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Abstract: We propose a novel image denoising algorithm which is based on the ordering of noisy image patches into a 3D
array and the application of 3D transformations on this image dependent patch cube. For a given noisy image, we extract all the
patches with overlaps. Then, we order these patches according to a predefined similarity measure. After the reordering, a possibly
separable 3D transformation is applied to the reordered 3D patch cube. The transform domain coefficients are thresholded using
a suitably calculated thresholding parameter. Afterwards, the proper 3D inverse transformation is applied to these coefficients.
The final denoised image is generated by repositioning the processed patches to their original locations on the image canvas. The
developed algorithm presents a novel and efficient combination of patch ordering and 3D transformations. The forward analysis
transform as defined by this complex procedure can get restated as the application of a single tight frame. This tight frame
depends on the noisy image under consideration. This novel, image dependent forward operator which employs 3D transforms
results in improved denoising performance. The experimental results indicate that the proposed algorithm achieves state-of-the-art
denoising results with complexity comparable to competing methods.
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1 Introduction

The history of image denoising is almost as long as image process-
ing itself [1]. Examples of early image denoising methods include
spatial domain filters such as averaging filter, median filter or Gaus-
sian filter [2, 3]. A significant advance in denoising performance
was introduced using transform domain methods based on analytic
transformations such as discrete cosine transform (DCT) [4] and
wavelet transform [5, 6]. Isotropic and anisotropic diffusion filters
[7], total variation based regularization [8], Tikhonov regularization
[9], Yaroslavsky filter which uses pixel neighborhood [10], bilateral
filter [11] are some further examples for denoising methods. Most of
the image denoising methods listed above can be separated into two
broad groups. The first group includes global methods, which pro-
cess the whole image at once. The second group would encompass
local methods, which process the handled image using localized sec-
tions called as patches. The transform based thresholding methods
[4–6] and the more recently proposed algorithm of [12] are examples
for the global image denoising methods. The Yaroslavsky filter [10]
and the bilateral filter [11] on the other hand, would form examples
for local image denoising methods.

In recent years, in various image processing applications much
interest has been directed towards methods which utilize patches
extracted from the image [13–16]. The extracted image patches are
of a much smaller size compared to the overall image. This idea
enables us to benefit from the interrelation between the individual
patches of an image. On the other hand, recently proposed nonlocal
methods provide a rather new approach to image denoising problem.
The main idea behind the nonlocal methods is the utilization of the
similarity between patches which are placed in rather spatially dis-
tant locations of the image. Nonlocal methods for image denoising
such as nonlocal means filter [14, 17], nonlocal principal compo-
nent analysis [18, 19], and the recently proposed methods given in
[15, 20] can outperform more traditional local approaches. A well-
known nonlocal method is the nonlocal means filter which obtains
denoised estimate of a pixel by weighted averaging of pixels within
similar patches placed at different locations of the image. The most
important step in these methods is the search for patches similar to a

reference patch. While some methods realize this step by consider-
ing the whole image as the possible search area, other methods rather
search in a restricted area of the image.

After the development of effective algorithms which use trans-
form domain sparsity as a prior for signal representation tasks,
the sparsity based image denoising methods have been also quite
popular [21, 22]. There are various sparsity based methods which
achieved very high quality results for image denoising. These
include methods which learn a sparsifying synthesis or analysis dic-
tionary for image denoising [23–29]. Transform learning provides
an efficient platform for sparsifying analysis dictionary learning
[28]. In [28], transform learning has been successfully applied to
image denoising. [24] proposed a combination of transform learning
and K-SVD frameworks. In [29] on the other hand, an improved
transform learning algorithm which utilizes structured sparsity is
developed. The resulting OCTOBOS (Overcomplete sparsifying
transform with block cosparsity) algorithm exhibits very competi-
tive image denoising results [29]. In [30], the multi-scale expected
patch log-likelihood (MS-EPLL) method is developed by consider-
ing a multi-scale prior. The resulting MS-EPLL algorithm has been
applied to image denoising among other image restoration applica-
tions. In [31], a joint sparse and group low-rank model is used to
develop the STROLLR algorithm. STROLLR has been applied to
image denoising and inpainting.

In [32], an enhanced sparse representation based denoising
approach is obtained by grouping similar noisy image patches
together. [32] utilizes the application of sparsifying transforms on
patch groups formed from similar patches. In another recent method,
[33] introduces an image denoising framework where noisy image
pixels are ordered according to a distance measure, and a 1D
smoothing filter is applied to these reordered pixels. [33] presents
state-of-the-art denoising results by reordering the noisy image pix-
els to a 1D array and the application of pre-learned linear smoothing
filters to this pixel array. This method achieves superior denois-
ing performance compared to some well-known methods from the
literature, such as NLM [14].

In this paper, we propose a novel solution to image denoising
problem by reordering noisy image patches into a 3D patch cube
and transforming this 3D array to a transformation domain. The
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denoised image is generated by a thresholding process in the trans-
form domain and inverse transformation back to the image domain.
The main steps of the proposed approach can be summarized as fol-
lows.
1) For a given noisy image, we extract all the overlapping patches of
size
√
n×√n,

2) Reorder these patches into a 3D patch cube according to a simi-
larity based distance measure,
3) Apply a suitable transform to the 3D patch cube,
4) Realize thresholding in the transform domain to keep only the
significant transform coefficients which include most of the original
signal energy
5) Apply the inverse transform and relocate the obtained patches to
their original locations.

There are some important advantages to the proposed method
when compared to similar approaches from the literature. The first
advantage is the usage of 3D sparsifying transforms instead of the
1D learned filters which were proposed in the method of [33]. The
utilization of 3D transformation framework provides better sparsi-
fication power and improved denoising performance. In addition,
unlike the approach of [33], the proposed algorithm does not neces-
sitate any filter learning step, which presents another advantage of
the proposed approach compared to the method presented in [33].
Another advantage of the proposed algorithm is with respect to the
BM3D method from [32]. The proposed algorithm forms a single
reordered patch sequence by realizing a single ordering step at the
start of the algorithm. On the other hand, the BM3D algorithm pro-
poses the formation of patch groups for many patches extracted from
the image, by using that particular patch as a reference patch. The
utilization of a single ordering step over the whole corpus of patches
provides algorithmic simplicity when compared to the repeated
"similar patch search" process inherent to the BM3D algorithm.

The application of the triplet steps of "transform, threshold,
inverse transform" provides a well-established method that has been
used for image denoising [34]. However, this "heuristic shrinkage"
approach [35] does not in general represent the solution to a strictly
defined optimization problem. Recently, it has been shown that the
shrinkage based denoising paradigm can be modeled as the solution
to a rigorously defined optimization problem, when the utilized for-
ward and inverse transforms satisfy the tight frame conditions [36].
In this work, we will also prove that the forward and inverse trans-
formation matrices defined for our patch ordering based denoising
method are indeed tight frames. Hence, the denoising method that we
propose will form the solution to a rigorously defined optimization
problem defined over the noisy image.

