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The Question

For a given data set, how can we learn an over-
complete sparsifying transform?

Introduction

A recent analysis operator learning (AOL) algorithm
has been presented in [1]. In [1], the learned anal-
ysis operators are constrained to lie in the set of
Uniformly Normalized Tight Frames (UNTF). A new
framework has been introduced in [2] as a more gen-
eral paradigm for analysis operator learning. In this
new "Sparsifying Transform Learning" framework,
the minimization problem for operator learning is
formulated in a modified manner when compared
to the minimization problems of the analysis oper-
ator learning algorithms. The expensive cosparse
coding step of the classic analysis operator learning
algorithms gets replaced with a thresholding step of
much reduced complexity.

A Solution

We develop a new sparsifying transform learning
algorithm "Constrained Least Squares Sparsify-
ing Transform Learning (CLS-TL)" by merging
the transform learning approach of [2] with the
constrained AOL algorithm of [1]. Despite its
reduced complexity, the CLS-TL algorithm has
performance comparable to the AOL algorithm.

Constrained AOL

Dictionary learning can be formalized as:

min
D∈D ,X

‖DX − Y‖2
F , s.t. ‖xn‖0 ≤ s (1)

A noisy formulation of learning a suitable analysis
operator for a given signal set can been given as:

min
Ω∈C ,X

‖X − Y‖2
F , s.t. ‖Ωxn‖0 ≤ s (2)

Figure: a) Synthesis model, b) Analysis model.

The main minimization problem for operator
learning presented in [3] is of the same form as (2),
with C defined as follows:

C =










Ω : rank(ΩΛn
) = M − s, ‖ωk‖2 = 1 (3)

The formulation in [1] convexly relaxes the learning
problem by using the ℓ1 instead of the ℓ0 norm:

min
Ω∈C ,X

λ

2
‖X − Y‖2

F + ‖ΩX‖1. (4)

The UNTF constraint is a culmination of row norm
and full rank constraints, and it is given as follows:
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
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Ω : Ω
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Ω = I, and ‖ωk‖2 = 1, ∀k
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. (5)

The AOL algorithm is based on a two-stage
alternating minimization solution for (4) which can
been given as follows:

Ω
[i] = argmin

Ω∈C
‖ΩX

[i−1]‖1 (6a)

X
[i] = argmin

X

λ

2
‖X − Y‖2

F + ‖Ω
[i]

X‖1 (6b)

Constrained Sparsifying TL

Using both the sparsifying transform learning
paradigm [2] and the constrained analysis operator
learning problem from (4), we now present a new
constrained formulation for transform learning.

min
Ω∈C ,X

‖ΩY − X‖2
F + η‖X‖1 (7)

We adopt the two-step iterative approach:

Ω
[i] = argmin

Ω∈C
‖ΩY − X

[i−1]‖2
F (8a)

X
[i] = argmin

X
‖Ω

[i]
Y − X‖2

F + η‖X‖1 (8b)

(8b) is solved by soft thresholding Ω
[i]

Y as in [2]:
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(Ω[i]
Y)k,n − η

2, (Ω[i]
Y)k,n ≥ η
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(Ω[i]
Y)k,n + η

2, (Ω[i]
Y)k,n < −η

2

0, else

.

(9)
This exact solution in (9) is much simpler to
obtain than solving (6b). For the problem (8a), we
propose the approximate solution of finding the
least squares solution followed by a projection onto
the UNTF set as given below:

Ω
[i]
ls = X

[i−1]
Y

† = X
[i−1]

Y
T





YY
T







−1
. (10)

The final result is obtained by an approximate
projection of Ω

[i]
ls onto the UNTF:

Ω
[i] = PUN


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PTF{Ω
[i]
ls }
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. (11)

CLS-TL Algorithm

Constrained Least Squares Sparsifying Transform
Learning (CLS-TL)

Input: Data record of length N , Y = {yn}N
n=1.

Regularization constant η.
Goal : min

Ω∈C ,X
‖ΩY − X‖2

F + η‖X‖1

1: Initialize Ω
[0] and calculate X

[0] = ⌊Ω
[0]

Y⌋η.
2: Calculate Y

† = Y
T





YY
T







−1.
3: for i := 1, 2, . . . do ⊲ main iteration
4: Ω

[i] = PUN




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



PTF{X
[i−1]

Y
†}


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

⊲

Transform update step, complete with LS solu-
tion and UNTF projection.

5: X
[i] = ⌊Ω

[i]
Y⌋η ⊲ transform sparse coding

step realized by soft thresholding.
6: end for ⊲ end of main iteration

Related Work : Transform K-SVD

In a related work we proposed an algorithm called as
’Transform K-SVD’. This algorithm brings the trans-
form learning and the K-SVD based analysis dic-
tionary learning approaches together.Transform K-
SVD has much reduced complexity.
E.M. Eksioglu and O. Bayir, K-SVD meets Transform Learn-
ing: Transform K-SVD, IEEE Signal Process. Letters, vol.21,
no.3, pp.347-351, March 2014.

Simulations
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c) d)
Figure: Average percentage of analysis operator recovery
versus cosparsity, CLS-TL vs. AOL of [1]. a) 1000 iterations,
b) 5000 iterations, c) 10000 iterations, d) 50000 iterations.
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Figure: Average percentage of analysis operator recovery
versus cosparsity for different training data set sizes l,
CLS-TL vs. AOL of [1]. (Number of iterations: 50000).
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