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Abstract

We introduce a coe�cient update procedure into existing batch and online

dictionary learning algorithms. We �rst propose an algorithm which is a co-

e�cient updated version of the Method of Optimal Directions (MOD) dictio-

nary learning algorithm (DLA). The MOD algorithm with coe�cient updates

presents a computationally expensive dictionary learning iteration with high

convergence rate. Secondly, we present a periodically coe�cient updated

version of the online Recursive Least Squares (RLS)-DLA, where the data is

used sequentially to gradually improve the learned dictionary. The develope-

d algorithm provides a periodical update improvement over the RLS-DLA,

and we call it as the Periodically Updated RLS Estimate (PURE) algorithm

for dictionary learning. The performance of the proposed DLAs in synthet-

ic dictionary learning and image denoising settings demonstrates that the

coe�cient update procedure improves the dictionary learning ability.

Keywords: Dictionary learning, sparse representation, online learning,

image denoising
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1. Introduction

Sparse signal representation in overcomplete dictionaries has acquired

considerable interest [1, 2, 3]. Sparse signal representation constitutes com-

pactly expressing a signal as a linear combination from an overcomplete set of

signals or atoms. The number of atoms utilized in the linear combination is

much less than the signal dimensionality, hence the sparse designation. The

set of all atoms forms the redundant dictionary over which sparse representa-

tions are realized. There are a plethora of methods for sparse representation

of a signal over a given dictionary [4]. One class of algorithms includes linear

programming based optimization methods [5]. Another important class of

algorithms contain the greedy methods, e.g., Orthogonal Matching Pursuit

(OMP) [6], which present computationally practical solutions to the sparse

representation problem.

A subject related to sparse representation is dictionary learning [1, 7, 8, 9],

which considers the construction of the dictionary employed for sparse cod-

ing of data. Dictionary learning examines the problem of training the atoms

of a dictionary suitable for the joint sparse representation of a data set.

Dictionary learning algorithms (DLAs) include Maximum Likelihood (M-

L) methods [10], Maximum a-posteriori Probability (MAP)-based methods

[11], the K-Singular Value Decomposition (K-SVD) algorithm [12], direct op-

timization based methods such as [13] and the least-squares based Method

of Optimal Directions (MOD) [14, 15]. Other recent approaches to the dic-

tionary learning problem include [16, 17].

In general the previously listed methods are batch algorithms, and they

process the entire data set as a batch for each iteration. Recently, online
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DLAs have been proposed, where the algorithm allows sequential dictionary

learning as the data �ows in. The online algorithms include the Recursive

Least Squares (RLS)-DLA [18], which is derived using an approach similar

to the RLS algorithm employed in adaptive �ltering. The RLS approach has

also been used for sparse adaptive �ltering in recent studies [19, 20]. Another

online DLA is the Online Dictionary Learning (ODL) algorithm of [21].

In this paper we introduce a new DLA, which is based on the least squares

solution for the dictionary estimate as is the case for the MOD algorithm and

the RLS-DLA. We �rst present a variant of the MOD algorithm where the

sparse coe�cients associated with the previously seen signals are recalcu-

lated at every iteration before the dictionary is updated. This variant has

much higher computational complexity than the MOD algorithm. We regu-

larize this computationally expensive variant by restricting the recalculation

to periodic updates. The resulting algorithm which we call as the PURE

algorithm is developed by augmenting the RLS-DLA algorithm with peri-

odic updates of the sparse representations before the dictionary estimate is

formed. The PURE algorithm presents performance better than the RLS-

DLA, while maintaining the same asymptotic computational complexity as

the RLS-DLA and MOD algorithms. Simulations show that the introduced

PURE algorithm works well in the synthetic dictionary reconstruction set-

ting and also in image denoising applications. To the best of our knowledge

this work presents the �rst attempt to introduce a periodic coe�cient up-

date into the two-step iterative dictionary learning procedure. Dictionary

learning for given data sets results in performance improvement in various

applications. These applications include but are not limited to image denois-
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ing and reconstruction [22, 23, 24] and various classi�cation problems [25].

