posed inverse problem forming an
estimate x̂ based on the observation vector y.

� Under the assumption of a sparsity prior for x, the
reconstruction step can be reformatted as an optimization
problem.

� The assumption is that the signal x has a sparse (or more
generally compressible) representation in a transform
domain expressed by some basis matrix Ψ.

� x = Ψα, where α is an S-sparse vector.
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Compressive Sensing Prior Art

� Compressive sensing reconstruction procedure boils down
to finding

α̂ = argmin ‖α‖0 subject to ‖ΦΨα − y‖2 6 ǫ (2)

� The computational complexity for the solution of this
constrained minimization is known to be NP-hard.

� Compressive sensing idea gets attractive when this
prohibitive optimization based reconstruction procedure gets
replaced with a much lesser demanding ℓ1-norm based
optimization.

α̂ = argmin ‖α‖1 subject to ‖ΦΨα − y‖2 6 ǫ (3)

� The ℓ1-norm based optimization criterion leads to well
studied algorithms such as Basis Pursuit.
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Multirate Observations meet Compressive
Sensing

� Multirate data acquisition scheme can be recast as a CS
type data acquisition protocol.

� The multirate and multichannel filtering and downsampling
steps can be conjoined in a single linear projection operator.

� We assume FIR filters with impulse responses hi of length
H in the individual channels.

� Hence, the observation vectors can be written as

yi = Di
↓ (hi ∗ x)

= Di
↓H ix

= Φix

(4)
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Figure 2: Multirate multichannel signal observation mechanism.
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Figure 2: Multirate multichannel signal observation mechanism.

� Di
↓ is the downsampling matrix with the downsampling ratio

Ni.
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Figure 2: Multirate multichannel signal observation mechanism.

� Di
↓ is the downsampling matrix with the downsampling ratio

Ni.
� H i is the convolution matrix corresponding to the FIR filter

with the impulse response hi in the ith channel.
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Figure 2: Multirate multichannel signal observation mechanism.

� Di
↓ is the downsampling matrix with the downsampling ratio

Ni.
� H i is the convolution matrix corresponding to the FIR filter

with the impulse response hi in the ith channel.

� Φi = Di
↓H i is the observation matrix for the ith channel.
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Multirate Observations meet Compressive
Sensing

� The observations from the different channels come together
to form the single big observation vector y.

y =
[
yT

1 . . . yT
k

]T

= ΦMRx
(5)

� The overall CS projection matrix for the multirate,
multichannel signal observation setting is denoted by ΦMR.

� ΦMR is generated by concatenating all the observation
matrices Φi corresponding to the individual channels
together.

ΦMR =




Φ1
...

ΦK


 (6)
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Multirate Observations meet Compressive
Sensing

� Assume that the observed signal x has a sparse
representation in some basis Ψ

x = Ψα

� CS multirate data acquisition can be written as

y = ΘMRα (7)

� ΘMR = ΦMRΨ is the sensing matrix starting from the sparse
domain.
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Numerical Results

� Numerical results for CS based reconstruction for multirate
signal observation problem are presented.

� The experiments study the probability of exact
reconstruction for the novel CS based approach to signal
reconstruction from multichannel multirate observations.

� In the reconstruction from the CS measurements step, we
utilize the ℓ1-Magic toolbox as developed by Candès and
Romberg.
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Numerical Results

� In this work we present results for signals sparse in the
Discrete Cosine Transform (DCT) domain.

� In the experiments, signal length is fixed at n = 128 and the
sparsity is fixed at S = 10.

� H filter impulse response tabs for each of the distinct K
channels are generated randomly from an N (0, 1)
distribution.

� We consider in the experiments the scenario with two and
three multirate sampling channels.

� The subsampling rates in the different channels are
equivalent.
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� Consider the case for two sensing channels with N1 = N2.
� The filter lengths are chosen as H = 4, 8, 16, 32, 64.
� We also present results for a fully random i.i.d sensing

matrix with entries chosen from a normal distribution.
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Figure 3: Probability of exact reconstruction versus the length of the total obser-

vation vector y for N1 = N2 with differing filter lengths.



ISSPA 2010, Malaysia A Compressive Sensing Framework for Multirate Signal Estimation - p.16

Numerical Results

� Secondly we consider the case with N1 = N2 = N3.



ISSPA 2010, Malaysia A Compressive Sensing Framework for Multirate Signal Estimation - p.16

Numerical Results

� Secondly we consider the case with N1 = N2 = N3.
� The filter lengths are chosen as H = 4, 8, 16, 32, 64.



ISSPA 2010, Malaysia A Compressive Sensing Framework for Multirate Signal Estimation - p.16

Numerical Results

� Secondly we consider the case with N1 = N2 = N3.
� The filter lengths are chosen as H = 4, 8, 16, 32, 64.
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Figure 4: Probability of exact reconstruction versus the length of the total obser-

vation vector y for N1 = N2 = N3 with differing filter lengths.
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Numerical Results

� We observe that longer filter lengths translate into better
reconstruction performance.

� In these figures we also present results for a fully random
i.i.d sensing matrix with entries chosen from a normal
distribution.

� We realized CS measurements and reconstruction using this
fully random matrix for comparison purposes.



ISSPA 2010, Malaysia A Compressive Sensing Framework for Multirate Signal Estimation - p.18

Numerical Results

� The results for the fully random matrix, two channel multirate
measurements with N1 = N2 and H = 64, and three channel
multirate measurements with N1 = N2 = N3 and H = 64 are
represented below.



ISSPA 2010, Malaysia A Compressive Sensing Framework for Multirate Signal Estimation - p.18

Numerical Results

� The results for the fully random matrix, two channel multirate
measurements with N1 = N2 and H = 64, and three channel
multirate measurements with N1 = N2 = N3 and H = 64 are
represented below.
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with H = 64.
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� For sufficiently long filter length H, the multichannel multirate
sampling schemes in the CS setting work with a
performance comparable to fully random CS sensing
matrices.
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Numerical Results

� For sufficiently long filter length H, the multichannel multirate
sampling schemes in the CS setting work with a
performance comparable to fully random CS sensing
matrices.

� Multirate multichannel data acquisition system presents a
viable sensing mechanism for CS.
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Conclusions

� We have shown that multichannel multirate signal acquisition
might become a viable CS sensing mechanism for
compressible signals.

� Numerical results suggest the suitability of this type of data
acquisition for compressible signals sparse in the DCT
domain.

� There is a plethora of subjects remaining for future work.
� Work on signals sparse in different transform domains
� Establishing RIP results for the CS matrices occurring in this

acquisition setup
� Evaluating the effect of unequal subsampling rates in the

different channels on the reconstruction performance
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