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ABSTRACT

We propose a new algorithm for the adaptive identifica-
tion of sparse systems. The algorithm is based on the
minimization of the RLS cost function when regularized
by adding a sparsity inducing ℓ1 norm penalty. The re-
sulting recursive update equations for the system impulse
response estimate are in a similar form to the regular RLS.
However, they include novel terms which account for the
sparsity prior. The proposed, ℓ1 relaxation based RLS al-
gorithm emphasizes sparsity during the adaptive filtering
process and allows for faster convergence when the sys-
tem under consideration is sparse. Computer simulations
comparing the performance of the proposed algorithm to
conventional RLS and other adaptive algorithms are pro-
vided. Simulations demonstrate that the new algorithm
exploits the inherent sparse structure effectively.

Index Terms— Adaptive filters, RLS, sparsity.

1. INTRODUCTION

Sparse adaptive filtering, where the impulse response for
the system to be identified is assumed to be of a sparse
form has acquired attention recently. The sparsity prior
has applications in acoustic and network echo cancellation
[1] and communication channel identification [2]. Numer-
ous adaptive algorithms building upon the a priori knowl-
edge of the sparsity of the system to be identified have
been developed. Partial-update adaptive algorithms and
proportionate adaptive algorithms [3] are two well-known
approaches to the problem. In these algorithms, least mean
square (LMS) type adaptive algorithms have been modi-
fied as to incorporate the sparsity prior. Partial-update and
proportionate adaptive algorithms offer performance im-
provement when compared to plain LMS algorithms by
utilizing the additional knowledge of sparsity. Recently,
novel LMS type algorithms which incorporate the sparsity
condition directly into the cost function have been devel-
oped [4–6]. The common idea in these papers is to add a
penalty term in the form of an ℓp norm of the weight vec-
tor, into the overall cost function to be minimized. In [4],
the additional penalty is ∥w(n)∥p, 0 < p 6 1. Here
∥(·)∥p denotes the ℓp norm and w(n) is the instantaneous
weight vector. Minimizing the cost function results in a
novel steepest descent algorithm and corresponding LMS
type adaptive algorithms. [5] pursuits a similar idea, but
here the penalties considered are in the forms of ℓ1 norm

or a log-sum term. The ℓ1 norm penalty results in an
adaptive algorithm called as the zero-attracting LMS (ZA-
LMS) [5]. In [6], the penalty in the cost function is defined
by an approximation to the ℓ0 norm, which is a count for
the total number of nonzero terms. By replacing ∥w(n)∥0
with an analytic approximation, the minimization problem
for the cost function becomes tractable. The end result is
an algorithm denoted as ℓ0-LMS. As can be seen from the
references, sparsity based adaptive algorithms have been
mostly confined to the LMS domain.

Recursive least squares (RLS) adaptive filtering is an-
other important modality in the adaptive system identifi-
cation setting, which has in general an order of magnitude
faster convergence rate than LMS algorithm. However,
RLS has been scarcely applied in sparse system identifi-
cation. Attempts at an RLS algorithm for sparse system
identification and sparse signal estimation are given in [7]
and [8], respectively. In both papers, the RLS cost func-
tion is modified by the addition of a weighted version of
the convex ℓ1 norm ∥w(n)1∥. In [7], the optimal solution
minimizing this cost function is found by an online and
adaptive version of the expectation maximization (EM)
algorithm, which is called as the Low Complexity Re-
cursive L1−Regularized Least Squares (SPARLS) algo-
rithm. The SPARLS algorithm is developed by modifying
the EM algorithm for the minimization of the convex cost
function to the case of the streaming data. In [8], the same
modified cost function is utilized for sparse signal estima-
tion problem. Subgradient-based iterative minimization
is utilized for the estimation of the possibly time varying
sparse signal. In both papers, the update procedure for the
weight (or signal) vector is not in a similar form to the
regular RLS case, where the update is in the well-known
simple form w(n) = w(n− 1) + ∆[w(n− 1)].