Devising new and better dictionary learning approaches naturally leads to

performance improvements in the aforementioned applications.

In the coming sections, we begin �rst by giving a review of dictionary

learning in general, and the MOD and RLS-DLA algorithms. In Section 3

we introduce the coe�cient updated version of the MOD algorithm. In Sec-

tion 4, we develop a new online dictionary learning algorithm by augmenting

the RLS-DLA with periodic coe�cient updates. Section 5 details the compu-

tational complexity of the novel algorithms when compared to the existing

methods. In Section 6 we provide detailed simulations for the novel algo-

rithms. The simulation settings include synthetic dictionary recovery and

image denoising.

2. Batch and Online Dictionary Learning Algorithms

The dictionary learning problem may be de�ned as �nding the optimally

sparsifying dictionary for a given data set. The dictionary learning problem

might be formulated using di�erent optimization objectives over a sparsity

regularized cost function for a given data set. [12] suggests the following

expression for constructing a sparsifying dictionary.

min
D,W

{ N∑
n=1

∥xn −Dwn∥22
}

subject to ∀n, ∥wn∥0 ≤ S (1)

or equivalently

min
D,W

{
∥X−DW∥2F

}
subject to ∀n, ∥wn∥0 ≤ S (2)
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Another similar objective for dictionary learning considered in [12] is

min
D,W

{ N∑
n=1

∥wn∥0
}

subject to ∀n, ∥X−DW∥2F ≤ ϵ. (3)

∥·∥F is the Frobenious norm for the matrix argument, and ∥·∥0 is the ℓ0

pseudo-norm for a vector argument. X ∈ RM×N is the data matrix, which

stores all the data vectors for time n = 1 through N . X = [x1, . . . ,xN ],

where N is the total number of observed data vectors, and xn ∈ RM is the

data vector at time n. D ∈ RM×K is the dictionary matrix with K atoms

as columns, that is D = [d1, . . . ,dK ] . wn ∈ RK is the sparse representation

vector for xn, and W ∈ RK×N is the sparse representation weight matrix,

W = [w1, . . . ,wN ]. S is the maximum allowed number of nonzero elements

for wn. We propose the following formulation for the sparsifying dictionary

learning problem.

min
D,W

{
∥X−DW∥2F + γ

N∑
n=1

∥wn∥0
}

(4)

For appropriate selection of the parameters S, ϵ and γ, we can state that

all three formulations (2), (3) and (4) treat the dictionary learning problem

in a similar manner, and they all seek the optimal dictionary which results

in adequately sparse representations and an acceptable representation error

for a given data record X. The main approach utilized by the DLAs in the

literature for the solution of the dictionary learning optimization problem is

a two-step iterative re�nement procedure. In this approach at each step of

the iterations either one of D or W is held constant, and the optimization

is realized over the other matrix. The ith iteration for this two-step iterative

re�nement approach in batch mode can be summarized as follows.
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1) Find sparse W(i) for constant D(i−1):

w(i)
n = argmin

w
∥xn −D(i−1)w∥22 + γ∥w∥0, for n = 1, . . . , N (5)

2) Find optimal D(i) for constant W(i):

D(i) = argmin
D

∥X−DW(i)∥2F . (6)

The �rst step above is a batch sparse representation problem. Here, the s-

parse representation or vector selection problem is solved for all the N data

vectors separately using the same dictionary matrix D(i−1). The sparse rep-

resentation method to apply in this step can be chosen among a multitude of

methods from sparse coding literature. The sparse representation methods

used by di�erent DLAs include simple gradient descent update [10], FOcal

Underdetermined System Solver (FOCUSS) [11], OMP [12] and the Least

Angle Regression (LARS) algorithm [21].

The second step is where the DLAs utilizing the two step approach di�er

from each other. The pioneering work of [10] suggests an ML approach, where

gradient descent correction is utilized for the calculation of the updated D(i).

D(i) = D(i−1) − η
N∑

n=1

(
D(i−1)w(i)

n − xn

)
w(i)

n

T
(7)

K-SVD [12] uses an SVD based algorithm to update D(i−1), where the values

but not the positions of the non-zero elements of W(i) can also get updated.

