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The Question

If we are given a data set which is block-sparse
over a known dictionary, how can we learn the
underlying block structure?

Introduction

Utilizing an overcomplete dictionary to sparsely rep-
resent signals leads to efficient representations. The
nonzero coefficients might occur in blocks, in which
case the signals will be referred to as block-sparse
signals. Attempts at block-sparse representation
algorithms include the greedy Block Orthogonal
Matching Pursuit (BOMP) [1], combined ℓ2/ℓ1 op-
timization and extensions of iterative sparse cod-
ing algorithms to model-based sparse representa-
tion. There have been some recent attempts at
dictionary learning for block-sparse signals [2].
A common theme underlying both block-sparse sig-
nal representation and block-sparse dictionary de-
sign is the need for the dictionary block structure
which defines how the atoms of the dictionary are
grouped together into blocks. Hence, one important
step in block-sparse signal processing is the recovery
of the underlying block structure for a given block-
sparsifying dictionary and data set pair.

The Solution

We propose a method for capturing the block
structure of the atoms included in a block-
sparsifying dictionary from the block-sparse
data. The proposed method utilizes clustering
at a certain stage, and we also develop a hierar-
chical agglomerative clustering algorithm suit-
able for use at this clustering stage. The clus-
tering framework developed in this paper allows
the use of different proximity measures between
blocks, and it allows the use of standard clus-
tering algorithms from literature.

Block-Sparsity Intro

The distribution of dictionary atoms to blocks can
be given by an assignment vector Γ ∈ R

K. The set
of the indices of atoms included in the j block of
Γ will be denoted by Ω

Γ

j , where the size of block j

will be denoted as the cardinality |ΩΓ

j |. A vector w

is said to be block k-sparse over Γ, if its non-zero
components occur in only k of the total B blocks,
hence if ‖w‖Γ = ‖w‖Γ

2,0 = k. A noise-free for-
mulation for the block-sparse signal representation
problem of signal vector x over a dictionary D and
block structure Γ can be given as follows.

ŵ = argmin
w
‖w‖Γ s.t. x = Dw (1)

Block-Sparse Signal Representation

with Block Structure Identification

We define the block-sparse representation with
block structure identification problem as follows.

{Γ̂, Ŵ} = argmin
Γ,W

∑N
n=1‖wn‖Γ

s.t. X = DW and |ΩΓ

j | ≤ s, j ∈ Γ (2)

Main Algorithm

Input: D, X = {xn}
N
n=1

Goal : {Γ̂, Ŵ} = argmin
Γ,W

∑N
n=1‖wn‖Γ

s.t. X = DW and |ΩΓ

j | ≤ s, j ∈ Γ.

1: Initialize W as the solution of the regu-
lar sparse representation problem: W

(0) =
argmin

W

∑N
n=1‖wn‖0 s.t. X = DW

2: Find optimally block-sparsifying Γ for constant
W

(0):

Γ̂ = argmin
Γ

N
∑

n=1
‖w(0)

n ‖Γ s.t. |ΩΓ

j | ≤ s, j ∈ Γ

(3)

3: Find optimally block-sparse W for constant Γ̂:

Ŵ = argmin
W

N
∑

n=1
‖wn‖Γ̂

s.t. X = DW (4)

Framework for Block Structure

Identification

The second step (3) of Alg.1 is where the optimally
block-sparsifying block structure for a given repre-
sentation matrix W should be found. Let us define
what we call as the sparse representation indicator
matrix, IW = I

{

W
}

. I{·} is an indicator func-
tion which acts elementwise on the argument ma-
trix. The identification of the block structure for
the atoms can be simplified to clustering the rows
of IW into groups.

Block Structure Identification

Algorithm

Input: W = {wn}
N
n=1, and block size s.

Goal : Find optimal Γ̂ = argmin
Γ

∑N
n=1‖wn‖Γ.

1: Form the sparse representation indicator matrix
IW = I

{

W
}

.

2: Apply clustering algorithm on the rows of IW ,
{ij}K

j=1.

3: Form the block structure corresponding to the
clustering of the rows of IW .

Clustering

Block structure identification algorithm as described
by Alg.2 necessitates clustering of the K rows of
the sparse representation indicator matrix IW into
groups. The steps for a hierarchical agglomerative
algorithm which outputs clusters with at most s el-
ements are given in Alg.3.
Examples for similarity distance metrics and linkage
schemes are described below.
Hamming similarity:

d
(

i
j1, i

j2
)

=
N
∑

n=1
vn where vn =















1, i
j1[n] = i

j2[n]

0, i
j1[n] 6= i

j2[n]
.

Group average (GA) linkage:

sim
{

Ωm1
, Ωm2

}

=
1

|Ωm1
||Ωm2

|

∑

j1∈Ωm1,j2∈Ωm2

d
(

i
j1, i

j2
)

.

Clustering Algorithm

Hierarchical Agglomerative Clustering with maximal
cluster size s (HAC-s)

Input: K elements to cluster {ij}K
j=1 and max-

imal cluster size s.

Goal : Group the K elements into clusters Ωm

such that there are at the most s elements in
each cluster.

1: Initialize Ωm← {m}, m = 1, 2, . . . , K.

A(m1, m2) =















sim
{

Ωm1
, Ωm2

}

m1 6= m2

0 m1 = m2

2: while A is not all zeroes matrix do

3: Find the two clusters with similarity
max

(

A
)

and join them into a single cluster.

4: Update the similarity matrix as

A(m1, m2) =















sim
{

Ωm1
, Ωm2

}

|Ωm1
| + |Ωm2

| ≤ s

0 |Ωm1
| + |Ωm2

| > s

5: end while

Simulations
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Figure 1: Percent of correctly identified blocks. The graphs
present the block structure identification performance for
HAC-s with IP-GA and Hamming-GA similarity measures and
the SAC algorithm. a) k = 4 b) k = 6 c) k = 8.
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