In this paper, we propose an RLS adaptive algorithm
for sparse system identification. The algorithm will utilize
the modified RLS cost function with an additional spar-
sity inducing ℓ1 penalty term. Here, we rather start from
scratch and find the recursive minimization procedure in a
manner similar to the conventional approach, namely find-
ing the gradient and setting it equal to zero. We find a sub-
gradient vector of the cost function and try to make it zero.
At the end we come up with an algorithm very much sim-
ilar to the regular RLS algorithm. The only difference is
in the weight vector update equation, where a novel zero-
attracting, sparsity inducing additional term is included.
We will call this new algorithm as the ℓ1-RLS.



Firstly, we give a brief outline of the sparse adaptive
system identification setting. Then, we develop the novel
ℓ1-RLS algorithm by outlining the similarities to the de-
velopment of regular RLS. We give the final form of ℓ1-
RLS algorithm. Next, we present simulation results com-
paring the novel ℓ1-RLS algorithm to regular RLS, regular
LMS and ZA-LMS algorithms. The steady-state error and
tracking performance of these algorithms are compared
via learning curves, where the system to be identified is
assumed to have a sparse and time-invariant impulse re-
sponse.

2. ℓ1-RLS ALGORITHM

Let us consider the system identification setting given by
the following input-output equation.

y(n) = hTx(n) + η(n) (1)

Here, h = [h0, h1, . . . , hN−1]
T is the sparse system tab

weight vector, x(n) = [x(n), x(n−1), . . . x(n−N+1)]T

is the input signal vector and η(n) denotes the observation
noise. The aim of the adaptive system identification algo-
rithm is to estimate the system parameters h from the in-
put and output signals in a sequential manner. We denote
the tab weight estimate at time n as h(n). In conventional
RLS, the cost function to be minimized by the weight es-
timate is given by

E(n) =
n∑

m=0

λn−m|e(m)|2. (2)

λ is the exponential weighting constant and e(n) is the
instantaneous error term.

e(n) = y(n)− hT (n)x(n) (3)

In this work, we assume that the underlying filter coef-
ficient vector h has a sparse form . Hence, we want to
modify the cost function in a manner that underlines this a
priori information. A tractable way to force sparsity is by
using the ℓ1-norm of the weight vector. Hence, we regu-
larize the RLS cost function by including the weighted ℓ1
norm of the current tab estimate as a sparsifying term.

J(n) =
1

2
E(n) + γ∥h(n)∥1 (4)

Here, γ > 0 is a parameter that governs the tradeoff be-
tween sparsity and estimation error. ∥h(n)∥1 is the ℓ1
norm of the weight vector and is given by

∥h(n)∥1 =
N−1∑
k=0

|hk(n)| (5)

We want to minimize this regularized cost function J(n)
with respect to the filter tab weights. Let ĥ(n) denote the
optimal least squares estimate for the tab weight vector
which minimizes J(n). In the standard RLS case when

the cost function is simply E(n), the minimization condi-
tion is written in terms of the gradient of E(n) with respect
to h(n).

∇E(n) |ĥ(n)= 2
∂E(n)
∂h∗(n)

∣∣∣
ĥ(n)

= 0 (6)

However, the ℓ1 norm term ∥h(n)∥1 in (5) and hence J(n)
in (4) are nondifferentiable at any point where hk(n) = 0.
A substitute for the gradient in the case of nondifferen-
tiable convex functions such as ∥h(n)∥1 here is offered by
the definition of the subgradient [9, p. 227]. The set of all
the subgradients of some convex function f(x) is called
as the subdifferential. The subdifferential is denoted by
∂f(x). The subdifferential for ∥h(n)∥1 is calculated as
follows.

∂∥h(n)∥1 =
{
d | ∥d∥∞ 6 1,d h(n) = ∥h(n)∥1

}
(7)

Hence, the kth element of the subdifferential for ∥h(n)∥1
can be written in the below form.{

∂∥h(n)∥1
}
k
=

{{
hk/|hk|

}
, hk ̸= 0{

d | |d| 6 1
}
, hk = 0

(8)

For any point with hk = 0, there is a valid subgradient
vector with its kth entry equal to zero. Using these results
we can state that one valid subgradient vector for ∥h(n)∥1
is as given below.

