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Abstract

Background and Objective: Recent studies in deep learning reveal that the

U-Net stands out among the diverse set of deep models as an effective net-

work structure, especially for imaging inverse problems. Initially, the U-Net

model was developed to solve segmentation problems for biomedical images

while using an annotated dataset. In this paper, we will study a novel ap-

plication of the U-Net structure for the important inverse problem of MRI

reconstruction. Deep networks are particularly efficient for the speed-up of

the MR image reconstruction process by decreasing the data acquisition time,

and they can significantly reduce the aliasing artifacts caused by the under-

sampling in the k-space. Our aim is to develop a novel and efficient cascaded

U-Net framework for reconstructing MR images from undersampled k-space

data. The new framework should have improved reconstruction performance

when compared to competing methodologies.
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Methods: In this paper, a novel cascaded framework utilizing the U-Net as a

sub-block is being proposed. The introduced U-Net cascade structure is ap-

plied to the magnetic resonance image reconstruction problem. The connec-

tion between the cascaded U-Nets is realized in the form of a recently devel-

oped projection-based updated data consistency layer. The novel structure is

implemented in the PyTorch environment, which is one of the standards for

deep learning implementations. The recently created fastMRI dataset which

forms an important benchmark for MRI reconstruction is used for training

and testing purposes.

Results: We present simulation results comparing the novel method with a

variety of competitive deep networks. The new cascaded U-Net structure’s

PSNR performance stands on average 1.28 dB higher than the baseline U-

Net. The improvement, when compared to the standard CNN, is on average

3.32 dB.

Conclusions: The proposed cascaded U-Net configuration results in an im-

proved reconstruction performance when compared to the CNN, the cascaded

CNN, and also the singular U-Net structures, where the singular U-Net forms

the baseline reconstruction method from the fastMRI package. The use of

the projection-based updated data consistency layer also leads to improved

quantitative (including SSIM, PSNR, and NMSE results) and qualitative

results when compared to the use of the conventional data consistency layer.

Keywords: Magnetic resonance imaging, Image reconstruction, Deep

learning, Cascaded networks, U-Net, Updated data consistency
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1. Introduction

Magnetic resonance imaging (MRI) is an important modality for clinical

diagnosis because it provides high resolution for soft tissue analysis [1]. How-

ever, the data acquisition process for MR images is relatively long when com-

pared to other imaging methods, because the data acquisition occurs in the

k-space (Fourier) domain in a point-wise and successive manner. Moreover,

the speed of this sequential data acquisition process is hampered by physi-

ological and hardware constraints [2]. Therefore, the MR image acquisition

becomes susceptible to motion artifacts. MR image reconstruction consti-

tutes a trade-off among the acquired amount of k-space data, the quality

of the reconstructed images, and reconstruction speed. Deep networks have

facilitated a novel family of reconstruction algorithms from undersampled

k-space data. Considering all these issues, a variety of deep learning (DL)

and MRI acceleration methods like compressed sensing (CS)-MRI [2, 3] have

been proposed, with the major research goal being to decrease the acquisition

time without reducing image quality. Accordingly, effective CS-MRI models

which utilize denoising as a sub-step of iterative reconstruction have been de-

veloped [4, 5]. In this setting denoisers such as block matching 3D (BM3D)

are employed to enforce the sparse prior onto the reconstructed MR images.

Using these iterative methods, an opportunity has been provided to improve

MRI reconstruction performance by applying a varying regularization pa-

rameter. However, the sparsity regularized CS-MRI based reconstruction

methods are computationally expensive and rather slow due to the iterative

nature of optimization solutions [6].
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2. Related Works

Newly developed deep learning based frameworks for MR reconstruction

enable the researchers to tackle the difficulties related to modeling-based it-

erative methods. One of these deep frameworks which gained attention in

solving the inverse problem of MRI reconstruction was the study performed

by Schlemper et al. [7, 8]. The proposed algorithm incorporates a ”Deep

Cascade” of Convolutional Neural Networks with interleaved data consis-

tency (DC) stages. The Deep Cascade-CNN (DC-CNN) performs the back-

propagation process through the DC block by deriving the Jacobian of this

layer. Motivated by the DC-CNN of [7], a cascaded CNN model that utilizes

a novel, projection-based updated data consistency layer has been intro-

duced in [9]. Deep learning based methods significantly accelerate the MRI

reconstruction process (e.g. for Deep Cascade-MRI each image reconstruc-

tion takes around 23ms). Recently, with inspiration from the Deep Cascade

model, a compound cascade algorithm has been proposed by Qiao et al. [10].