The method of optimized directions or the MOD algorithm [14] has also been

called as the Iterative Least Squares Dictionary Learning Algorithm or ILS-

DLA [15]. MOD has been proposed as a least squares iterative approach

for dictionary design from data. The MOD algorithm �ts into the iterative
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Algorithm 1 MOD algorithm for dictionary learning [15].

Input : Data record of length N , X = XN = [x1, . . . ,xN ].

1: Initialize the dictionary, possibly as D(0) = XK .

2: for i := 1, 2, . . . do ◃ epoch iteration

3: for n := 1, 2, . . . , N do ◃ batch iteration for sparse representation

4: w
(i)
n = argmin

w
∥xn −D(i−1)w∥22 + γ∥w∥0

5: end for

6: W(i) = [w
(i)
1 , . . . ,w

(i)
N ] ◃ sparse representation matrix

7: D(i) = XW(i)† = XW(i)T
[
W(i)W(i)T

]−1
◃ dictionary update step

8: end for ◃ end of iteration

relaxation based two-step approach for dictionary design as described above.

The MOD algorithm calculates the exact least squares solution for (6).

D(i) = XW(i)† = XW(i)T
[
W(i)W(i)T

]−1
(8)

Here, (·)† denotes the Moore-Penrose pseudo-inverse. The outline for the

MOD algorithm is presented in Alg.1. Here, by epoch we mean a complete

run over the available training set. The common theme for the algorithms

introduced in [10, 12, 15, 26] is that in all these algorithms, both steps of

the two-step approach are run in batch mode. D(i) is recalculated only once

every epoch after all sparse representation vectors are found using D(i−1).

Recently there have been attempts at online DLA's, where the two-steps are

run in an online, streaming data fashion [18, 21]. By the online designation,

it is meant that the dictionary is updated continuously in an online fashion

for each incoming data vector. In the online mode except the epoch iteration,

there is also an iteration over time index. Hence, the two-step approach for
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the online modality can be formalized as follows.

1) Find optimal wn for constant Dn−1, that is �nd

wn = argmin
w

∥xn −Dn−1w∥22, s.t. ∥w∥0 ≤ S. (9)

2) Find optimal Dn for constant Wn, that is �nd

Dn = argmin
D

∥Xn −DWn∥2F . (10)

Here, Xn = [x1,x2, . . . ,xn] ∈ RM×n is the partial data matrix. Wn =

[w1,w2, . . . ,wn] ∈ RK×n is the corresponding instantaneous weight matrix.

The �rst step constitutes a sparse representation operation, yet for a single

vector xn. The second step is the instantaneous dictionary update, where

the innovation gathered from the calculation of the new weight vector wn is

used to revamp Dn−1.

Recently an online version of the MOD algorithm denoted as RLS-DLA

has been developed [18]. In the online formulation of the RLS-DLA, instan-

taneous data matrix Xn and instantaneous sparse representation matrix Wn

replace the matrices in the least squares solution (8). The main algorithmic

structure for the online approach of the RLS-DLA algorithm is summarized

in Alg.2. In the development of the RLS-DLA algorithm, the relation be-

tween the successive matricesWn−1 andWn is utilized to conceive an update

scheme which calculates W†
n from W†

n−1 without any explicit matrix inver-

sion [18]. The RLS-DLA algorithm prevents matrix inversion at each time

step, and hence its computational complexity does not get excessively high.

We state that it is possible to design other least-squares solution based DLAs,

and we present these novel algorithms in the coming sections.
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Algorithm 2 RLS-DLA [18].

Input : Data record of length N , X = XN = [x1, . . . ,xN ].

1: Initialize the dictionary, possibly as D
(0)
N = XK .