We present an original combination of patch ordering with patch
based 3D transformations. We apply this novel procedure to image
denoising. We also present a novel tight frame formulation for the
forward analysis and backward synthesis transformations, which
are defined using 3D transformations over the ordered patch cube.
The developed image denoising algorithm is described comprehen-
sively in the following sections. A comparison of this algorithm with
some state-of-the-art image denoising methods is also given. The
obtained results demonstrate that the proposed algorithm achieves
competitive image denoising performance. The paper is organized as
follows. Firstly, we describe the proposed image denoising method
in detail in Section II. The subsections include the extraction of
the noisy image patches, reordering of the extracted patches, for-
ward transformation, threshold selection and thresholding, inverse
transformation, obtaining the preliminary denoised image and the
application of a Wiener filter to enhance the denoising performance.
Some important implementation aspects of the algorithm are clar-
ified in Section III. Experimental results for the proposed method
and other competing methods are presented in Section IV. The
conclusions are given in Section V.

2 A novel patch ordering based image denoising
method: PO3D

We will develop a 3D shrinkage based image denoising algorithm
by building upon the recently proposed patch ordering paradigm of

[33]. In this algorithm we apply 3D transformations to the image
patches after a specific ordering step. We will describe the corre-
sponding forward and backward transformation operations as tight
frames. We will be able to define the denoising problem as an opti-
mization problem using this tight frame formulation. The specific
steps which constitute the proposed image denoising algorithm are
explained in the forthcoming sections.

2.1 The extraction and ordering of the image patches

In the image denoising problem, the image acquisition model can be
formulated by the following linear equation:

Y = X + N (1)

Here, Y ∈ R
√
N×
√
N indicates the noisy image, and X ∈

R
√
N×
√
N is the original image. N is zero mean additive inde-

pendent and identically distributed white Gaussian noise with vari-
ance σ2. We can further define the vectorized image vector as
y = vec(Y) ∈ RN , where vec(·) operator converts a matrix to its
column stacked vector.

As the initial step of our proposed algorithm, we firstly extract
possibly overlapped patches of size

√
n×√n from the noisy image.

Here,
√
n indicates edge size of a square patch. The overlap size

can be selected arbitrarily. However, maximum overlaps in general
lead to best denoising results. Let Z̃i ∈ R

√
n×√n define an image

patch corresponding to ith pixel. The vectorized image patch can be
written as z̃i = vec(Z̃i) where z̃i ∈ Rn represents the vectorized
form for Z̃i. The total patch vector z̃ which is obtained from the
concatenation of all vectorized patches z̃i can be written as follows.

z̃ = Ky (2)

Here, K ∈ RM×N indicates the patch vector generating matrix
which generates the patch vector z̃ ∈ RM from the vectorized image
y ∈ RN . K depends on the overlap used in generating the patches.
The patch vector z̃ can be described by the extraction of all patches
of a certain overlap and sorting their vectorized versions serially. By
assigning a patch vector to each pixel of the image (by allowing an
extension of the image on the edges and by setting the overlap equal
to unity), the number of patches will be equal to the number of pixels.
In this case the size of the patch vector z̃ is computed as M = nN
when the size of the rectangular patches is

√
n×√n. Hence, K

becomes a redundant permutation matrix with K ∈ RM×N .
At this stage we also want to describe our preferred method

for the back conversion from the patch vector to the image vector.
After the processing of the patch vector, a denoised patch vector
ẑ will be obtained. The conversion from the patch vector to the
image vector will be realized by the least square solution ŷ = K†ẑ.
Here (·)† indicates the pseudoinverse with K†K = IN . For the par-
ticular K matrix as described above K† = KT /n, and therefore
KTK = nIN .

After the patch extraction process, the next step will be the
reordering of these patches to form a 3D patch cube. Reordering
process is realized by using a distance measure based on similar-
ity. There are different methods to measure the similarity, and in
this work the squared Euclidean distance is preferred as in [33].
Considering two patch vectors z̃i and z̃j which correspond to the
vectorized versions of Z̃i and Z̃j patch matrices respectively, the
squared Euclidean distance will be given as follows.

w(z̃i, z̃j) = ‖z̃i − z̃j‖2 (3)

By using this distance measure of patches as the basis of a new order-
ing, the patches will be rearranged with respect to their similarity.
This new rearrangement can be defined by a special permuta-
tion matrix Py ∈ RM×M , where Py has unit values occurring in
diagonal blocks as described in [33]. Py matrix will include the
patch ordering information pertaining to the particular y, hence the
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(·)y subscript. The reordered patch vector can now be denoted as
z = Pyz̃ = PyKy. The patch extraction and reordering processes
together are described in Fig. 1.

Reordering

# of 
patches

Fig. 1: Patch extraction and reordering of the extracted patches.

2.2 3D grouping of the extracted patches

The cube that is formed by stacking the ordered image patches seri-
ally will be called as the 3D patch cube. The transformations will
be applied to the reordered 3D patch cube followed by a threshold-
ing of the spectral coefficients of the 3D patch cube in the transform
domain. As the next step, the thresholded spectral coefficients will
be inverse transformed back to the patch domain. We will consider
3D transformations separable onto individual 2D and 1D transforms
as is the case in [32]. The 2D transformation will utilize the intra-
patch, local correlation of pixels in a single patch, whereas the 1D
transform will utilize the nonlocal interpatch correlation between
the spectral coefficients of similar patches. The 2D transformation
will be applied on each patch, while the 1D transformation is imple-
mented on the 1D fibers along the third dimension of the 2D patch
spectrum stacks. The inverse transformation will also be handled in
the same separable way as a succession of two transformations.

The method as devised here is different from the previous
approaches given in the literature. In [32], similar image patch
groups are found for most (if not all) patches of the image by con-
sidering them as the reference patch. In this work on the other hand,
the extracted patches are arranged and reordered according to a sim-
ilarity measure in a single ordering step, and a single ordered patch
cube is created for further transformations. This is in contrast to the
procedure in [32], where the similar patch group formation step is
repeated for all the reference patches as described above. As a fur-
ther note, in [33] the reordered patches are only utilized to form a
smooth sequence of the actual pixel values. All pixels are ordered to
a single 1D fiber according to the ordering learned from the patch
similarities [33]. The further filtering process is realized in the spa-
tial domain by filtering this 1D pixel fiber. However, in this work the
"filtering" is applied on 3D patch structures in the transform domain.
The utilization of both interpatch and intrapatch correlations by 3D
transforms as described above leads to much better sparsification in
the transform domain.

After the ordering is realized, the 3D patch cube is separated into
groups with the same number of patches. The number of patches
in all groups is fixed to a constant number K. The 3D patch cube
is separated into R groups with K patches in each. Here, we con-
sider the case where the obtained groups are disjoint (no patch
overlaps) for the sake of simplicity . However, a sliding overlap
might also considered for the formation of the patch groups. For
this principle case of disjoint groups, the number of patches in a
group multiplied by the number of groups gives the number of pix-
els of the image as KR = N . We will adopt the notation where
z(i,j) represents the jth patch of the ith patch group. Using this

notation, we can define the total patch vector of the rth patch
group as zr = [zT(r,1),z

T
(r,2), . . .z

T
(r,K)]

T . The Zr matrix contain-
ing the vectorized patches of a group in its columns can be given as
Zr = [z(r,1)z(r,2) . . .z(r,K)] with zr = vec(Zr). The reordered
total patch vector z can be restated as follows.

z = [zT1 ,z
T
2 , ..., z

T
R]T (4)

The grouping of the image patches into R unique disjoint groups
after reordering provides a data dependent new representation for the
noisy image. This adaptivity to underlying observation, in this case
the noisy image, will provide improved performance when compared
to straightforward application of non-adaptive analytic transforms to
data.