They have applied both data-based and model-based algorithms to achieve

better performance compared to other state-of-the-art MRI reconstruction

models. The authors have used the iterative Approximate Message Passing

(AMP) algorithm alongside the convolutional neural network to de-alias and

reconstruct MR images. These two models were connected with data con-

sistency layers to each other. Another study that leveraged DC-layer was

conducted by YanWu et al. [11]. Their proposed SAT-Net (self-attention

convolutional neural network) was developed by using a self-attention CNN

and was applied on cartilage images. This deep residual CNN uses long-range

dependencies to reconstruct MR images. One more compound network has
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been put forward by combining the convolutional neural network and parallel

imaging. By using this framework, the authors have reconstructed real-time

MR images [12]. Using a similar approach, recently a wavelet-based deep cas-

caded CNN has been put forward by modifying the U-Net model architecture

[13]. In this study, they have replaced pooling and unpooling layers in the

U-Net model with discrete wavelet transform and inverse wavelet transform,

respectively.

MR image reconstruction actually proceeds towards the minimization of

a loss function calculated by using the fully-sampled k-space data as the

target. The input to the model is the under-sampled k-space data (or the

initial rough image estimate calculated using zero-filling) [14]. Based on the

same idea, to accelerate the MR imaging S. Wang et al. [15] suggested an

off-line CNN to identify the connection between MR images that have been

acquired from the under-sampled k-space data and the target ground truth

data. Their network showed that it can reinstate the details and reconstruct

structures that are lost in the masking step.

Besides CNN, U-Net models have been proposed in the literature for

automatic segmentation purposes in MR images [16, 17]. Attention gated

(AG) networks were introduced in [18] for medical image analysis. In this

work, the AG model is integrated into CNN and U-net architectures for

MR image classification and segmentation problems. Squeeze-and-Excitation

block (SE block) was proposed for the first time in [19]. The SE block updates

the features in a channel-wise manner without increasing the computational

cost. The USE-Net which employs SE blocks inside a U-Net structure was

offered in [20] for zonal MR image segmentation. In this particular study, a
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combination of three datasets was used for training and testing the model

[20].

Despite the fact that the U-Net was originally built for image segmenta-

tion problems in bio-imaging, the U-Net has been used as a strong baseline

for MR image reconstruction. The U-Net has a strong ability of preserving

high-resolution features through concatenation in the up-sampling process.

In a recent study [21], a deep learning algorithm based on k-space interpo-

lation using the U-Net has been proposed, where the input and output are

in the k-domain and are complex-valued. Hence in this work, the under-

sampled k-space measurements have been utilized without performing the

Inverse Discrete Fourier transform (IDFT). In another recent work, a frame-

work based on the U-Net for speeding up MR imaging with sub-Nyquist

sampling strategies has been developed [22]. Here the zero-filling image is

used as the input to the U-Net model, and the reconstruction is improved by

employing the data consistency layer, which provides enforced consistency

with the measured k-space data [22]. In [23] on the other hand, CNN models

based on the Least Absolute Deviations (LAD-L1) and Least Square Errors

(LSE-L2) loss functions have been compared in their capability to achieve

fast cardiac MRI reconstruction. The authors showed that their network is

almost 150x faster than the compared CS reconstruction method, with even

better image quality and for larger acceleration factors [23].

In a comparative study, two deep learning models including residual net-

work and U-Net for MR image reconstruction have been evaluated based on

diverse loss functions by using a cardiac MRI dataset. Results reveal that

both of the architectures result in similar outputs, and additionally, they
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found that the utilization of a perceptual loss function outperformed the

Dssim, L1, and L2 loss functions [14]. In another study, a variational net-

work that learns the effective priors has been offered, with different accelera-

tion factors, for the purpose of shortening the acquisition and reconstruction

time of MR knee images. Additionally, their proposed variational network

preserved the original MR image appearance plus pathologies that were not

included in the training data set [24].

