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ABSTRACT

Analysis sparsity and the accompanying analysis operator
learning problem provide an important framework for sig-
nal modeling. Very recently, sparsifying transform learning
has been put forward as an effective and new formulation
for the analysis operator learning problem. In this study, we
develop a new sparsifying transform learning algorithm by
using the uniform normalized tight frame constraint. The new
algorithm bypasses the computationally expensive analysis
sparse coding step of the standard analysis operator learning
algorithms. The resulting minimization problem is solved by
alternating between two steps. The first step is the operator
update, which comprises a least squares solution followed by
a projection, and the second step is the sparse code update
realized by a simple thresholding procedure. Simulation re-
sults indicate that the proposed algorithm provides improved
analysis operator recovery performance when compared to
a recent analysis operator learning algorithm from the liter-
ature, which uses the same uniform normalized tight frame
constraint.

Index Terms— Analysis operator learning; sparsifying
transform learning; dictionary learning; sparse coding

1. INTRODUCTION

Sparse regularization of inverse problems has gained consid-
erable impetus during the last decade, following the ground-
breaking progress in solving the synthesis based sparse rep-
resentation problem [1]. The revelation that the elusive, NP-
complete ℓ0 pseudo-norm sparse representation problem can
be convexly relaxed by the use of the more benign ℓ1 nor-
m [2], has led to an outbreak of new sparse representation
methods accompanied by advances in related fields such as
compressive sensing [3] and dictionary learning. Dictionary
learning deals with the problem of finding a proper set of
synthesis atoms which facilitate sparse representation for a
group of signal under scrutiny [4,5]. Various algorithms such
as the original, synthesis K-SVD [6] have been proposed for
learning an overcomplete dictionary appropriate for use in s-
parse representation from the signal corpus itself. The syn-

thesis sparsity and dictionary learning have a lesser known
counterpart in the recently introduced analysis sparsity frame-
work [7, 8]. In analysis sparsity, the signal is assumed to be
sparse in a transform domain defined over a suitable analy-
sis operator. The analysis sparsity is also equivalently called
as cosparsity, and various optimization based and greedy al-
gorithms have been developed to solve the cosparse repre-
sentation or cosparse coding problem [9, 10]. The cosparse
representation problem has also been recast as a sparse repre-
sentation problem, allowing the use of synthesis sparse repre-
sentation algorithms for cosparse coding [11].

Similar to the dictionary learning algorithms used in
synthesis sparsity approach, analysis operator learning algo-
rithms for cosparse modeling of signals have been developed.
Analysis K-SVD [12] extends the sequential and SVD-based
update procedure of its well-known synthesis counterpart
in [6] to the analysis operator learning problem. In [13] the
authors utilize an optimization over manifolds approach to
learn appropriate analysis operators. Another recent analysis
operator learning algorithm is presented in [14]. In [14] the
learned analysis operators are constrained to lie in the set of
Uniformly Normalized Tight Frames, as to hinder possible
degenerate solutions. After the conception of these analysis
operator learning algorithms, a similar framework has been
developed to determine operators which lead to analysis s-
parsity. This new framework as introduced in [15] has been
dubbed as "Sparsifying Transform Learning". In sparsifying
transform learning, the minimization problem for operator
learning is formulated in a modified manner when compared
to the minimization problems of the above listed algorithms.
Nevertheless, this modification in the minimization formula-
tion leads to the replacement of the expensive cosparse coding
step of the conventional analysis operator learning algorithms
with a thresholding step of much reduced complexity. The
sparsifying transform learning framework has been utilized
together with the K-SVD approach of [12] to formulate a new
algorithm called as Transform K-SVD in [16].

In this work, we develop a new sparsifying transfor-
m learning algorithm by merging the transform learning
approach of [15] with the constrained Analysis Operator



Learning (AOL) algorithm of [14]. We will call the newly
developed transform learning algorithm as the Constrained
Least Squares Sparsifying Transform Learning (CLS-TL) al-
gorithm. We will compare the operator learning performance
of this new algorithm with the AOL algorithm. Despite its re-
duced complexity, the new transform learning algorithm has
comparable and even better performance when compared to
the AOL algorithm. The rest of the paper is structured as fol-
lows. We first give a constrained formulation for the analysis
operator learning approach. Next, we introduce the transform
learning problem, and we develop a new constrained min-
imization formulation for transform learning. We continue
with the development of a heuristic, iterative minimization
algorithm for the solution of this new constrained transform
learning problem. The simulations section details the exact
operator recovery performance of this new transform learning
algorithm vis-à-vis the AOL algorithm of [14]. We wrap up
with the conclusions section.