2.3 3D transformation of the grouped patches and
thresholding process

After the grouping process is done, the 3D transformation process is
handled by using a separable combination of 2D and 1D transforms
as in [37]. Our presentation here is based on the notation as intro-
duced in [37]. The vectorized form for the 2D transform of the patch
vector z(r,j) = vec(Z(r,j)) can be realized using a transformation
matrix T2 ∈ Cn×n.

θ(r,j) = T2z(r,j) (5)

Here, θ(r,j) ∈ Cn indicates the vectorized 2D spectrum of the jth
patch of the rth group. As a further note, if the 2D transformation
is separable over 1D transforms (as is the case for 2D DFT), the 2D
spectrum in matrix form can be obtained as D1Z(r,j)D

T
2 . Here D1

and D2 denote the constituent 1D transforms. As an example, for
the case of 2D-DFT, D1 = D2 where D1 is the 1D-DFT matrix. If
T2 is indeed separable, then T2 can be written as T2 = D2 ⊗D1,
where "⊗" denotes the Kronecker product. If both D1 and D2 are
unitary transforms, then T2 will also be a unitary transform.

After obtaining the spectra of all patches in the patch group, a
1D transform T1 ∈ CK×K is applied to each fiber across the 3rd
dimension of the group spectrum.

Ωr = [θ(r,1)θ(r,2)...θ(r,K)]T T1 = ΘrT T1 (6)

The 1D transform is applied to each row of the Θr ∈ Cn×K
matrix which contains in its columns the vectorized 2D spectrums
of patches in the rth group. The application of the 1D transform to
the fibers across this group spectrum benefits from the correlation
between the 2D spectral coefficients of patches in the same group.
If the columns of Ωr are stacked in a vector as in ωr = vec(Ωr) ∈
CnK , the 3D spectrum of a patch group can now be fully formalized
as follows. Here, Zr is the 2D spectrum matrix which contains in its
columns all z(r,j) spectral vectors for the rth group.

Ωr = T2ZrT T1
vec(Ωr) = (T1 ⊗ T2)vec(Zr)

ωr = Υzr

(7)

The transform matrix Υ ∈ CnK×nK transforms the patch vector of
a group. Here we should note that, if the transforms T1 and T2 are
unitary, Υ = T1 ⊗ T2 is also unitary.

We can denote the overall 3D spectrum of the total patch vector z̃
in a compact form as follows.

ω = (Υ⊗ IR)Pyz̃ (8)

Here, ω = [ωT1 ,ω
T
2 , ...,ω

T
R]T ∈ CM and IR ∈ RR×R indicates

the identity matrix. By using this definition, the complete forward
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analysis transform process starting from image vector and ending
with the full spectral vector can be described as follows.

ω = (Υ⊗ IR)PyKy = Φyy (9)

Here, Φy ∈ CM×N summarizes the full forward transform matrix
specific to the initial noisy image y. The forward transformation pro-
cedures as described above are visualized in Fig. 2. Denoising can
be realized by thresholding the obtained 3D spectral coefficients ω.
If we denote the thresholding operator with threshold λ as Γλ, the
obtained coefficients after the thresholding operation can be writ-
ten as ω̂ = Γλ(ω). The issue of threshold selection and the type of
thresholding utilized are explained in detail in Section III. The results
while using various different transforms for the constituent 1D and
2D transformations are also analyzed in detail in Section III.

2D-Transform

group 1

group 2

group R

1D-Transform

group 1 group 2 group R

Hardthresholding + 1D-Inverse transform + 2D-Inverse transform

patch 1

patch 2

patch K

Fig. 2: Transformation and inverse transformation processes.

2.4 3D inverse transformation of thresholded coefficients

The inverse transformation matrix from the 3D spectral coefficients
to the image domain can be obtained using procedures similar to the
forward transform. The thresholded spectrum ω̂ should be inverse
transformed back to the image domain, where the denoised patch
estimates will be relocated to their original locations. The inverse
transformation steps start with the 1D inverse transform followed by
the 2D inverse transform of the spectral coefficients. We firstly con-
sider the 1D inverse transform starting from the thresholded spectral
coefficients of group r, Ω̂r = Γλ(Ωr). Assuming unitary T1, the
1D inverse transformation can be written as follows.

Θ̂r = Ω̂rT ∗1 (10)

The denoised image patches Ẑr are obtained after the inverse 2D
transform is realized.

Ẑr = T H2 Θ̂r = T H2 Ω̂rT ∗1 (11)

In the above equation, we again assume unitary transformation T2,
and this equation can be rewritten using the Kronecker product
notation.

vec(Ẑr) = (T H1 ⊗ T H2 )vec(Ω̂r)

ẑr = (T1 ⊗ T2)H ω̂r = ΥH ω̂r
(12)

Using the above results, the estimate for the denoised total patch
vector ẑ can be obtained in a form similar to the forward transform

case.
ẑ = PTy (ΥH ⊗ IR)ω̂ (13)

The denoised image estimate can be formed as follows.

ŷ = K†PTy (ΥH ⊗ IR)ω̂ = Ψyω̂ (14)

Here, Ψy ∈ CN×M indicates the overall inverse transformation
matrix from the 3D spectral coefficients to the image domain. Here,
we want to clarify an important relation between the analysis and
synthesis transforms.

ΨyΦy = K†PTy (ΥH ⊗ IR)(Υ⊗ IR)PyK (15)

The above multiplication produces an identity matrix. By evaluating
(15) and by using (9) and (14), one can write the following equalities.

ΨyΦy = IN

Ψy = ΦH
y /n

(16)

As mentioned in the previous subsection, the obtained transforms
Ψy and Φy are data adaptive since they are formed using a
particular patch ordering which depends on the given data (image).

2.5 Wiener filtering using the intermediary denoised image

As a final step, we enhance our denoised estimate ŷ by using a
further Wiener filtering step [32]. We firstly calculate Wiener shrink-
age coefficients by recalculating the 3D spectral coefficients for the
intermediary denoised image ŷ.

Wwie =
|Φ̂ŷ|2

|Φ̂ŷ|2 + σ2
(17)

Here, Φ̂ = Φŷ denotes the analysis operator corresponding to the
intermediary denoised image ŷ. The Wiener filter is realized by
pointwise multiplication of the 3D spectral coefficients of the origi-
nal noisy image y with the Wiener coefficients Wwie. Afterwards,
the Wiener filtered coefficients are converted back to the image
domain. The Wiener filtering step is fully described by the following
equation.

ŷwie = Ψ̂(Wwie · (Φ̂y)) (18)

Here, Ψ̂ = Ψŷ denotes the synthesis operator corresponding to
the intermediary denoised image ŷ. By the further addition of the
Wiener filter, the denoising performance of the overall algorithm gets
enhanced.

All the explained steps of the proposed denoising algorithm are
summarized in Algorithm 1. We will be calling the proposed image
denoising algorithm which uses patch ordering and 3D transfor-
mations as the PO3D method. In Fig. 3, the main steps of the
proposed algorithm are depicted sequentially with block diagrams.
The obtained intermediary denoised image, which corresponds to
the output of the last block in Fig. 3, is used to calculate the Wiener
shrinkage coefficients in the Wiener filtering step.