When adopting deep learning for MR image reconstruction, one should

carefully evaluate various features like the effects of loss function choices and

network architecture. In [25], the authors put forward a cross-domain CNN

called KIKI-net by reconstructing the final output image by forward prop-

agating the under-sampled k-space data through the entire network. They

revealed that in terms of restoring tissue structures and removing aliasing

artifacts, the combination of K-net and I-net performs much better than

the single-domain convolutional neural networks, with an average PSNR im-

provement of 2.29 dB [25]. Furthermore, another dual-domain architecture

has been offered in [26]. In this paper, the authors designed a hybrid frame-

work termed W-net, which operates on both k-space and image domains.

Their model in the k-space domain contains a residual U-Net that works

with complex values. The structure includes another U-Net in the image do-

main working with real values. However, in terms of quantitative results, the

deep-cascade framework outperforms this model. From a qualitative point of

view, the deep-cascade model reconstructs images with better visual quality.

Another state-of-the-art algorithm is the Primal-Dual-Net (PD-net) which

was applied to MR images in [27]. This paper implements unrolling of the
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cross-domain model for MR image reconstruction in the case of aggressively

under-sampled k-space data. [28] offers an enhanced recursive residual net-

work that has superior reconstruction abilities with clearly restored structural

features and high image quality. Lately, a hybrid CNN has been put forward

for MR image reconstruction based on a single-image super-resolution tech-

nique. By leveraging the HybridNet, high-quality images have been achieved

for three different datasets. The reconstruction PSNR is higher when com-

pared to other deep learning based approaches [29].

Regarding all aforementioned issues, DL-based model realizations from

the literature tend to outperform conventional, modeling based reconstruc-

tion methods in both reconstruction quality and speed [30]. In this work on

the other hand, we introduce a cascaded network structure employing U-Net

networks in a cascaded, unfolded framework. The U-Nets are linked together

through the novel updated data consistency (UDC) layer. The introduced

new model is trained and tested on the recently introduced fastMRI bench-

mark dataset [31]. The introduced model’s performance is compared with

baseline U-Net (Fig. 1) [31, 32, 33], cascaded CNN [7, 8] and projection-based

cascaded CNN [9]. The results indicate that the developed cascaded U-Net

structure with intermediary UDC layers outperforms all of the mentioned

deep learning based MRI reconstruction network variants.

This paper main contributions can be summarized as follow:

• Cascade structures were recently introduced into the MRI reconstruc-

tion literature using conventional CNN networks. In this study, we

have proposed a novel cascaded U-Net framework that also utilizes re-

cently introduced projection-based structures in the encoding-decoding
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Figure 1: Single-coil baseline U-Net architecture [31]. A multi-channel feature map is

denoted by the blue rectangular boxes. The slide size is presented at the lower-left edge

of the boxes. The number at the top of each box shows the number of channels.

pathway.

• We replaced the data fidelity block of the MRI reconstruction pipeline

with a recently introduced updated data consistency layer.

• In literature, cascade frameworks for MRI reconstruction were trained

and tested with rather small datasets, some including up to only 10 fully

sampled cardiac MR images. We benchmarked cascade and projection-

based cascade structures using the recently introduced and rather large

fastMRI dataset. This dataset was firstly developed by a joint group of

New York University (NYU) researchers together with a Facebook AI

Research (FAIR) team for the fastMRI image reconstruction challenge.

This dataset has gained quite attraction in the MRI reconstruction
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community and has been employed as a benchmark in quite a few

recent studies.

In Section 2, the contribution and novelty of this work in comparison

to previous deep networks are discussed. Section 3 introduces the details

of the proposed novel network structures. Section 4 provides detailed infor-

mation about the dataset, experimental setup, and evaluation parameters.

The quantitative and visual image reconstruction results are presented in the

subsequent section. Finally, the conclusions are provided in the final section.

3. Method

3.1. A New Model for Deep Learning MRI Reconstruction: Cascaded U-Nets

In previous works from the literature, MR image reconstruction method-

ologies based on Convolutional Neural Networks and U-Nets have been of-

fered as successful models. In the MRI reconstruction setting, data is ac-

quired through the following equation:

y = FΩxorig (1)

In this equation, y indicates the observed data in the k-domain, where FΩ

is the undersampled Fourier transform modeling the data acquisition. xorig on

the other hand, specifies the vectorized form for the ground truth image. One

of the efficient deep models for solving the inverse problem of reconstructing

xorig utilizes cascaded CNNs (DC-CNN), and its details are provided in [7, 8].