2: for i := 1, 2, . . . do ◃ epoch iteration

3: D
(i)
0 = D

(i−1)
N , W0 = [ ] ◃ initialization

4: for n := 1, 2, . . . N do ◃ time iteration

5: w
(i)
n = argmin

w
∥xn −D

(i)
n−1w∥22 + γ∥w∥0 ◃ sparse representation step

6: Wn = [Wn−1|w(i)
n ] ◃ instantaneous sparse representation matrix

7: D
(i)
n = XnWn

† ◃ dictionary update step

8: end for ◃ end of time recursion

9: end for ◃ end of iteration

3. Least Squares Dictionary Learning Algorithm with Coe�cient

Update

We present a variation on the MOD algorithm, which presents a time re-

cursion di�erent when compared to the RLS-DLA. The RLS-DLA algorithm

as presented in Alg.2, �nds only the sparse representation for the current data

vector xn at Step 5. Hence, the current instantaneous weight matrix Wn is

generated by concatenating the previous weight matrix Wn−1 with wn, that

is Wn = [Wn−1| wn]. We suggest that better convergence in the dictionary

update can be achieved if at each time instant also the sparse representations

for previous data vectors get updated. Hence, in the proposed variation, the

instantaneous weight matrix Wn is found from scratch by applying batch s-

parse representation to all the data vectors up to time n. This means that at

each time point n, n sparse representation problems should be solved, where
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Algorithm 3 MOD with coe�cient update (MOD-CU) dictionary learning

algorithm.

Input : Data record of length N , X = XN = [x1, . . . ,xN ].

1: Initialize the dictionary, possibly as D0 = XK .

2: for n := 1, 2, . . . N do ◃ time iteration

3: for t := 1, 2, . . . , n do ◃ iteration for sparse representation step

4: wt = argmin
w

∥xt −Dn−1w∥22 + γ∥w∥0

5: end for

6: Wn = [w1, . . . ,wn] ◃ instantaneous sparse representation matrix

7: Dn = XnWn
† ◃ dictionary update step

8: end for ◃ end of time iteration

in Step 5 of Alg.2, only a single sparse coding problem is solved. In this vari-

ation the pseudo inverse of the Wn will no longer be recursively calculable

from W†
n−1. Hence, a K × K matrix inversion is required at each time in-

stant. We call this new MOD-based dictionary learning algorithm variant as

MOD with coe�cient update (MOD-CU), and its steps are detailed in Alg.3.

The computational complexity of the proposed algorithm for a single epoch

iteration is much larger than the RLS-DLA and the MOD algorithms, as it

requires the solution of multiple sparse representation problems at each time

point. On the other hand, a single epoch iteration through the data record

for MOD-CUalso gives much better dictionary atom recovery results when

compared to the RLS-DLA and MOD algorithms. The MOD-CU algorithm

as presented in Alg.3 realizes only a single epoch iteration over the whole

data set. The resulting dictionary estimate from this process can be used

as the initial dictionary for RLS-DLA, MOD or any other DLA. Remaining
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iterations might be performed using the DLA of choice.

4. RLS-DLA with Periodic Weight Updates: PURE-DLA

At time instant n, the MOD-CU algorithm necessitates solving the sparse

representation problem for n data vectors and �nding the inverse of a K×K

matrix. The RLS-DLA on the other hand requires solving the sparse repre-

sentation problem only for the current data vector and requires no explicit

matrix inversion, because the matrix inverse is calculated using a rank one

update similar to the RLS algorithm. Hence, it is tempting to �nd an algo-

rithm which maintains the relative performance gain of MOD-CU without

severely compromising the computational e�ciency of RLS-DLA. We pro-

pose a new online dictionary learning algorithm based on the RLS-DLA. In

this new algorithm the dictionary estimate of the RLS-DLA is periodically

updated at certain time intervals using the dictionary update steps of MOD-

CU (Alg.3, steps 3-5). We call this new hybrid algorithm, which maintains

the advantages of both RLS-DLA and the coe�cient update as the Period-

ically Updated RLS Estimate (PURE) dictionary learning algorithm. The

PURE-DLA algorithm is outlined in Alg.4. In PURE-DLA, the RLS-DLA

is realized in its regular form. Steps 5-9 in Alg.4 realize the online update of

the dictionary estimate at every time instant as adapted from the RLS-DLA.