3 Implementation aspects for the proposed
algorithm

3.1 Tight frame formulation for the forward transform

In the literature, the method that is composed of transforming a given
signal to a transform domain, thresholding the obtained spectrum
and then inverse transforming the thresholded coefficients is a well-
established solution for denoising problems. This approach is known
as "heuristic shrinkage" [35]. In a recent work in literature [36], it
has been shown that if the used transforms are tight frames then the
heuristic shrinkage can be formulated as the exact solution to a cer-
tain optimization problem. Let us consider the frame {φi} ∈ CN ,
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Extraction
Ordering Grouping

group 1 group R

3D Transform Thresholding

Noisy 3D patch cube

Inverse

3D Transform
Regrouping

Inverse

Ordering

 Generating image

 from the denoised

patches

group 1 group RIntermediate denoised 

3D patch cube

Transform coe!cients
Extracted patches

Thresholded coe!cientsIntermediate de-

noised patches
Denoised patches

 Wiener

"ltering

Fig. 3: Block diagram for the proposed PO3D image denoising method.

Algorithm 1 Image Denoising using Patch Ordering and 3D Trans-
formations - PO3D

Input: The noisy image Y.

1: Obtain the image and total patch vectors: y = vec(Y), z̃ =
Ky.

2: Reorder the patch vector: z = Pyz̃.
3: for r := 1, 2, . . . , R do . for every group in the 3D patch cube.
4: for j := 1, 2, . . . ,K do . for every patch in a group.
5: Apply 2D transform to rth group: θ(r,j) = T2z(r,j).
6: end for
7: Obtain the 2D spectra: Θr = [θ(r,1),θ(r,2), ...,θ(r,K)].
8: for i := 1, 2, . . . , n do . for every fiber in a group.
9: Apply 1D transform: Ωr = ΘrT T1

10: end for
11: Form the vector: vec(Ωr) = ωr = (T1 ⊗ T2)zr .
12: end for
13: Obtain overall 3D spectrum: ω = [ωT1 ,ω

T
2 , ...,ω

T
R]T .

14: Apply thresholding to the 3D spectrum: ω̂ = Γλ(ω).
15: for r := 1, 2, . . . , R do . for every group.
16: for i := 1, 2, . . . , n do . for every fiber in a group.
17: Considering ω̂r = vec(Ω̂r), apply inverse 1D trans-

form: Θ̂r = Ω̂rT ∗1
18: end for
19: for j := 1, 2, . . . ,K do . for every patch in a group.
20: Apply inverse 2D transform: Ẑr = T H2 Θ̂r .
21: end for
22: Form: ẑr = vec(Ẑr) = (T1 ⊗ T2)H ω̂r
23: end for
24: Obtain the intermediate denoised image vector: ŷ = PyK†ẑ.

25: Obtain Wiener shrinkage coefficients: Wwie =
|Φ̂ŷ|2
|Φ̂ŷ|2+σ̂2

.

26: Obtain final image vector estimate by Wiener filtering: ywie =
Ψ̂(Wwie · (Φ̂y))

Output: The denoised image Ŷwie.

where φi are the rows of Φ, where Φ is the forward (analysis) trans-
form matrix calculated by the PO3D method for a given image. We
want to calculate the frame bounds for this frame. The following
equation can be written by using (16).

∑

i

|〈φi,y〉|2 = yTΦHΦy = n‖y‖2 (19)

This equation shows that rows of Φ form a tight frame with frame
constant n, where n is the patch size. Hence, the frame Φ̂ = Φ/

√
n

will be a Parseval frame, that is it is a tight frame with unit frame
constant. Using the results from [36] and the fact that Φ is a tight
frame, we can come up with the following proposition.

Proposition: Assume Φ is the forward analysis operator for
an image vector y as defined by the PO3D algorithm. Consider
the ω̂ = Γλ(Φ̂y) heuristic shrinkage operation as defined by the
PO3D algorithm, where Γλ(·) denotes hard-thresholding by λ and
Φ̂ = Φ/

√
n. The calculated spectral coefficients ω̂ for the above

operation are the actual solution to the following optimization
problem.

ω̂ = min
ω
‖y − Φ̂

H
ω‖22 + ‖(I− Φ̂Φ̂

H
)ω‖22 + λ2‖ω‖0 (20)

This result follows from the theoretical discussion as detailed
in [36]. The optimization problem defined in (20) is known as the
balanced sparse representation approach in the literature [38]. The
denoised image corresponding to the solution ω̂ for this optimization
problem will be calculated as ŷ = Φ̂

H
ω̂.

3.2 Determining the threshold value

The determination of a good threshold value for thresholding based
denoising methods is an important problem. In the literature there
are different approaches for threshold selection. Some of the well-
known methods include the VisuShrink method which applies the
Universal threshold proposed by [39], the SureShrink method which
attempts to minimize the Unbiased Risk Estimate as proposed in
[40], and the BayesShrink method which uses the Bayesian frame-
work as proposed by [41]. We employ the threshold selection method
as proposed in [42], where the threshold is chosen as a value propor-
tional to an estimate of the noise standard deviation. The utilized
threshold selection method can be summarized with the following
formula.

T = β
µ̂√

2erf−1( 12 )
(21)

Here, T is the calculated threshold level. β is a suitably chosen con-
stant, and erf(z) is the "error function". The parameter µ̂ defines the
median absolute value of the spectral coefficients which are obtained
from the 3D transformation step. As denoted in [42], β depends on
the input SNR. Hence, the value of β is to be decided after several
experiments for various input SNR values. These obtained β param-
eters are given in the Simulations section. By using these β values
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different threshold levels are obtained from (21) for different input
SNR values.

Similar to the threshold selection, there are various types
of thresholding methods. Soft-thresholding and hard-thresholding
are the most utilized methods. We employ the hard-thresholding
approach in our work.

3.3 Selecting the utilized 1D and 2D subtransforms

One of the most important aspects of the proposed work is the
choice for the utilized transforms. As previously mentioned, the
3D transformation task is handled in a separable manner via 2D
and 1D transforms. The transformations we utilized in the proposed
approach include, DCT, DST, Wavelet (Haar, Bior 1.5) transform
and Fourier transform (DFT). Hence there are several combina-
tions possible for the 2D and 1D transform pairs. We observe the
results for these different combinations of transforms to decide
which transform combinations to use for the initial denoising and
Wiener filtering steps. Final choices for the transforms are obtained
by optimizing the performance for the initial denoising and Wiener
filtering steps separately. The experiments for this transform selec-
tion setup are realized for the "House" image and a noise standard
deviation of σ = 10. We use the peak-signal-to-noise ratio (PSNR
[dB]) as an image quality metric to measure the performance of the
different transforms. This metric is defined by the following equation
for a reference image X and a test image Y, both of size M ×N
[43].

PSNR(X,Y) = 10 log10

(
2552

MSE(X,Y)

)
(22)

Here, MSE(X,Y) = 1
MN

∑M
i=1

∑N
j=1(Xij −Yij)

2. The maxi-
mum intensity for the images is assumed to be 255.

The output PSNR values for the use of different 2D and 1D trans-
forms pairs in the initial thresholding-based denoising step are given
in Table 1. These results are obtained using fixed 2D DCT and
1D Haar transforms in the Wiener filtering step. In this table, the
first row shows the result of the for the initial thresholding-based
denoising step, and the second row shows the result with the further
application of the Wiener filtering step.