This DC-CNN model places a data fidelity (or data consistency) layer (DC

layer) after each network. Each single CNN reconstructs an intermediary

output which goes through the succeeding DC layer as an input. Then,
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the DC layer enforces the observation data in the k-space domain onto the

reconstructed output, with the procedure given in the below equation:

xout = F−1
{
M ◦ (Fxin) + ŷ

}
(2)

Here, F and F -1 indicate 2D Discrete Fourier Transform (2D-DFT) and its

inverse operator (2D-IDFT), respectively. M is the inverse of mask function

which has been used for undersampling the ground truth data in the k-space

domain. Moreover, “◦” and xin are the point-wise multiplication operator

and the input image (intermediary reconstructed image), respectively. Here,

ŷ is the ground truth observation in k-space domain which is defined in (1).

A novel, projection-based updated DC layer on the other hand was intro-

duced in [9]. The UDC layer incorporates a secondary output, rout, which

corresponds to the estimate of the unobserved part of Fourier information.

The UDC layer creates both a rectified output image xout in accordance with

the regular DC layer, and also another residual image rout which is defined

as follow.

rout = F−1
{
M ◦ (Fxin)

}
(3)

Fig. 2 gives a pictorial description of this updated data consistency layer.

These secondary outputs from the UDC layers, alongside the final interme-

diary reconstructed image, get collected in the concatenation layer near the

end of the structure via skip connections.

In this work, we introduce a cascaded deep learning framework that in-

corporates the U-Net as the building block. The cascaded U-Net model with

standard DC layers is given in Fig. 3(a). We also develop a cascaded model
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Figure 2: Updated data consistency layer (UDC) block diagram [9].

with UDC layers acting as the intermediaries. This novel cascaded U-Net

model utilizing UDC layers on the other hand is shown in Fig. 3(b). At the

final stage of this novel structure, the last network reconstructs the final im-

age estimate by using the input feature maps coming from the concatenation

layer, which brings together the secondary outputs from the UDC layers and

the image estimate formed before this final stage.

In this paper, to provide a fair overview and comparison, multiple models

including standard CNN, cascaded CNN, projection-based cascaded CNN,

and U-Nets were trained and validated using the fastMRI dataset. Two

different types of masking functions have been utilized with multiple under-

sampling ratios. The novel models proposed in this work include the cas-

caded U-Net structure and the projection-based cascaded U-Net structure.

These novel structures are depicted in Fig. 3. Their performance results are

compared with the previously mentioned models from the literature. In this
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(a)

(b)

Figure 3: The block diagram of (a) cascaded U-Net with standard DC layer, and (b)

projection-based cascaded U-Net with updated DC layers. The input and output channel

sizes are shown with red values.

simulation setting, single-channel ground truth images with real values are

undersampled using random and equispaced Cartesian mask functions. Sub-

sequently, zero-filled (ZF) images are given as input to the cascaded blocks of

the U-Net with residual network blocks and intermediary DC or UDC layers.

However, in the projection-based cascade U-Net, the fifth block is a recon-

struction module with multiple feature maps at its input. The secondary

outputs (rout) from the initial UDC layers concatenated with the primary

output of the final UDC layer forms the input to this last module. Finally,

the loss is calculated between the target image and the final reconstructed

image estimate.

In Algorithm 1, we give an algorithmic representation for the cascaded

network as introduced in this paper. Here N denotes the deep network as
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for i = 1 : n− 1 do

x̂i = N (xi−1)

(xi, ri) = UDC(x̂i, y)

end for

R = [r1, r2, ..., rn−1]

x̂n = N (xn−1,R)

xn = UDC(x̂n, y)

Algorithm 1: The steps for the projection-based cascaded network using

UDC layers.

utilized in the recursive, cascaded structure. In our implementation, we take

N to be a U-Net as defined in Fig. 1. Here, UDC is the updated data

consistency layer. x̂i are the intermediary outputs of the cascaded blocks.

Furthermore, ri are the secondary residual outputs of the UDC layers. xi is

the rectified image output of the UDC layer. To the best of our knowledge,

the proposed scheme gives the first use of U-Nets in a cascaded structure.

The UDC is also utilized together with the U-Nets for the first time. This

novel cascaded structure which employs the U-Net together with the UDC

results in very competitive MRI reconstruction performance.

3.2. Architecture

In this study, all deep networks based on U-Net and CNN have been

trained using single-channel MR images with real values. As illustrated in

Fig. 3, initially inverse Fast Fourier Transform will be applied to the un-

dersampled k-space data. Then, the obtained zero-filling (ZF) images will

be normalized as a pre-processing step. These ZF input images will get pro-
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cessed by the deep networks to generate high-quality reconstructed images.