2. CONSTRAINED ANALYSIS OPERATOR
LEARNING

After the proliferation of synthesis sparsity based regular-
ization for various inverse problems, dictionary learning has
become a popular research interest [4–6]. Learning a specific
synthesis dictionary for the actual data on hand, results in
performance improvement when compared to the use of non-
specific, analytic dictionaries which are generated without
referencing the actual data. Dictionary learning can be for-
malized in the following form, where dictionary D is learned
as to allow sparse representation of the data.

min
D∈D,X

∥DX−Y∥2F , s.t. ∥xn∥0 ≤ s ∀n = 1, . . . , N (1)

Here, Y ∈ RM×N is the complete data matrix, where it-
s columns yn ∈ RM are the individual signal vectors for
n = 1, . . . , N . D ∈ RM×K is the synthesis dictionary with
columns (also called as atoms) dk ∈ RM for k = 1, . . . ,K.
The set D provides an admissability constraint for D, where
one usual choice is forcing uniformly normalized atoms, that
is D =

{
D : ∥dk∥2 = 1,∀k = 1, . . . ,K

}
. The vectors

xn ∈ RK are the sparse representation vectors corresponding
to yn, and they form the columns of X ∈ RK×N . The dictio-
nary learning problem as formalized above attempts to find a
suitable dictionary which allows sparse synthesis of the given
data family using its atoms.

Recently another type of sparsity structure has come un-
der scrutiny. This is the analysis sparsity approach, which
has also been called as cosparsity. In this case, the signal
is assumed to be sparse in a transform domain, where the
transformation is achieved through a suitable operator. The
cosparsity of a given signal y ∈ RM with respect to an oper-
ator Ω ∈ RK×M is given by the cardinality of its co-support
with respect to Ω. Co-support Λ of signal y is defined as

Λ=
{
m : {Ωy}m = 0, ∀m = 1, . . . ,M

}
[14], that is the

set of indices where Ωy becomes zero. By using (1) as in-
spiration, a noisy formulation of learning a suitable analysis
operator for a given signal set can been given as follows:

min
Ω∈C ,X

∥X−Y∥2F , s.t. ∥Ωxn∥0 ≤ s ∀n = 1, . . . , N (2)

In (2), C denotes an appropriate admissability set for con-
straining the learned analysis operator. The set C should
be defined as to evade degenerate learned transforms such as
those with repeated or all zero rows. As an example, in [12]
where the Analysis K-SVD algorithm is developed, the anal-
ysis operator learning goal is similar to (2). The main mini-
mization problem for operator learning presented in [12] is of
the same form as (2), with C defined as follows:

C =
{
Ω : rank(ΩΛn) = M − s, ∀n = 1, . . . , N, and

∥ωk∥2 = 1, ∀k = 1, . . . ,K
}
. (3)

In the above equation, Λn denotes the co-support of the signal
yn. The matrix ΩΛ is a sub-matrix of Ω including the rows
indexed in Λ. The row vector ωk is the kth row of Ω. An
equation similar to (2) is used in [14] for the analysis operator
learning problem. The formulation in [14] convexly relaxes
the learning problem by using the ℓ1 norm instead of the ℓ0
norm, and it also includes a Lagrangian multiplier as shown
below:

min
Ω∈C ,X

λ

2
∥X−Y∥2F + ∥ΩX∥1. (4)

Here, a rather unconventional notation is used as ∥·∥1 is taken
to denote the sum of absolute values of the argument matrix
entries [14]. In (4), C is defined to be the Uniform Normal-
ized Tight Frame (UNTF) constraint, which was initially in-
troduced in [17]. The UNTF constraint is a culmination of
row norm and full rank constraints, and it is given as follows:

C =
{
Ω : ΩTΩ = I, and ∥ωk∥2 = 1,∀k

}
. (5)

In (5), I denotes the identity operator. The AOL algorithm
as proposed in [14] is based on a two-stage alternating mini-
mization solution for (4). The two distinct steps of minimiza-
tion over a single variable are solved individually.

Ω[i] = argmin
Ω∈C

∥ΩX[i−1]∥1 (6a)

X[i] = argmin
X

λ

2
∥X−Y∥2F + ∥Ω[i]X∥1 (6b)

In [14], the first part (6a) is solved by a subgradient descent
step succeeded by an approximate projection onto the UNTF
set. The second step in (6b) requires the solution of an anal-
ysis sparse coding problem for all the columns in Y, which
is computationally expensive compared to the first part. In
the coming chapter we reformulate the constrained analysis
operator learning problem as a transform learning problem.



