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ABSTRACT
We will be considering analysis sparsity based regularization
for Magnetic Resonance Imaging reconstruction. The analy-
sis sparsity regularization is based on the recently introduced
Transform Learning framework, which has reduced complex-
ity regarding other sparse regularization methods. We will
formulate a variational reconstruction problem which utilizes
the analysis sparsity regularization together with an `1 norm
based data fidelity term. The use of the non-smooth data fi-
delity term results in robustness against outliers and impulsive
noise in the observed data. The resulting algorithm with the
`1 observation fidelity showcases enhanced performance un-
der impulsive observation noise when compared to a similar
algorithm utilizing the conventional quadratic error term.

Index Terms— Magnetic resonance, image reconstruc-
tion, compressed sensing, analysis sparsity, impulsive noise

1. INTRODUCTION

We consider the inverse problem of Magnetic Resonance
Image (MRI) reconstruction from heavily undersampled ob-
servations under impulsive noise. Sparsity based regular-
ization methods using a variational framework have been
very popular recently. Synthesis sparsity has been on the
forefront of this research torrent, with compressed sensing
based data acquisition being its best known application [1].
Dictionary learning (DL) approaches together with synthe-
sis sparsity have shown state-of-the-art performance starting
from the simplest inverse imaging problem of denoising [2]
and leading to more complex inverse imaging problems such
as the MRI reconstruction [3]. Analysis sparsity on the other
hand has been a lesser studied doppelganger for synthesis
sparsity [4]. Recently, a new approach to analysis sparse
modeling has been developed under the title of “Transform
Learning” [TL] [5]. Transform Learning (TL) provides a
framework with much reduced complexity for learning an
analysis sparsity operator and for executing the analysis spar-
sity prior as an image model. After its initial conception in
the image denoising milieu [5], the TL framework with its

learned analysis sparsity model has also been successfully
applied to the MRI reconstruction problem under the title of
TLMRI [6]. When compared to the previous synthesis spar-
sity and DL based MRI reconstruction algorithms, TLMRI
maintained comparable performance with greatly reduced
complexity due to its avoidance of the costly sparse coding
step. The TLMRI reconstruction algorithm was recently en-
riched by the inclusion of a more traditional global wavelet
transform sparsity term, utilizing both the patch-wise anal-
ysis sparsity and the image-wide global wavelet transform
sparsity [7], leading to the Globally Regularized TLMRI
(G-TLMRI) algorithm. All the reconstruction algorithms
mentioned thus far have used a sparsity based image model
together with an `2 norm based quadratic error term for data
or observation fidelity. The use of an `2 norm based data
fidelity term in the overall variational framework presumes
Gaussian distribution for the observation noise. In this work
we want to consider the case of non-Gaussian and especially
impulsive observation noise in the MRI data acquisition set-
ting. We will modify the TLMRI reconstruction algorithm
by incorporating an `1 norm data fidelity term in the over-
all cost function. The inclusion of the `1 norm data fidelity
term results in improved reconstruction performance when
compared to the original TLMRI algorithm.

2. TLMRI MEETS `1 DATA FIDELITY

The Transform Learning (TL) method as an adaptive analysis
sparsity based image model was initially applied to image de-
noising in [5]. The application realm of TL was extended to
MRI image reconstruction in [6] under the rubric of TLMRI.
For the MRI reconstruction problem, the data acquisition is
modeled as follows.

y = Fux? + η (1)

Here, y is the observation or data vector in the Fourier do-
main. The operator Fu models the downsampled Fourier
transform operator from the vectorized image space to the ob-
servation space, with x? being the true vectorized image. The



vector η symbolizes the observation or data noise.
In TLMRI, as in most similar variational methods for im-

age reconstruction problems, the data fidelity term is formu-
lated as a quadratic error using the `2 norm. Under a Max-
imum Likelihood (ML) estimation formulation, the `2 regu-
larization suggests a Gaussian distribution for the observation
noise η, which is the most common assumption. Here we
will be considering a non-Gaussian and especially impulsive
distribution for the observation noise. Such a non-Gaussian
noise assumption leads to a non-smooth data fidelity term [8]
from the ML perspective. Especially, a Laplacian noise dis-
tribution would result in an `1 data fidelity term, which has
been studied in the literature under the least absolute devia-
tion (LAD) regression [8]. Here, we will use the non-smooth
`1 data fidelity term with an impulsive observation noise. Us-
ing the TLMRI cost function as the starting point, the cost
function for the new algorithm can be given as follows.