Meanwhile, all image slices are center cropped to the size of 320x320 to make

all slices from the dataset have the same dimensions.

3.2.1. CNN based networks

The utilized CNN network architecture is the same as the one mentioned

in the literature [7, 8]. The model is detailed in Fig. 4, and it includes five

convolution layers. In the first convolutional layer, the input and output

channel sizes are set to one and 64 respectively, with the filter kernel size

equaling three. Subsequent three layers have both input and output channel

sizes equal to 64, with the filter kernel size being 3. The final layer, namely

Crec will project the 64 input maps into a single image output. Throughout

this structure, all convolution layers are followed by ReLU units (rectified lin-

ear units) acting as the activation function. Moreover, the input and output

of the network are to get a residual network which can improve performance.

For the training of all the CNN-based networks, Adam optimizer was utilized

with a learning rate of 10-4, weight decay of 10-7, and beta values equal to

(0.9, 0.999).

3.2.2. U-Net based networks

In our realizations, we have benefited from the U-Net models for MRI re-

construction as developed and shared by the Facebook AI Research (FAIR)

team [31]. The employed U-Net pipeline includes two different deep convo-

lutional networks in the down-sampling and up-sampling paths. The down-

sampling path has 2 blocks of 3x3 convolutions. It employs ReLU as the

activation function. These blocks perform down-sampling by using max-
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Figure 4: The reconstruction simulation pipeline using the standard Convolutional Neural

Network (CNN) architecture.

pooling layers with stride 2 to halve the resolution. On the other side, the

Up-sampling layer has the same structure as the down-sampling, although it

uses bilinear layers to double each spatial dimension. At the output layer,

it has a 1x1 convolution layer which makes the output channels to be one.

Unlike conventional CNN, our U-Net model has 2 outputs. In this model,

the second output stores residual image which will be carried via skip con-

nection to the input layer of the final U-Net. This final network will create

the ultimate reconstruction based on the residual images and the intermedi-

ary rectified image. Furthermore, as a depth of the network, the cascaded

and projection-based cascade U-Net network consists of five U-Net (nc =5)

models that each one is connected to a residual layer. As shown in Fig. 3(b)

the output of these layers goes inside a UDC layer in order to save the data

fidelity.
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At the training stage, the deep models are trained by using 973 image

volumes. The gradient is calculated as a running average of its recent magni-

tude (RMSProp) and the error term used is the mean element-wise absolute

value difference (L1 loss function) between the reconstructed image and the

desired output (ground truth image). Furthermore, during each batch pro-

cessing step of the training, a random or equispaced (uniform) Cartesian

sampling mask is selected to realize the k-domain undersampling. The num-

ber of U-Net pooling layers is chosen as four, and the dropout probability is

set to zero by default. Additionally, the learning rate is set equal to 0.001.

The period for learning rate and the multiplicative factor of learning rate

decay are set to 40 and 0.1, respectively. Moreover, the strength of weight

decay regularization is chosen as equal to zero.

3.3. Simulation Setting

3.3.1. Dataset

Deep convolutional networks have been proven their performance ver-

sus competing state-of-the-art methods in various applications [34]. Hence

deep learning based methodologies have found widespread usage, however,

their applicability is challenged by the availability of training datasets for

the particular application under consideration [35, 36]. In the MRI recon-

struction setting, some studies tried to solve this problem by eliminating

the need for pretraining. As an example, [37] combines the DL-based model

with compressed sensing ideas to reconstruct MR images without the need

for pretraining, to alleviate the dependency on training datasets. In this

reference-driven model, they improved the accuracy and reconstructed MR

image quality by leveraging k-space data fidelity. However, the more com-
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mon effective approach has been the creation and employment of MR image

datasets for training deep learning based reconstruction structures aimed at

accelerated MR image reconstruction. The fastMRI dataset presents a very

recent and rather complete example for an MR image dataset aimed at MRI

reconstruction, complete with the training and testing code for a baseline

network [31]. This dataset includes the data for different types of MR im-

ages in various formats. Both single and multi-coil images are included. The

image data are stored in the form of fully sampled k-space information, re-

constructed ground-truth images from the fully sampled data, and DICOM

format images.

In this paper, we have employed the single-coil image dataset. There

are a total of 1372 single-coil MRI image volumes in the fastMRI dataset.