Step 5 is the instantaneous solution for the current data vector, while steps

6-9 realize the dictionary estimate update using the current sparse represen-

tation.

The di�erence between PURE and RLS-DLA occurs in the periodic dic-

tionary update step which is executed periodically after every P time in-
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Algorithm 4 Periodically Updated RLS Estimate dictionary learning algo-

rithm (PURE-DLA) .

Input : Data record of length N , X = XN = [x1, . . . ,xN ].

1: Initialize the dictionary, possibly as D
(0)
N = XK .

2: for i := 1, 2, . . . do ◃ epoch iteration

3: D
(i)
0 = D

(i−1)
N , C0 = IK ◃ initialization

4: for n := 1, 2, . . . N do ◃ time iteration

5: wn = argmin
w

∥xn −D
(i)
n−1w∥22 + γ∥w∥0 ◃ RLS update starts with

sparse representation step

6: r = xn −D
(i)
n−1wn, C

∗
n−1 = λ−1Cn−1

7: u = C∗
n−1wn, α =

1

1 +wT
nu

8: Cn = C∗
n−1 − αuuT

9: D
(i)
n = D

(i)
n−1 + αruT ◃ RLS update �nishes

10: if mod (n, P ) = 0 then ◃ periodic update starts

11: for t := 1, 2, . . . , n do ◃ sparse representation iteration for periodic

update

12: wt = argmin
w

∥xt −D
(i)
n w∥22 + γ∥w∥0

13: end for

14: Wn = [w1, . . . ,wn] ◃ periodic update for sparse representation

weight matrix

15: D
(i)
n = XnWn

† ◃ periodic dictionary update step

16: end if ◃ periodic update �nishes

17: end for ◃ end of time iteration

18: end for ◃ end of iteration

stants. In Alg.4, steps 10-16 outline this periodic update of the instanta-

neous dictionary estimate. The check in step 10 makes sure that the periodic
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update is performed only every P time iterations. Steps 11-13 calculate the

sparse representation for all the previously seen data vectors t = 1, 2, . . . , n.

Step 15 calculates the least squares solution for the dictionary estimate based

on all the data vectors up to and including time n. λ in Alg.4 is the exponen-

tial weighting factor, utilized for forgetting the data vectors in the distant

past [18]. By realizing the MOD-CU update step only with period P , we

ensure that the computational complexity of the PURE algorithm does not

get as high as the MOD-CU algorithm.

5. Computational Complexity Comparison

In this section we will discuss the computational complexities of the vari-

ous DLA's in terms of the number of multiplications required. The common

step in all the DLAs is the sparse representation step. If this sparse repre-

sentation step is realized using OMP, its complexity is O((S2 + M)K). S

is the sparsity of the data vectors, M is data vector length and K is dic-

tionary size. Assuming S2 ∼ M and M ∼ K, the sparse representation

step complexity becomes O(K2). Since sparse representation is the domi-

nating step, for a complete iteration the asymptotic complexities of MOD,

K-SVD and RLS-DLA are all equal to O(K2N), where N is the time dura-

tion of observed data [18]. MOD, K-SVD and RLS-DLA all solve a single

sparse representation problem per time index, whereas MOD-CU requires

the solution to n sparse representation problems at time index n. Hence,

for a complete iteration the complexity for the MOD with coe�cient up-

date becomes O(K2
∑N

n=1 n) = O(K2N2). The asymptotic complexity for

the MOD-CU is proportional to N2, instead of N as is the case for MOD,
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K-SVD and RLS-DLA.

For a complete iteration PURE-DLA employs the solutions to
(
N +

P
∑N/P

m=1m
)
sparse representation problems , where P is the period for the

full update. Consequently, the multiplicational complexity for PURE-DLA

becomes O(K2N2/P ). If we ensure that N/P = c, where c is a constant, the

complexity for PURE-DLA becomes O(cK2N). Hence, the order of growth

for the complexity of PURE-DLA is similar to MOD, K-SVD and RLS-DLA,

as long as the ratio N/P stays constant.