∇S∥h(n)∥1 = sgn
(
h(n)

)
(9)

∇S denotes a subgradient at the corresponding point. sgn(·),
acting possibly on a vector, denotes the componentwise
sign function. One subgradient vector of the penalized
cost function J(n) in (4) with respect to the weight vec-
tor h(n) can be written using (9) and the fact that E(n) is
differentiable everywhere.

∇SJ(n) =
1

2
∇E + γ sgn

(
h(n)

)
(10)

The ith element of this vector is calculated as below [10].{
∇SJ(n)

}
i
= −

n∑
m=0

λn−me(m)x∗(m− i+ 1)

+ γ sgn
(
hi(n)

)
(11)

We set the subgradient equal to zero to find the optimal
least squares solution, namely ĥ(n).

−
n∑

m=0

λn−m
{
y(m)−

N−1∑
k=0

ĥk(n)x(m−k)
}
x∗(m−i+1)

= −γ sgn
(
ĥi(n)

)
(12)

The above equation, after some manipulation, assumes the
form below.

N−1∑
k=0

ĥk(n)

{ n∑
m=0

λn−mx(m− k)x∗(m− i+ 1)

}

=

n∑
m=0

λn−my(m)x∗(m− i+ 1)− γ sgn
(
ĥi(n)

)
(13)



(13), written for all i = 1, . . . , N together in a matrix
form, results in the modified deterministic normal equa-
tions.

Φ(n)ĥ(n) = r(n)− γ sgn
(
ĥ(n)

)
(14)

Here, Φ(n) is the exponentially weighted deterministic
autocorrelation matrix estimate. r(n) is the deterministic
cross-correlation estimate between y(n) and x(n). These
two quantities can be updated by rank-one recursive equa-
tions.

Φ(n) = λΦ(n− 1) + x∗(n)xT (n) (15)

r(n) = λr(n− 1) + y(n)x∗(n) (16)

With a slight change in notation the normal equation (14)
becomes

Φ(n)ĥ(n) = θ(n) (17)

where θ(n) = r(n) − γ sgn
(
ĥ(n)

)
. The θ(n) term can

also be described by a recursive equation, namely

θ(n) = λθ(n− 1) + y(n)x∗(n)−{
γ sgn

(
ĥ(n)

)
− λγ sgn

(
ĥ(n− 1)

)}
. (18)

In a similar vein to the conventional RLS paradigm, in-
stead of solving the normal equations for the optimal least
squares solution ĥ(n) directly, we search for an iterative
solution of the form

ĥ(n) = ĥ(n− 1) +∆ĥ(n− 1). (19)

Here, ∆ĥ(n − 1) is an instantaneous corrective step. To
reach such a solution, we have to modify (18) into a re-
cursion with only ĥ(n − 1) terms on the right side. To
this end, we assume that the sign of the weight values do
not change significantly in a single time step. Hence, we
approximate (18) by

θ(n) ≈ λθ(n−1)+y(n)x∗(n)+γ(λ−1) sgn
(
ĥ(n−1)

)
(20)

The normal equation (17) can be rewritten as

ĥ(n) = P(n)θ(n) (21)

where P(n) is the inverse of the autocorrelation matrix.

P(n) = Φ−1(n)

We insert the recursions (15) and (20) into (21) to come
up with the following result.

ĥ(n) = P(n−1)θ(n−1)−k(n)xT (n)P(n−1)θ(n−1)

+ y(n)k(n) + γ
(λ− 1

λ

)
×{

P(n−1) sgn
(
ĥ(n−1)

)
−k(n)xT (n)P(n−1) sgn

(
ĥ(n−1)

)}
Here, k(n) is the gain vector.

k(n) =
P(n− 1)x∗(n)

λ+ xH(n)P(n− 1)x(n)
(22)

Algorithm 1 ℓ1 regularized RLS (ℓ1-RLS) algorithm.