These volumes are divided into four groups of training, validation, test, and

challenge subsets. Table 1 gives a rundown of the number of volumes and

the total number of image slices in these four groups.

Table 1: Number of image volumes and image slices in the fastMRI single-coil dataset [31]

Subset name Volumes Slices

Training 973 34742

Validation 199 7135

Test 108 3903

Challenge 92 3305

Each volume includes both the fully sampled k-space data and the corre-

sponding fully sampled single-coil image reconstruction. We start our simu-
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lation from the fully sampled and real-valued ground truth images, by sub-

sampling them in the k-space to model the MR data acquisition process.

The ZF reconstructions from the subsampled data are used as the input

to the networks. Undersampling is performed with three different accelera-

tion strategies and two different masking schemes. Undersampling scenarios

include the 4-fold subsampling, 8-fold subsampling, and the aggregate sub-

sampling. In aggregate subsampling, the sampling ratio is randomly set to

either four or eight with equal probability for each. Setting the acceleration

factor (subsampling ratio) equal to four or eight will result in keeping only

25% or 12.5% of the k-space information, respectively. The ground truth

image slices are employed as the target image of the networks, where the

network backpropagation error is calculated as the L1 pixel-wise difference

between the reconstructed image and target image.

3.3.2. Experimental setup

For the reconstruction simulations of this paper, we utilized Python 3.6

together with Pytorch version 1.4.0. We took advantage of two GPUs in the

form of GeForce RTX 2080 Ti with 11GB of memory for each. The batch

size was selected as 16 for baseline U-Net and standard CNN realizations.

However, the batch size was reduced to four in the case of the cascaded

networks. Meanwhile, the number of training epochs was set to 20, which

was observed to be adequate for all of the different network realizations.

3.3.3. Evaluation Methodology

We tabulate the results evaluating the performance of the different mod-

els in the form of three metrics, which include normalized mean squared
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error (NMSE), peak signal to noise ratio (PSNR), and structural similarity

index measure (SSIM). NMSE metric is calculated by measuring the pixel-

wise difference between the ground truth and network output images. PSNR

is evaluated as the ratio between the maximum possible power of the sig-

nal (image intensity across a volume) and the power of the distorting noise

that affects the fidelity of its representation. SSIM on the other hand is a

perceptual index that measures similarity between images by using mutual

dependencies between neighboring pixels. NMSE between the network out-

put image Ri and the desired output Gt is given by the following expression.

NMSE(Ri, Gt) =
‖Ri −Gt‖2

2

‖Gt‖2
2

(4)

Here, ‖·‖2
2 designates the squared Euclidean norm. The PSNR between

Ri and Gt is defined as follows.

PSNR(Ri, Gt) = 10 log10
max(Gt)

2

MSE(Ri, Gt)
(5)

Here, MSE(Ri,Gt) is the mean square error between Ri and Gt, which is

given by:

MSE(Ri, Gt) =
1

n
‖Ri −Gt‖2

2 (6)

Here, n indicates the number of entries in the ground truth volume Gt. It

should be mentioned that lower values for PSNR indicate inferior reconstruc-

tion. On the contrary, a lower value for NMSE shows better reconstruction.

The SSIM between two image patches P 1 and P 2 is given by:

SSIM(P1, P2) =
(2µP1µP2 + C1)(2σP1P2 + C2)

(µ2
P1

+ µ2
P2

+ C1)(σ2
P1

+ σ2
P2

+ C2)
(7)
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Here, µP1 and µP2 are the average pixel values of P 1 and P 2, respectively.

σ2
P1 and σ2

P2 on the other hand, are the corresponding pixel variances.

Additionally, σ P1 P2 indicate the covariance value between these two patches.

C1 and C2 are defined as below to stabilize the division.

C1 = (0.01L)2 (8)

C2 = (0.03L)2 (9)

L is defined as:

L = max(Gt) (10)

4. Results

4.1. Quantitative results

In this work, we have implemented the standard CNN and its cascaded

variant as used in [7, 8]. Another important deep reconstruction paradigm

from the literature, which we have realized is the baseline U-Net as imple-

mented in the fastMRI framework [31]. In all of these models, we have

employed the regular DC layer for the data fidelity block, as is done in all

the original implementations. In addition to these models, we have also im-

plemented the cascaded CNN with UDC layers acting as the linking blocks.