6. Simulation Results

In this section we present experiments which detail the dictionary learn-

ing performance of the introduced algorithms when compared to DLAs from

literature. We analyze the dictionary learning performance of the various al-

gorithms under di�erent signal-to-noise ratio (SNR) values. We also examine

the performance of the PURE algorithm when utilized in image denoising.

In the simulations of this section we have made use of the K-SVD implemen-

tations provided by the authors of [12]1.

6.1. Synthetic Experiments

In the �rst experiment set we analyze the dictionary learning performance

of the algorithms in a synthetic setting. For each experiment a dictionary

matrix of size M ×K = 20× 30 is generated randomly. The columns of the

dictionary matrix which constitute the atoms of the dictionary are normalized

to unit norm. The sparse representation matrix W is generated as to possess

1http://www.cs.technion.ac.il/ ronrubin/software.html
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sparse columns with S = 3 nonzero elements at random locations, where the

nonzero element values are taken from a zero mean, unit variance normal

distribution. The number of generated data vectors is N = 300. White

Gaussian observation noise is added to the data vectors as to result in desired

SNR values. In addition to the algorithms MOD-CU and PURE introduced

in this paper, we realize the online RLS-DLA [18], and the batch methods,

MOD [15] and K-SVD [12]. The experiments are repeated 80 times for each

setting, where a new dictionary is generated for each trial. A total of 60

iterations are realized over the data set for each trial. MOD-CU algorithm

realizes Alg. 3 only in its initial iteration, where the remaining iterations

realize the RLS-DLA. The forgetting factor is held to be constant with λ =

0.99 for PURE-DLA and RLS-DLA. For PURE-DLA the update period is

P = 60. Hence, the dictionary update step is realized after every 60 time

points. In all algorithms the sparse representation step is realized via OMP

with a sparsity level of S = 3.

Fig.1 displays the number of correctly identi�ed dictionary atoms out of

K = 30 atoms for each of the algorithms at the end of the 60 iterations.

The SNR changes from 10 dB up to 50 dB in steps of 10 dB. The criterion

applied in determining whether an atom is correctly identi�ed is the distance

criterion de�ned in [12].

1− |did̂j| (11)

The measure in (11) de�nes a distance between two normalized atoms, di

from original generating dictionary and d̂j from learned dictionary. An atom

is decided to be successfully identi�ed when its distance from a learned atom

is less than 0.01. The 80 trials are ordered based on the number of successfully
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Figure 1: Number of correctly identi�ed atoms after 60 iterations for PURE-DLA, MOD-

CU, RLS-DLA, K-SVD and MOD using di�erent SNR values. For each algorithm and for

each SNR value there are a total of 80 trials grouped in �ve sets of trials.

identi�ed atoms, and the mean number of identi�ed atoms in �ve groups of

experiments are presented in the scatter plot. The overall means of the 80

trials are also plotted. The results show that the PURE-DLA has the best

atom identi�cation performance among the algorithms for all SNR values.

MOD-CU followed by RLS-DLA iterations is marginally better than RLS-

DLA. Batch algorithms K-SVD and MOD have worse performance than the

online algorithms.

In Fig.2 we present the evolution of the dictionary atom identi�cation

performance of the algorithms as a function of iteration number. The mean

of the percent of correctly identi�ed atoms is plotted versus the iteration

index. The graphs show the results for 10 dB, 20 dB and 30 dB SNR. The

batch algorithms K-SVD and MOD have poorer convergence than the online
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Figure 2: Percent of correctly identi�ed atoms after each iteration averaged over 80 trials

for PURE-DLA, MOD-CU, RLS-DLA, K-SVD and MOD. SNR values are (a) 10 dB, (b)

20 dB and (c) 30 dB.

algorithms. They do not fully converge after 60 iterations. The RLS-DLA

algorithm has a gradual increase with iteration index and converges roughly

after 20 iterations. For MOD-CU algorithm, the initial and computationally

expensive MOD-CU iteration results in a steep increase in the number of iden-

ti�ed atoms, jumping to almost the �nal correct identi�cation performance

in a single iteration. The curve for the MOD-CU converges to �nal values

similar to those of the RLS-DLA. The convergence for MOD-CU supplement-

ed by RLS-DLA takes less iterations than RLS-DLA alone. The PURE-DLA

has the best convergence performance among the algorithms. It converges
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Table 1: Computational time requirements of various DLAs for a single iteration.