λ, γ, x(n), y(n) ◃ inputs

h(−1) = 0, P(−1) = δ−1I ◃ initial values

1: for n := 0, 1, 2, . . . do ◃ time recursion
2: kλ(n) = P(n− 1)x∗(n)

3: k(n) =
kλ(n)

λ+ xT (n)kλ(n)

4: ξ(n) = y(n)− hT (n− 1)x(n)

5: P(n) =
1

λ

[
P(n− 1)− k(n)kH

λ (n)
]

6:
h(n) = h(n− 1) + k(n)ξ(n)+

γ
(λ− 1

λ

){
IN−k(n)xT (n)

}
P(n−1)sgn

(
h(n−1)

)
7: end for ◃ end of recursion

Using the matrix inversion lemma, it can be shown that
the time update for the inverse correlation matrix can be
performed by the well known Riccati equation.

P(n) = λ−1
{
P(n− 1)− k(n)xT (n)P(n− 1)

}
(23)

By realizing that ĥ(n − 1) = P(n − 1)θ(n − 1), the
recursive update for the tab weight vector assumes its final
form.

ĥ(n) = ĥ(n− 1) + k(n)
{
y(n)− ĥT (n− 1)x(n)

}
+

γ
(λ− 1

λ

){
IN −k(n)xT (n)

}
P(n−1)sgn

(
ĥ(n−1)

)
(24)

This update equation finalizes the ℓ1-RLS algorithm. The
overall algorithm is given in Alg. 1. When we compare
the ℓ1-RLS weight update with the regular RLS update
equation, we see that the last term starting with γ

(
λ−1
λ

)
constitutes the difference from regular RLS. If we choose
λ = 1 or γ = 1, for this formulation the ℓ1-RLS coincides
with regular RLS.

3. SIMULATION RESULTS

In this section we compare the performance of the novel
ℓ1-RLS algorithm to the regular RLS, regular LMS and
one other sparsity oriented adaptive algorithm. The first
experiment considers the tracking capabilities of ℓ1-RLS,
RLS, ZA-LMS [5] and LMS algorithms under white ex-
citation. The sparse system to be identified has a total of
64 tabs and 4 of them are nonzero. The positions and am-
plitudes of the nonzero tab weights are chosen randomly.
AWGN observation noise resulting in an SNR of 20 dB
is added to the system output. The four algorithms are
realized for a total of 500 runs and the mean square de-
viation (MSD) of the system impulse response estimate
versus time iteration index is plotted. The parameters for
the different algorithm are chosen as follows.
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Fig. 1. Learning curves for ℓ1-RLS, RLS, ZA-LMS and
LMS.

• ℓ1-RLS and RLS: λ = 0.99; ℓ1-RLS: γ = 3

• ZA-LMS and LMS: µ = 0.008

• ZA-LMS: ρ = 3× 10−4, σ = 10

The λ and µ parameters are chosen as to result in approxi-
mately equal steady-state MSD’s for RLS and LMS. The γ
and ρ parameters are found by repeated trials as to produce
the minimum steady-state MSD for their respective algo-
rithms. The results are given in Fig.1. ℓ1-RLS presents
convergence and steady-state error improvements over the
regular RLS algorithm, just as ZA-LMS works better than
the regular LMS algorithm.

In the second experiment we compare the performance
of the novel ℓ1-RLS algorithm to the regular RLS under
different SNR values. The sparse system is constructed as
in the first experiment. The learning curves for 40, 30,
20 and 10 dB SNR are presented in Fig.2. The corre-
sponding γ values for ℓ1-RLS are 0.3, 0.5, 3 and 5, re-
spectively. λ = 0.99 for both ℓ1-RLS and regular RLS are
utilized throughout the simulations. The ℓ1-RLS has bet-
ter convergence and steady-state properties than the regu-
lar RLS.

4. CONCLUSIONS

This paper introduced a new RLS algorithm, namely ℓ1-
RLS, applicable for the adaptive identification of systems
with sparse impulse response. The novel update equations
for this algorithm are developed by regularizing the cost
function with an ℓ1 norm term. Numerical simulations
demonstrate that the algorithm indeed brings about bet-
ter convergence and steady state performance than regular
RLS when the system to be identified is sparse. Topics
for future work might include theoretical analysis for the
steady state error and simulations studying performance
of the proposed algorithm in the case of sparse, slowly
time-varying systems.
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