It can be seen from Table 1 that the best results are obtained when
the 2D and 1D transforms are set to DST and DCT respectively.
The transforms in the Wiener filtering step are updated by repeating
the experiments using these transforms in the initial thresholding-
based step. The results for these experiments are shown in Table
2. The results given in Table 2 indicate that the best results are
obtained when the 2D and 1D transforms are set to the Bior 1.5
wavelet and Haar transforms, respectively. Thus, the transforms in
Wiener filtering step are fixed as the 2D Bior 1.5 and 1D Haar
transforms. Afterwards we have checked whether better performance
can be achieved by using different transform combinations in the
thresholding-based step. As can be inferred from Table 3, we get the
best results when we reuse the exact same transform combination.

Table 1 PSNR (dB) results for the use of different transforms pairs in
thresholding-based denoising step.

2D
1D

DCT DST DFT Haar

DCT
36.26 36.22 35.24 36.28
36.58 36.51 36.12 36.56

DST
36.28 36.09 35.37 36.29
36.60 36.40 36.23 36.57

DFT
35.24 35.25 35.16 35.18
36.19 36.14 36.18 36.13

Bior1.5
36.24 36.19 35.19 36.29
36.56 36.48 36.00 36.55

Table 2 PSNR (dB) results for the use of different transforms pairs in Wiener
filtering step.

2D
1D

DCT DST DFT Haar

DCT 36.54 32.68 31.78 36.59

DST 33.37 29.22 28.75 33.35

DFT 31.51 28.54 28.38 31.51

Bior1.5 36.54 32.38 31.36 36.63

Table 3 PSNR (dB) values for the use of different transforms in thresholding
step when Wiener step transforms are set to Haar and Bior1.5 wavelet.

2D
1D

DCT DST DFT Haar

DCT
36.26 36.22 35.24 36.28
36.63 36.56 36.27 36.59

DST
36.28 36.09 35.37 36.29
36.64 36.42 36.35 36.59

DFT
35.24 35.25 35.16 35.18
36.31 36.25 36.28 36.21

Bior1.5
36.24 36.19 35.19 36.29
36.57 36.48 36.10 36.50

After several experiments, the 2D and 1D transforms for the
thresholding-based denoising step are selected as 2D-DST and 1D-
DCT respectively. The 2D and 1D transforms for the Wiener filtering
step are selected as Bior 1.5 2D-wavelet transform and 1D-Haar
transform, respectively.

4 Simulations

In this section the natural image denoising performance of the pro-
posed algorithm is studied. We give the image denoising results of
the proposed PO3D algorithm together with a comprehensive com-
parison to state-of-the-art methods including the nonlocal means
(NLM) [14], K-SVD [23], OCTOBOS [29], the patch ordering based
method (PO) of [33], and the recent denoising methods MS-EPLL
[30] and STROLLR [31]. The implementations were performed in
Matlab on a system with an Intel Core i7 CPU at 2.4GHz, 8 GB
memory and 64-bit Windows 7 operating system. The denoising
results are obtained by realizing all the algorithms for various differ-
ent noise levels and different test images, including the Set12 dataset
[44]. The Set12 dataset includes frequently used natural images as
pictured in Fig. 4.

We utilize the PSNR and the structural similarity index measure
(SSIM) as image quality metrics for performance comparison of the

Fig. 4: Images in the Set12 dataset.
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Table 4 PSNR / SSIM results for different methods and images in the high SNR region.
σ / PSNR of noisy image method Lena House Hill Lake Boats Clock F.print Avgs.

10/28.14

OCTOBOS 35.59 / 0.58 36.10 / 0.46 33.39 / 0.69 32.75 / 0.63 33.64 / 0.65 36.09 / 0.51 32.30 / 0.96 34.26 / 0.64
PO 35.40 / 0.65 35.82 / 0.56 33.47 / 0.73 32.74 / 0.69 33.66 / 0.71 35.27 / 0.52 31.98 / 0.96 34.01 / 0.69

KSVD 35.49 / 0.62 35.93 / 0.51 33.37 / 0.71 32.84 / 0.66 33.62 / 0.68 35.71 / 0.54 32.32 / 0.96 34.18 / 0.67
NLM 35.01 / 0.58 35.48 / 0.46 32.19 / 0.62 31.37 / 0.59 32.50 / 0.61 34.59 / 0.52 31.03 / 0.95 33.17 / 0.62

MS-EPLL 35.63 / 0.62 35.76 / 0.48 33.50 / 0.73 32.81 / 0.66 33.67 / 0.67 36.12 / 0.53 32.11 / 0.96 34.23 / 0.66
STROLLR 35.93 / 0.64 36.61 / 0.57 33.59 / 0.74 32.89 / 0.70 33.81 / 0.70 35.81 / 0.53 32.47 / 0.96 34.44 / 0.69

PO3D 35.86 / 0.64 36.64 / 0.56 33.64 / 0.73 32.77 / 0.65 33.84 / 0.68 36.15 / 0.55 32.47 / 0.96 34.48 / 0.68

15/24.61

OCTOBOS 33.89 / 0.54 34.36 / 0.40 31.59 / 0.61 30.93 / 0.57 31.83 / 0.59 33.91 / 0.47 30.05 / 0.94 32.37 / 0.59
PO 33.84 / 0.58 34.37 / 0.49 31.75 / 0.65 30.96 / 0.61 31.90 / 0.63 33.47 / 0.48 29.82 / 0.93 32.30 / 0.63

KSVD 33.68 / 0.56 34.24 / 0.43 31.50 / 0.61 30.98 / 0.59 31.76 / 0.59 33.68 / 0.49 30.09 / 0.94 32.29 / 0.60
NLM 33.16 / 0.53 34.03 / 0.41 30.29 / 0.52 29.89 / 0.53 30.55 / 0.52 32.95 / 0.47 28.91 / 0.91 31.40 / 0.56

MS-EPLL 33.99 / 0.57 34.22 / 0.42 31.72 / 0.64 31.09 / 0.60 31.94 / 0.61 34.05 / 0.50 29.84 / 0.94 32.41 / 0.61
STROLLR 34.25 / 0.58 34.77 / 0.50 31.79 / 0.66 31.03 / 0.61 31.97 / 0.63 33.67 / 0.50 30.27 / 0.94 32.54 / 0.63

PO3D 34.18 / 0.58 34.94 / 0.46 31.85 / 0.65 31.02 / 0.59 32.06 / 0.62 34.07 / 0.51 30.24 / 0.94 32.63 / 0.62

20/22.11

OCTOBOS 32.59 / 0.50 33.14 / 0.37 30.34 / 0.53 29.72 / 0.52 30.49 / 0.45 32.28 / 0.45 28.46 / 0.91 31.00 / 0.54
PO 32.72 / 0.54 33.32 / 0.44 30.59 / 0.58 29.76 / 0.56 30.67 / 0.58 32.18 / 0.45 28.35 / 0.91 31.08 / 0.58

KSVD 32.44 / 0.51 33.10 / 0.40 30.16 / 0.53 29.75 / 0.54 30.37 / 0.53 31.97 / 0.46 28.47 / 0.91 30.89 / 0.55
NLM 31.64 / 0.48 32.59 / 0.38 28.92 / 0.45 28.54 / 0.48 29.07 / 0.46 31.32 / 0.43 27.12 / 0.86 29.88 / 0.51