Algorithm PURE MOD-CU K-SVD MOD RLS

Time (sec) 0.6113 18.0019 0.2689 0.1201 0.1692

faster than RLS-DLA , and it also converges to a higher percent value than

RLS-DLA. These results con�rm that PURE-DLA presents a viable tradeo�

between the high performance however computationally expensive MOD-CU

algorithm and the RLS-DLA. The additional computational expense incurred

by PURE-DLA over RLS-DLA is not prohibitive, since the update period of

PURE-DLA is quite large with N/P = 5.

Table 1 details the computation time requirements of the algorithms com-

pared in the above given synthetic dictionary identi�cation experiment. In

this table the computation time requirement for a single iteration of the D-

LAs are listed. In Table 1, it is observed that the MOD-CU algorithm has

much higher computation time requirement than the other algorithms, as it

repeats the sparse representation update continuously. On the other hand,

the PURE algorithm provides a good tradeo� by decreasing the computation-

al requirement of the MOD-CU algorithm considerably using only periodic

updates.

6.2. Image Denoising

There have been numerous attempts at image processing applications of

sparse representation and dictionary learning methods [27, 28, 29, 30, 31]. In

this section we apply the dictionary learning algorithms to the image denois-

ing problem. In [27] dictionary learning using K-SVD is considered for the
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sparse representation of image patches. The sparse representation over the

learned dictionary enables the development of a denoising algorithm which

provides state-of-the art performance [28, 32]. We employ the novel PURE

dictionary learning algorithm and also K-SVD and RLS-DLA algorithms in

this image denoising framework introduced in [27]. Here, the dictionary

learning algorithms are utilized for building an image patch dictionary from

the patches of the noisy image. We also realize a version of the denoising

framework which utilizes a �xed overcomplete DCT dictionary rather than

learning a dictionary from the the noisy image itself. In the denoising exper-

iments we utilize the general setup as introduced in [27]. The dictionary size

is 64× 256, where the atom length is chosen to handle 8× 8 image patches.

The dictionary is learned from a total of 5000 overlapping patches generated

from the noisy image. The sparse representation step is realized by OMP.

Observation noise with varying variance σ2 is added, and σ is assumed to

be a priori known. The terminating error threshold for OMP is chosen to

be ϵ = 1.15σ, and the averaging constant is 30/σ [27]. The forgetting factor

is held to be constant with λ = 0.99 for PURE-DLA and RLS-DLA. The

number of iterations for K-SVD is 10. RLS-DLA and PURE-DLA are run

for 2 iterations. For PURE-DLA the update period is P = 50, that is the

dictionary update step is realized after every 50 patches.

Table 2 summarizes the results in image denoising using dictionaries

learned via PURE, K-SVD, RLS-DLA and additionally the �xed DCT dictio-

nary. The reported results are averages over �ve experiments with di�erent

realizations of the noise. The experiments are realized for four di�erent im-

ages which have also been used in the literature [27]. The results in Table 2
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Table 2: Denoising results for di�erent images and for di�ering PSNRs in decibels. In

each cell four results are reported. Top left: K-SVD. Bottom left: RLS-DLA. Top right:

PURE. Bottom right: Overcomplete DCT. In each cell the best result is boldfaced.