The novel models advanced in this paper are the cascaded U-Net structures,

firstly with the regular DC layer and secondly with the updated DC layer

as the linking intermediary blocks. The evaluated quantitative results in-

clude PSNR, SSIM, and NMSE. The results are tabulated in Tables 2 and
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3, for different mask types and subsampling ratios. From these results, it

becomes apparent that projection-based cascaded U-Net with UDC layers

performs the best among all the evaluated variants, with the cascaded U-Net

using DC layers coming as second. The cascaded U-Net with UDCs has im-

proved performance in all of the calculated metrics. This proposed network

increases averagely the PSNR performance by almost 1.28 dB and 3.32 dB

when compared to the baseline U-Net and the standard CNN, respectively.

Furthermore, when we compare Tables 2 and 3, we notice that almost all

of the models get better results with the equispaced, uniform masking func-

tion. We can deduce that these two tables verify each other’s results when

we compare the difference among models.

Table 2: Simulation results for various models with random subsampling mask

Acceleration 4-fold 8-fold Aggregate Runtime (s)

Network Loss NMSE SSIM PSNR Loss NMSE SSIM PSNR Loss NMSE SSIM PSNR

Zero-filling - 0.0416 0.711 29.876 - 0.077 0.603 26.921 - 0.061 0.651 28.217 0

CNN[7] 0.308 0.034 0.755 30.880 0.451 0.069 0.637 27.462 0.386 0.054 0.688 28.867 0.34

CNN+DC 0.307 0.033 0.759 31.012 0.450 0.067 0.638 27.609 0.385 0.052 0.689 29.041 0.344

Cascade CNN [7, 9] 0.280 0.0265 0.790 32.412 0.417 0.0548 0.654 28.639 0.355 0.042 0.715 30.152 1.75

Projection-based cascaded CNN [9] 0.272 0.0247 0.801 32.872 0.400 0.049 0.678 29.213 0.342 0.038 0.731 30.704 1.83

Baseline U-Net [31] 0.281 0.0268 0.785 32.419 0.380 0.043 0.692 29.952 0.335 0.036 0.732 30.934 0.53

Baseline U-Net + DC layer (new) 0.270 0.024 0.801 32.968 0.373 0.040 0.701 30.307 0.326 0.033 0.744 31.358 0.55

Cascade U-Net (new) 0.261 0.0224 0.813 33.585 0.356 0.035 0.715 31.185 0.314 0.030 0.756 32.038 2.76

Projection-based cascaded U-Net (new) 0.260 0.0221 0.816 33.685 0.3551 0.0353 0.719 31.251 0.310 0.029 0.761 32.231 2.77

Note that in these tables, the metrics have been measured using the

ground truth (fully sampled) image and the reconstructed image. The run-

time has been evaluated for the joint reconstruction of a whole image volume

with 32 slices. Additionally, it can be observed that the results obtained in

Tables 2 and 3 verify each other. Furthermore, we have performed statistical
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Table 3: Simulation results for various models with equispaced (uniform) Cartesian sub-

sampling mask

Acceleration 4-fold 8-fold Aggregate Runtime (s)

Network Loss NMSE SSIM PSNR Loss NMSE SSIM PSNR Loss NMSE SSIM PSNR

Zero-filling - 0.041 0.709 29.833 - 0.078 0.602 26.898 - 0.0611 0.650 28.208 0

CNN 0.306 0.033 0.760 30.934 0.451 0.068 0.640 27.476 0.385 0.053 0.692 28.918 0.32

CNN+DC 0.303 0.032 0.769 31.028 0.450 0.067 0.641 27.624 0.384 0.051 0.694 29.079 0.33

Cascaded CNN 0.280 0.026 0.78 32.379 0.419 0.055 0.654 28.579 0.356 0.042 0.714 30.139 1.72

Projection-based cascaded CNN 0.271 0.024 0.802 32.894 0.399 0.048 0.678 29.217 0.342 0.038 0.731 30.713 1.85

Baseline U-Net 0.274 0.025 0.795 32.763 0.376 0.041 0.698 30.210 0.330 0.034 0.736 31.136 0.49

Baseline U-Net + DC layer 0.269 0.024 0.802 33.037 0.370 0.039 0.703 30.494 0.324 0.032 0.746 31.501 0.53

Cascaded U-Net 0.259 0.022 0.816 33.680 0.35 0.035 0.718 31.267 0.312 0.029 0.757 32.168 2.9