MS-EPLL 32.86 / 0.52 33.22 / 0.37 30.54 / 0.56 29.92 / 0.55 30.73 / 0.55 32.68 / 0.47 28.39 / 0.91 31.19 / 0.56
STROLLR 33.06 / 0.55 33.49 / 0.44 30.61 / 0.59 29.79 / 0.56 30.66 / 0.57 32.16 / 0.47 28.76 / 0.93 31.22 / 0.59

PO3D 32.94 / 0.54 33.80 / 0.41 30.69 / 0.59 29.83 / 0.55 30.81 / 0.57 32.59 / 0.48 28.78 / 0.92 31.35 / 0.58

25/20.18

OCTOBOS 31.58 / 0.47 32.13 / 0.34 29.37 / 0.47 28.75 / 0.48 29.45 / 0.47 31.09 / 0.43 27.26 / 0.88 29.95 / 0.51
PO 31.79 / 0.50 32.58 / 0.39 29.74 / 0.53 28.80 / 0.52 29.71 / 0.53 31.16 / 0.43 27.32 / 0.89 30.15 / 0.54

KSVD 31.33 / 0.48 32.11 / 0.37 29.16 / 0.47 28.75 / 0.50 29.28 / 0.48 30.83 / 0.43 27.23 / 0.88 29.81 / 0.52
NLM 30.44 / 0.44 31.18 / 0.35 27.91 / 0.40 27.38 / 0.44 27.91 / 0.41 29.65 / 0.39 25.71 / 0.81 28.60 / 0.46

MS-EPLL 31.95 / 0.49 32.39 / 0.36 29.68 / 0.50 29.02 / 0.51 29.79 / 0.51 31.58 / 0.45 27.26 / 0.89 30.24 / 0.53
STROLLR 31.99 / 0.51 32.46 / 0.40 29.71 / 0.54 28.90 / 0.53 29.61 / 0.53 31.05 / 0.44 27.63 / 0.90 30.19 / 0.55

PO3D 31.96 / 0.51 32.94 / 0.37 29.78 / 0.54 28.91 / 0.51 29.81 / 0.53 31.41 / 0.46 27.66 / 0.89 30.35 / 0.54

different methods. The definition of SSIM is given as follows, while
the definition of PSNR was given in Section 3.3.

SSIM(X,Y) = l(X,Y)c(X,Y)s(X,Y) (23)

Here, l(X,Y), c(X,Y) and s(X,Y) indicate the luminance, con-
trast and structure comparisons, respectively. The detailed expres-
sions for these two image quality metrics are available in [43].

The single input of the proposed algorithm is the noisy image.
512× 512 sized noisy images are used to produce N = 262,144
patches, and 256× 256 noisy images result in a total ofN = 65,536
patches by using maximal overlap and periodic extension of the
image. As explained with details in the previous sections, these
patches are reordered according to a similarity measure, then the
obtained 3D patch cube is transformed using a 3D transformation.
The transforms which are used in the thresholding step and the
Wiener filtering step are chosen as the 2D DST-1D DCT and 2D Bior
1.5 wavelet-1D Haar transform pairs, respectively. The β constant is
chosen between the values 3 and 5.5 depending on the noise lev-
els. It should be noted that the filters used in 1D filtering process of
the patch ordering based method of [33] are pre-learned for different
noise levels. Additionally, this method necessitates several parame-
ters for the filter learning process. The parameter selection and filter
learning processes for this method are computationally expensive.
There is no pre-learned filter for σ = 35 level, hence the simulations
of this method for σ = 35 have been realized by using the same
parameters as listed for σ = 25.

Table 4 and Table 5 detail the image denoising results for the pro-
posed PO3D algorithm and for the competing denoising algorithms
from the literature. As seen from Table 4 and Table 5, the proposed
PO3D algorithm achieves PSNR and SSIM performances compet-
itive with the state-of-the-art algorithms. The proposed algorithm
performs better than the NLM [14], K-SVD [23], OCTOBOS [29],
PO [33], MS-EPLL [30] and STROLLR [31] algorithms on average.
The proposed PO3D denoising scheme performs 1.8 dB better on
average (over all images and noise levels) than the image denois-
ing framework of NLM [14]. The results of PO3D are also 0.65 dB
better on average than the dictionary learning based denoising with
KSVD. When the results of OCTOBOS [29] framework are com-
pared with the PO3D framework, it is seen that the PO3D algorithm

provides 0.42 dB improvement on average. Finally, although the
PO can achieve quite well performances especially for the high
noise levels, the proposed PO3D algorithm performs on average
0.21 dB better than PO [33]. The proposed PO3D algorithm is about
0.1 dB better than the recently proposed MS-EPLL and STROLLR
methods [30, 31]. Fig. 5 and Fig. 6 depict the noisy "house" and
"boats" images together with the denoised images for the different
methods at σ = 10. The results indicate that the proposed PO3D
algorithm provides better denoising performance than the competing
algorithms in most of the simulation setups.

We give in Table 6 the required computation times for all the
compared methods. These are the runtimes needed to denoise a
256× 256 image. For all the algorithms, we utilized their publicly
available codes with default settings. As seen from the Table 6, the
proposed method necessitates the least computational time amongst
the included algorithms. Table 7 lists the denoising results for the
Set12 dataset for σ = 10, 25, 50. These results are the averages over
all the images in the dataset. Table 7 indicates that for the Set12
dataset, the PO3D algorithm performs on average better than all the
other competing algorithms.

5 Conclusions

We have presented a new image denoising algorithm which proposes
an original combination of the patch ordering scheme with potent 3D
sparsifying transforms. The proposed algorithm simplifies the search
process for similar patches by employing a single and efficient patch
ordering step at the start of the algorithm. The performance of the
proposed algorithm is improved by using effective 3D transforma-
tions on groups of patches, instead of simply filtering 1D fibers of
pixels as suggested in the literature. Simulations with various natu-
ral test images show that the proposed algorithm perform better than
the well-known denoising methods such as NLM and KSVD, while
its performance is on a par with other state-of-the-art methods.
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Table 5 PSNR / SSIM results for different methods and images in the low SNR region.
σ / PSNR of noisy image method Lena House Hill Lake Boat Clock F.print Avgs.

35/17.25

OCTOBOS 29.99 / 0.42 30.46 / 0.31 28.01 / 0.38 27.29 / 0.43 27.90 / 0.40 29.27 / 0.40 25.50 / 0.83 28.35 / 0.45
PO 30.14 / 0.44 30.93 / 0.35 28.32 / 0.46 27.47 / 0.47 28.21 / 0.47 29.60 / 0.38 25.51 / 0.84 28.60 / 0.49

KSVD 29.70 / 0.43 30.37 / 0.32 27.72 / 0.39 27.24 / 0.44 27.64 / 0.41 29.10 / 0.38 25.44 / 0.82 28.17 / 0.46
NLM 28.68 / 0.38 28.83 / 0.29 26.59 / 0.33 25.68 / 0.38 26.20 / 0.34 27.06 / 0.32 23.54 / 0.72 26.65 / 0.40

MS-EPLL 30.53 / 0.45 31.06 / 0.33 28.44 / 0.43 27.64 / 0.46 28.35 / 0.44 29.91 / 0.42 25.59 / 0.84 28.79 / 0.48
STROLLR 30.60 / 0.46 30.72 / 0.34 28.37 / 0.45 27.45 / 0.47 28.17 / 0.46 29.30 / 0.39 26.06 / 0.86 28.67 / 0.49