3. CONSTRAINED SPARSIFYING TRANSFORM
LEARNING

Sparsifying transform learning has been introduced in [15]
as a more general paradigm for analysis operator learning.
Transform learning avoids the use of the expensive sparse
coding step in the operator/dictionary learning approaches,
and hence promises to provide comparable operator learn-
ing performance at a much reduced cost [16]. Using both
the sparsifying transform learning paradigm [15] and the con-
strained analysis operator learning problem from (4), we now
present a new constrained formulation for the transform learn-
ing problem.

min
Ω∈C ,X

∥ΩY −X∥2F + η∥X∥1 (7)

We assume C to be the UNTF constraint of (5). Now, we will
outline an algorithm for the solution of the novel minimiza-
tion problem in (7). We adopt the two-step iterative approach
as used in the algorithms from the literature. Hence, we seek
to minimize the below given two goals at each iteration of an
iterative algorithm.

Ω[i] = argmin
Ω∈C

∥ΩY −X[i−1]∥2F (8a)

X[i] = argmin
X

∥Ω[i]Y −X∥2F + η∥X∥1 (8b)

The problem in (8b) corresponds to the analysis sparse coding
step (6b). However, (8b) is simply solved by soft thresholding
Ω[i]Y as shown below [15]:

(X[i])k,n =


(Ω[i]Y)k,n − η

2 , (Ω[i]Y)k,n ≥ η
2

(Ω[i]Y)k,n + η
2 , (Ω[i]Y)k,n < −η

2

0, else

. (9)

Here, (·)k,n denotes indexed matrix entries [15]. This exact
solution in (9) is much simpler to obtain than solving (6b).
The transform learning problem in (7) could have been for-
mulated using an ℓ0 sparsity condition as in (2). In this case,
(8b) would transform into a problem which is exactly solved
by hard thresholding [15]. In this paper, we have have used
the convexly relaxed (8b) with the exact solution given in (9).

For the problem (8a), we propose the approximate solu-
tion of finding the least squares solution followed by a pro-
jection onto the UNTF set. The least squares solution is given
by

Ω
[i]
ls = X[i−1]Y† = X[i−1]YT

(
YYT

)−1
. (10)

We should note that the pseudo-inverse Y† stays constant
throughout the iterations, hence it suffices to calculate it only
once at the start. The final result is obtained by an approxi-
mate projection of Ω[i]

ls onto the UNTF:

Ω[i] = PUN
{
PTF{Ω[i]

ls }
}
. (11)

Algorithm 1 Constrained Least Squares Sparsifying Trans-
form Learning (CLS-TL)

Input: Data record of length N , Y = {yn}Nn=1. Regular-
ization constant η.
Goal: min

Ω∈C ,X
∥ΩY −X∥2F + η∥X∥1

1: Initialize Ω[0] and calculate X[0] = ⌊Ω[0]Y⌋η.
2: Calculate Y† = YT

(
YYT

)−1
.

3: for i := 1, 2, . . . do ◃ main iteration
4: Ω[i] = PUN

{
PTF{X[i−1]Y†}

}
◃ Transform update

step, complete with LS solution and UNTF projection.
5: X[i] = ⌊Ω[i]Y⌋η ◃ transform sparse coding step

realized by soft thresholding.
6: end for ◃ end of main iteration

Here, PUN denotes the projection onto the space of unit row
norm (UN) frames, and as stated in [14] this can be simply
obtained through scaling the rows. PTF on the other hand,
is a projection onto the tight frame (TF) manifold, and this
can be realized by calculating a singular value decomposition
(SVD) of the argument. If Ω = UΣVT is an SVD, then
PTF{Ω} = U IK×MVT is the required projection [14]. We
call the above outlined novel practical algorithm for learning a
sparsifying transform as the Constrained Least Squares Spar-
sifying Transform Learning (CLS-TL) algorithm. The CLS-
TL algorithm is summarized in Alg.1. In Alg.1, ⌊·⌋η denotes
the soft thresholding of the argument matrix as given in (9).