σ/PSNR Lena Barbara Boats House

10/28.13
35.35 35.41 34.12 34.18 33.54 33.58 35.73 35.90

33.89 35.29 32.40 33.95 32.58 33.43 33.90 35.39

15/24.61
33.48 33.51 31.99 32.00 31.55 31.60 34.04 34.18

31.83 33.39 29.82 31.64 30.29 31.37 31.84 33.50

20/22.11
32.11 32.14 30.41 30.36 30.06 30.11 32.76 32.89

30.60 31.99 28.14 29.94 28.79 29.91 30.56 32.10

25/20.17
31.03 31.02 29.13 29.09 28.96 29.02 31.75 31.56

29.65 30.90 26.91 28.62 27.73 28.77 29.46 30.98

50/14.15
27.58 27.52 24.86 24.78 25.64 25.62 27.69 27.61

26.79 27.44 23.78 24.74 24.70 25.60 26.65 27.51

suggest that using the coe�cient update enhanced PURE algorithm in place

of RLS-DLA improves the denoising performance. The dictionaries learned

using K-SVD and PURE in general have similar performance in this de-

noising setting.They perform in general better than the dictionaries learned

by RLS-DLA and the �xed DCT dictionary. Hence, utilizing a dictionary

learned via PURE with the coe�cient update results in a performance gain

when compared to the RLS-DLA. Figs.3 and 5 present the original, noisy
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and denoised "Barbara" and "Boat" images for noise level σ = 20. Figs.4

and 6 show two scaled up sections of the images presented in Figs.3 and 5

to display the denoising performance in more detail. The detail �gures in

Figs. 4 and 6 demonstrate that the PURE-DLA and K-SVD dictionaries are

better than the RLS-DLA dictionary in keeping the details of the original

image.

7. Conclusions

We have presented a new dictionary learning algorithm for the online

dictionary training from data. Firstly, we considered a coe�cient update im-

provement on the MOD algorithm, which we called as MOD-CU algorithm.

This method provides a computationally expensive but improved variation

on the MOD algorithm. Secondly we propose an algorithm which provides

a compromise between the computationally expensive full MOD-CU itera-

tion and the RLS-DLA, and we call this method as the PURE algorithm.

The new PURE algorithm introduces a novel periodic sparse representation

update procedure into the two-step iterative dictionary learning approach.

Simulation results for synthetic dictionary identi�cation scenario depict the

high convergence performance of MOD-CU. The results also illustrate the

superior convergence and estimation performance of the PURE over RLS-

DLA and MOD. We also implemented the PURE algorithm in the image

denoising setting. The image denoising results con�rm that PURE algo-

rithm provides a computationally tractable enhancement for the RLS-DLA.

Utilizing a dictionary learned from the noisy image via PURE, gives in gen-

eral better results than using RLS-DLA or employing a �xed overcomplete
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DCT dictionary. PURE algorithm presents an improved online approach for

high performance dictionary learning without compromising computational

complexity. One possible future research topic might be the introduction of

the new sparse representation update procedure into structured or group-

sparse dictionary learning algorithms. A second research direction would be

using this strategy in the recently introduced analysis sparsity and analysis

operator learning algorithms.
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a) b)

c) d)

Figure 3: Image denoising experiment results for image "Barbara" with σ = 20. a) Noisy

image with σ = 20 (22.11 dB). b) Image denoised using dictionary learned via RLS-DLA

(28.14 dB). c) Image denoised using dictionary learned via K-SVD (30.41 dB). d) Image

denoised using dictionary learned via PURE (30.36 dB).
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a) b) c) d)

e) f) g) h)

Figure 4: Scaled up comparison of denoising results from Fig.3. a), e) Noisy images.

b), f), Images denoised using dictionary learned via PURE. c), g) Images denoised using

dictionary learned via RLS-DLA. d), h) Images denoised using dictionary learned via

K-SVD.
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a) b)

c) d)

Figure 5: Image denoising experiment results for image "Boat" with σ = 20. a) Noisy

image with σ = 20 (22.11 dB). b) Image denoised using dictionary learned via RLS-DLA

(28.79 dB). c) Image denoised using dictionary learned via K-SVD (30.06 dB). d) Image

denoised using dictionary learned via PURE (30.11 dB).
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a) b) c) d)

e) f) g) h)

Figure 6: Scaled up comparison of denoising results from Fig.5. a), e) Noisy images.

b), f), Images denoised using dictionary learned via PURE. c), g) Images denoised using

dictionary learned via RLS-DLA. d), h) Images denoised using dictionary learned via

K-SVD.
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