PO3D 30.42 / 0.46 31.46 / 0.34 28.46 / 0.46 27.52 / 0.46 28.28 / 0.46 29.65 / 0.42 26.07 / 0.85 28.84 / 0.49

50/14.16

OCTOBOS 28.34 / 0.36 28.61 / 0.27 26.65 / 0.30 25.69 / 0.36 26.30 / 0.32 27.03 / 0.34 23.67 / 0.74 26.61 / 0.39
PO 28.96 / 0.40 29.44 / 0.31 26.99 / 0.36 25.89 / 0.40 26.67 / 0.38 27.90 / 0.36 24.13 / 0.79 27.14 / 0.43

KSVD 27.89 / 0.37 28.10 / 0.27 26.25 / 0.32 25.44 / 0.37 25.96 / 0.33 26.81 / 0.31 23.27 / 0.71 26.24 / 0.38
NLM 26.94 / 0.32 26.49 / 0.23 25.45 / 0.26 24.03 / 0.31 24.60 / 0.27 24.88 / 0.25 21.07 / 0.58 24.78 / 0.32

MS-EPLL 28.99 / 0.39 29.45 / 0.30 27.15 / 0.35 26.13 / 0.40 26.80 / 0.37 28.15 / 0.38 23.84 / 0.77 27.22 / 0.42
STROLLR 28.86 / 0.40 29.01 / 0.31 26.98 / 0.37 25.95 / 0.40 26.58 / 0.38 27.20 / 0.33 24.47 / 0.81 27.01 / 0.43

PO3D 28.78 / 0.40 29.67 / 0.30 27.08 / 0.38 25.98 / 0.40 26.64 / 0.37 27.69 / 0.37 24.44 / 0.80 27.18 / 0.43

75/10.63

OCTOBOS 26.38 / 0.30 26.46 / 0.22 25.23 / 0.24 23.87 / 0.29 24.51 / 0.25 24.56 / 0.26 21.37 / 0.61 24.62 / 0.31
PO 27.22 / 0.33 27.34 / 0.26 25.44 / 0.28 24.13 / 0.32 25.02 / 0.30 25.84 / 0.30 22.45 / 0.71 25.35 / 0.36

KSVD 25.74 / 0.30 25.34 / 0.20 24.87 / 0.26 23.46 / 0.30 23.98 / 0.25 24.26 / 0.23 19.89 / 0.52 23.93 / 0.29
NLM 25.13 / 0.24 24.30 / 0.17 24.33 / 0.21 22.38 / 0.24 23.12 / 0.20 22.89 / 0.18 18.63 / 0.38 22.96 / 0.23

MS-EPLL 27.24 / 0.33 27.48 / 0.25 25.73 / 0.27 24.39 / 0.32 25.11 / 0.28 25.99 / 0.31 21.77 / 0.65 25.39 / 0.34
STROLLR 26.96 / 0.32 26.88 / 0.24 25.44 / 0.28 24.25 / 0.33 24.81 / 0.29 25.29 / 0.27 22.70 / 0.72 25.19 / 0.35

PO3D 26.92 / 0.33 27.32 / 0.25 25.60 / 0.29 24.22 / 0.32 24.79 / 0.27 25.22 / 0.29 22.66 / 0.71 25.25 / 0.35

Overall averages (for Tables 4 and 5)

OCTOBOS 31.19 / 0.45 31.61 / 0.34 29.22 / 0.46 28.43 / 0.47 29.16 / 0.45 30.60 / 0.41 26.94 / 0.84 29.59 / 0.49
PO 31.44 / 0.49 31.97 / 0.40 29.47 / 0.51 28.53 / 0.51 29.40 / 0.51 30.77 / 0.42 27.08 / 0.86 29.80 / 0.53

KSVD 30.89 / 0.47 31.31 / 0.36 29.01 / 0.47 28.35 / 0.49 28.94 / 0.47 30.34 / 0.41 26.67 / 0.82 29.36 / 0.50
NLM 30.14 / 0.42 30.41 / 0.33 27.95 / 0.40 27.04 / 0.42 27.70 / 0.40 29.05 / 0.37 25.14 / 0.74 28.21 / 0.44

MS-EPLL 31.59 / 0.48 31.94 / 0.36 29.54 / 0.50 28.71 / 0.50 29.48 / 0.49 31.21 / 0.44 26.97 / 0.85 29.92 / 0.52
STROLLR 31.66 / 0.49 31.99 / 0.40 29.50 / 0.52 28.61 / 0.52 29.37 / 0.51 30.64 / 0.42 27.48 / 0.87 29.89 / 0.53

PO3D 31.58 / 0.49 32.39 / 0.38 29.59 / 0.52 28.61 / 0.50 29.46 / 0.51 30.97 / 0.44 27.47 / 0.87 30.01 / 0.53

Original image

a) b) c)

d) e) f)

Fig. 5: Image denoising results for "house" image, σ = 10: a) Noisy image (28.14 dB) together with the zoomed section of the original image,
b) Denoised image using PO (35.82 dB), c) Denoised image using OCTOBOS (36.10 dB), d) Denoised image using MS-EPLL (35.76 dB) e)
Denoised image using STROLLR (36.61 dB) f) Denoised image using proposed algorithm (36.64 dB).
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Table 6 Computation times (in seconds) for the competing algorithms for 256× 256 image.

method PO3D OCTOBOS PO KSVD NLM MS-EPLL STROLLR

Computation time (s) 20.5 143.6 359.5 198.6 72.1 139.4 76.3
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Original image

a) b) c)

d) e) f)

Fig. 6: Image denoising results for "boats" image, σ = 10: a) Noisy image (28.14 dB) together with the zoomed section of the original image,
b) Denoised image using PO (33.66 dB), c) Denoised image using OCTOBOS (33.64 dB), d) Denoised image using MS-EPLL (33.67 dB) e)
Denoised image using STROLLR (33.81 dB) f) Denoised image using proposed algorithm (33.84 dB).

Table 7 PSNR / SSIM results of different methods for the Set12 dataset.

method σ = 10 σ = 25 σ = 50 Average

OCTOBOS 34.19 / 0.67 29.57 / 0.53 26.14 / 0.40 29.97 / 0.54
PO 33.82 / 0.71 29.67 / 0.56 26.61 / 0.44 30.03 / 0.57

KSVD 33.96 / 0.70 29.35 / 0.54 25.84 / 0.40 29.72 / 0.55
NLM 32.60 / 0.64 28.29 / 0.48 24.52 / 0.34 28.47 / 0.49

MS-EPLL 34.14 / 0.71 29.78 / 0.56 26.59 / 0.43 30.17 / 0.57
STROLLR 34.18 / 0.72 29.66 / 0.57 26.46 / 0.44 30.10 / 0.57

PO3D 34.29 / 0.71 29.79 / 0.57 26.49 / 0.43 30.19 / 0.57

6 References
1 X. L. Bahadir K. Gunturk, Image Restoration Fundamentals and Advances. CRC

Press, 2017.
2 S. E. Umbaugh, Computer Vision and Image Processing: A Practical Approach

Using CVIPTools. NJ, USA: Prentice Hall PTR, 1997.
3 I. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters, Principles and

Applications. Boston: Kluwer Academic Publishers, 1990.
4 G. Yu and G. Sapiro, “DCT Image Denoising: a Simple and Effective Image

Denoising Algorithm,” Image Processing On Line, vol. 1, pp. 292–296, 2011.
5 S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image

denoising and compression,” IEEE Transactions on Image Processing, vol. 9, no. 9,
pp. 1532–1546, Sep 2000.