Projection-based cascaded U-Net 0.258 0.0219 0.818 33.760 0.353 0.034 0.722 31.383 0.309 0.029 0.762 32.326 3.1

assessment tests for the provided quantitative results. The performed statis-

tical tests include one-way analysis of variance (ANOVA) tests in addition to

paired t-tests to confirm the statistical significance of the performance dif-

ferences throughout all assessment metrics and setups. We set the threshold

p-value at α=0.05. The ANOVA test results indicated that the p-values for

all simulation settings, including different masks, acceleration factors, and

assessment metrics are less than a threshold of 0.01, indicating 99% confi-

dence. Moreover, the introduced models’ performances were also evaluated

pair-wise against the competing CNN, cascade CNN and U-net results us-

ing paired t-tests. The paired t-tests culminated overwhelmingly in p-values

less than 0.05, suggesting 95% confidence in the simulation results of our

proposed framework.

4.2. Qualitative results

Fig. 5 presents a particular fully sampled image slice and its associated

fully sampled k-space data. The fully sampled or ground truth images are
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used as the target images. On the other hand, Fig. 6 includes the random and

equispaced Cartesian undersampling masks with 4-fold, 8-fold, and aggregate

acceleration. The corresponding zero-filled image is also shown in this figure,

and these ZF images are input to the networks.

(a) (b)

Figure 5: Example for (a) k-space data, (b) Ground truth image.

Figs. 7,8 and 9 display the reconstructed images by the aforementioned

deep networks, for the cases of 8-fold, aggregate and 4-fold acceleration

factors, respectively. All these images qualitatively verify the quantitative

results as summarized in Table 2. We can see that the projection-based

cascade U-Net output images are of a higher perceptual quality than the

reconstructed images by the other networks and details are recovered better.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (k)

Figure 6: (a) 4-fold zero-filling image, (b) 4-fold undersampled k-space with random mask

function, (c) 4-fold undersampled k-space with equispaced mask function, (d) 8-fold zero-

filling image, (e) 8-fold undersampled k-space with random mask function, (f) 8-fold un-

dersampled k-space with equispaced mask function, (g) aggregate zero-filling image, (h)

aggregate undersampled k-space with random mask function, (k) aggregate undersampled

k-space with equispaced mask function.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Reconstructed images for 8-fold subsampling with random mask function in the

case of (a) Standard CNN, (b) Cascaded CNN, (c) projection-based cascaded CNN, (d)

U-Net baseline, (e) Novel cascaded U-Net, (f) Novel projection-based cascaded U-Net.

(a) (b) (c)

(d) (e) (f)

Figure 8: Reconstructed images with random mask function for aggregate subsampling

for (a) Standard CNN, (b) Cascaded CNN, (c) projection-based cascaded CNN, (d) U-Net

baseline, (e) Novel cascaded U-Net, (f) Novel projection-based cascaded U-Net.

26



(a) (b) (c)

(d) (e) (f)

Figure 9: Reconstructed images for 4-fold subsampling with random mask function in the

case of (a) Standard CNN, (b) Cascaded CNN, (c) projection-based cascaded CNN, (d)

U-Net baseline, (e) Novel cascaded U-Net, (f) Novel projection-based cascaded U-Net.

5. Conclusion

U-Net has been one of the most commonly used deep learning structures

in biomedical imaging applications. In this paper, we proposed and evaluated

a novel projection-based cascaded U-Net structure for the important problem

of MRI reconstruction from highly undersampled k-space observation data.

We evaluated the introduced model’s applicability and performance by using

the rather recent fastMRI dataset as a benchmark. Random and uniform

Cartesian undersampling masks of differing ratios have been employed to

model the MRI data acquisition in the k-space. The zero-filling image esti-

mate forms the input to the realized networks. The U-Net is employed as

the building block of the novel cascaded U-Net structure. The intermedi-
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ary updated data consistency layers firstly rectify the reconstructed images

at their input and forward these rectified images to the successive network

stage. The UDC also creates a secondary output, which gets collected at

a later stage of the structure for further processing. Applying this novel

method in a residual setting, we observed that the projection-based cascade

U-Net structure with UDCs outperforms a variety of previously introduced

deep networks that are aimed at MRI reconstruction. The introduced novel

model can produce images with improved SNR results. The results for the

new model can maintain texture details better when compared to the prior

networks.
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