4. SIMULATION RESULTS

In this section we present experimental results for the exact
recovery of reference analysis operators using the proposed
CLS-TL algorithm and the AOL algorithm of [14]. This ex-
act operator recovery setup is adapted from [14]. Firstly, a
particular reference analysis operator Ω0 ∈ R24×16 is gen-
erated. The Ω0 operator is obtained by repeatedly projecting
an initial Ω0− ∈ R24×16 operator onto the UN and TF sets.
The initial Ω0− operator is composed of iid, normal distribut-
ed, zero mean and unit variance elements. Next, a training
signal set comprised of signals yi, i = 1 . . . l is constructed.
Each signal yi is generated as to have cosparsity q with re-
spect to the reference analysis operator Ω0. This is realized
by randomly picking q rows from Ω0, and then again ran-
domly generating a vector from the orthogonal complement s-
pace of these chosen rows [14]. There is no observation noise
added to these cosparse signals. For this noiseless setting the
AOL algorithm reduces to noiseless AOL algorithm [14, 17]
which repeatedly solves (6a). The noiseless AOL and CLS-
TL have similar computational complexities, since the expen-
sive sparse coding step (6b) of AOL is avoided. We have ob-
served that for the simulations here, AOL takes approximate-
ly 1.5 times the computation time of CLS-TL. However, for
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Fig. 1: Average percentage of analysis operator recovery
versus cosparsity for different iteration numbers. The solid
lines correspond to the introduced CLS-TL algorithm, and the
dashed lines correspond to AOL of [14]. a) 1000 iterations,
b) 5000 iterations, c) 10000 iterations, d) 50000 iterations.

a general noisy formulation, CLS-TL would have a more sig-
nificant reduction in complexity when compared to the AOL.

The initial operator for the algorithms is created by repeat-
edly projecting a matrix Ωin = Ω0+γN onto the UN and TF
manifolds. Here, N is a normalized random matrix, and the
constant γ determines the deviation of the initial operator es-
timate from the true operator. A row of the original operator
Ω0 is assumed to be exactly recovered, if in the learned oper-
ator there is a row with at most

√
0.001 ℓ2 distance from this

particular row. The main performance index is the percent-
age of exactly recovered rows versus the cosparsity q, and for
each point in the plots the setup is averaged over 100 inde-
pendent trials. The cosparsity q changes as q = 1, 2, . . . , 12,
whereas a constant η = 0.2 is used for CLS-TL.

In the first experiment we choose the size of the training
data set as l = 768. The setup is repeated by changing the
total number of iterations as 1000, 5000, 10000 and 50000,
and by choosing γ = 1, 5 and 10. The results are present-
ed in Fig.1. Fig.1 indicates that the new CLS-TL algorithm
converges quicker than the AOL algorithm, by giving exac-
t recovery results for the short iteration lengths of 1000 and
5000. In general the CLS-TL algorithm can exactly recov-
er the reference operator for lower values values of q when
compared to the AOL. For higher values of γ, that is when
the initial operator is farther from the ground truth operator,
CLS-TL again has better recovery results than AOL.

In the second experiment set, we study the effect of the
training data set size on the average operator recovery per-
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Fig. 2: Average percentage of analysis operator recovery ver-
sus cosparsity for different training data set sizes l. Number
of iterations stays constant (50000). Solid lines are for the
CLS-TL algorithm, and dashed lines are for the AOL of [14].

formance. We change the data corpus size as l = 384, 768
and 1536. We again consider the deviation parameter values
γ = 1, 5 and 10. Fig.2 details the results for these experi-
ment set. As we can see from Fig.2, CLS-TL outperforms
the AOL algorithm except for γ = 1. For γ = 5 and 10,
the CLS-TL algorithm has better recovery results for all three
data set sizes. Looking at Fig.2, we can infer that CLS-TL
is less sensitive with respect to operator initializations which
are far from the ground truth. We can also state that both al-
gorithms benefit from an increase in the training data size. As
more training data becomes available, the reference operator
is recovered exactly for lower cosparsity values.

5. CONCLUSIONS

We have presented a constrained sparsifying transform learn-
ing framework, and we have developed a new transform learn-
ing algorithm by using this framework together with the UNT-
F set, which provides a viable constraint. We call the new al-
gorithm as the Constrained Least Squares Sparsifying Trans-
form Learning (CLS-TL) algorithm. We have compared the
analysis operator recovery performance of the CLS-TL algo-
rithm with the constrained AOL algorithm of [14]. In this
exact analysis operator recovery setup, the CLS-TL algorith-
m has in general better performance at learning the underly-
ing reference analysis operator. CLS-TL is able to recover
the original analysis operator at lower cosparsity values when
compared to the AOL algorithm. Hence, we can state the new
CLS-TL algorithm provides a new and successful implemen-
tation of the transform learning approach for analysis operator
learning.
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