6 M. A. T. F. Ivan W. Selesnick, “Signal restoration with overcomplete wavelet
transforms: comparison of analysis and synthesis priors,” Proc.SPIE, vol. 7446, pp.
7446 – 7446 – 15, 2009. [Online]. Available: http://dx.doi.org/10.1117/12.826663

7 P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffu-
sion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 7, pp. 629–639, Jul 1990.

8 L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1, pp. 259 – 268, 1992.

9 A. N. Tikhonov and V. Y. Arsenin, “Solution of ill-posed problems,” Washington
DC: VH. Winston, 1977.

10 L. Yaroslavsky, Digital Picture Processing : An Introduction. Springer-Verlag,
1985.

11 C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in
Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271),
Jan 1998, pp. 839–846.

12 G. Shikkenawis and S. K. Mitra, “2D orthogonal locality preserving projection
for image denoising,” IEEE Transactions on Image Processing, vol. 25, no. 1, pp.
262–273, Jan 2016.

13 C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-based image
denoising,” IEEE Transactions on Image Processing, vol. 15, no. 10, pp. 2866–
2878, Oct 2006.

14 A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms,
with a new one,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 490–530,
2005. [Online]. Available: http://dx.doi.org/10.1137/040616024

15 J. Ji, F. Ren, H. Ji, Y. Yao, and G. Hou, “Generalised non-locally centralised image
de-noising using sparse dictionary,” IET Image Processing, vol. 12, no. 7, pp.
1072–1078, 2018.

16 M. Diwakar and M. Kumar, “CT image denoising using NLM and correlation-
based wavelet packet thresholding,” IET Image Processing, vol. 12, no. 5, pp. 708–
715, 2018.

17 A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denois-
ing,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 2, June 2005, pp. 60–65 vol. 2.

18 D. D. Muresan and T. W. Parks, “Adaptive principal components and image denois-
ing,” in Proceedings 2003 International Conference on Image Processing (Cat.
No.03CH37429), vol. 1, Sept 2003, pp. I–101–4 vol.1.

19 L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denois-
ing by principal component analysis with local pixel grouping,” Pattern
Recogn., vol. 43, no. 4, pp. 1531–1549, Apr. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.patcog.2009.09.023

20 M. P. Nguyen and S. Y. Chun, “Bounded self-weights estimation method for non-
local means image denoising using minimax estimators,” IEEE Transactions on
Image Processing, vol. 26, no. 4, pp. 1637–1649, April 2017.

21 M. Elad, Sparse and Redundant Representations: From Theory to Applications in
Signal and Image Processing. Springer, 2010.

22 M. Aharon, “Overcomplete dictionaries for sparse representations of signals,”
Ph.D. dissertation, Israel Institute of Technology,Haifa, 2006.

23 M. Elad and M. Aharon, “Image denoising via sparse and redundant representa-
tions over learned dictionaries,” IEEE Transactions on Image Processing, vol. 15,
no. 12, pp. 3736–3745, Dec 2006.

24 E. M. Eksioglu and O. Bayir, “K-SVD meets transform learning: Transform K-
SVD,” IEEE Signal Processing Letters, vol. 21, no. 3, pp. 347–351, March 2014.

25 R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A dictionary-learning
algorithm for the analysis sparse model,” IEEE Transactions on Signal Processing,
vol. 61, no. 3, pp. 661–677, Feb 2013.

IET Research Journals, pp. 1–10
c© The Institution of Engineering and Technology 2015 9

Auto-generated PDF by ReView IET Image Processing

MainLatexF ile.pdfMainDocument IET Review Copy Only 10



26 E. M. Eksioglu and O. Bayir, “Overcomplete sparsifying transform learning
algorithm using a constrained least squares approach,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp.
7158–7162.

27 M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Constrained overcomplete
analysis operator learning for cosparse signal modelling,” IEEE Transactions on
Signal Processing, vol. 61, no. 9, pp. 2341–2355, May 2013.

28 S. Ravishankar and Y. Bresler, “Learning sparsifying transforms,” IEEE Transac-
tions on Signal Processing, vol. 61, no. 5, pp. 1072–1086, March 2013.

29 B. Wen, S. Ravishankar, and Y. Bresler, “Structured overcomplete sparsifying
transform learning with convergence guarantees and applications,” International
Journal of Computer Vision, vol. 114, no. 2, pp. 137–167, Sep 2015. [Online].
Available: https://doi.org/10.1007/s11263-014-0761-1

30 V. Papyan and M. Elad, “Multi-scale patch-based image restoration,” IEEE
Transactions on Image Processing, vol. 25, no. 1, pp. 249–261, Jan 2016.

31 B. Wen, Y. Li, and Y. Bresler, “When sparsity meets low-rankness: Transform
learning with non-local low-rank constraint for image restoration,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
March 2017, pp. 2297–2301.

32 K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse
3-d transform-domain collaborative filtering,” IEEE Transactions on Image Pro-
cessing, vol. 16, no. 8, pp. 2080–2095, Aug 2007.

33 I. Ram, M. Elad, and I. Cohen, “Image processing using smooth ordering of its
patches,” IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2764–2774,
July 2013.

34 M. Jansen, Noise Reduction by Wavelet Thresholding. Springer-Verlag, 2001.
35 M. Elad, “Why simple shrinkage is still relevant for redundant representations?”

IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5559–5569, Dec
2006.

36 J.-F. Cai, H. Ji, Z. Shen, and G.-B. Ye, “Data-driven tight frame construction and
image denoising,” Applied and Computational Harmonic Analysis, vol. 37, no. 1,
pp. 89 – 105, 2014.

37 A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and variational
image deblurring,” IEEE Transactions on Image Processing, vol. 21, no. 4, pp.
1715–1728, April 2012.

38 Y. Liu, J.-F. Cai, Z. Zhan, D. Guo, J. Ye, Z. Chen, and X. Qu, “Balanced
sparse model for tight frames in compressed sensing magnetic resonance
imaging,” PLOS ONE, vol. 10, no. 4, pp. 1–19, 04 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0119584

39 D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994. [Online]. Available:
http://dx.doi.org/10.1093/biomet/81.3.425

40 ——, “Adapting to unknown smoothness via wavelet shrink-
age,” Journal of the American Statistical Association,
vol. 90, no. 432, pp. 1200–1224, 1995. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476626

41 S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image
denoising and compression,” IEEE Transactions on Image Processing, vol. 9, no. 9,
pp. 1532–1546, Sep 2000.

42 K. R. Alyson K. Fletcher, Vivek K Goyal, “Iterative projective wavelet
methods for denoising,” Proc.SPIE, vol. 5207, 2003. [Online]. Available:
https://doi.org/10.1117/12.507250

43 A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in 20th Interna-
tional Conference on Pattern Recognition, Aug 2010, pp. 2366–2369.

44 W. Zuo, K. Zhang, and L. Zhang, Convolutional Neural Networks for Image
Denoising and Restoration. Cham: Springer International Publishing, 2018, pp.
93–123. [Online]. Available: https://doi.org/10.1007/978-3-319-96029-64

IET Research Journals, pp. 1–10
10 c© The Institution of Engineering and Technology 2015

Auto-generated PDF by ReView IET Image Processing

MainLatexF ile.pdfMainDocument IET Review Copy Only 11