(P1) min
W,X̂ ,A,x

‖WX̂ −A‖2F + λQ(W) + β‖A‖1

+ τ‖P(x)− X̂‖2F + η‖Fux− y‖1. (2)

In (2), ‖·‖F denotes the Frobenius norm for the argument ma-
trix. The adaptive operator W ∈ Cn×n is the learned spar-
sifying transform. The matrix X̂ ∈ Cn×M , and its column
vectors x̂j ∈ Cn are image patches of size

√
n ×
√
n given

in vectorized form. The matrix A ∈ Cn×M with columns
αj ∈ Cn store the sparse codes for the patches. The function
Q(·) implements the required penalization such that the adap-
tive sparsifying transform W avoids degenerate solutions [6].
P is an operator which models the extraction of vectorized
patches from the argument image matrix.

In (2), ‖Fux − y‖1 is the data fidelity term, which en-
forces the connection between the observation y and the re-
constructed image x. All the remaining terms are about the
enforcement of the TL image model onto the reconstructed
image x using a learned sparsifying operator W. These terms
are responsible for the regularization of the reconstructed im-
age such that the reconstructed image x stays sparsifiable un-
der a learned transform W. The cost function (2) is mostly
equivalent to the formulations as utilized in [6] and [7]. The
main difference in (2) is the introduction of the `1 based data
fidelity term ‖Fux − y‖1 instead of the quadratic formula-
tion. The introduction of the `1 data fidelity leads to an al-
gorithm which is especially robust against observation noise
with heavy-tailed or impulsive distribution. In the coming
section we present a modified TLMRI algorithm which solves
the novel cost function (2) with the `1 data fidelity.

3. THE LAD-TLMRI ALGORITHM

We will modify the TLMRI algorithm as to handle the `1
data fidelity in the cost function (P1) (2). The problem (P1)
gets separated into two main steps, one involving x and one

without it. The first step enforces the analysis sparsity model
through transform learning onto patches of the current recon-
structed image.

min
W,X̂ ,A

‖WX̂ −A‖2F + λQ(W)

+ β‖A‖1 + τ‖P(x)− X̂‖2F . (3)

This step is common to both the TLMRI and G-TLMRI algo-
rithms as introduced in [6] and [7], respectively. For the pur-
pose of completeness, we want to repeat here the solution as
we introduced in [7]. We will use two distinct substeps each
iterating on just two of the variables, with A being common
to both substeps. The two substeps are as follows [7]:

min
A
‖WX̂ −A‖2F + β‖A‖1. (4a)

min
W
‖WX̂ −A‖2F + λQ(W). (4b)

min
A
‖WX̂ −A‖2F + β‖A‖1. (5a)

min
X̂
‖WX̂ −A‖2F + τ‖P(x)− X̂‖2F . (5b)

The subequations (4a) and (5a) are equivalent, and they are
solved by soft thresholding. The subequations (4b) and (5b)
have distinct least squares solutions [6]. Eqns. (4) and (5)
have defined the substep for solving the analysis sparsity
based regularization procedure given in (3).

The second substep for the solution of (P1) is a recon-
struction step with an `1 data fidelity constraint.

min
x
‖Fux− y‖1 + τ

η ‖P(x)− X̂‖2F . (6)

Here, we would like to define an operator P̂(·) which creates
a vectorized image from a matrix of processed patches. This
trick which we also utilized in [7] saves us from the burden of
repeatedly switching between the patch and image domains as
we iteratively search for a solution of (6). After the introduc-
tion of P̂(·), (6) can be approximately rewritten as follows.

min
x
‖Fux− y‖1 + τ ′

2 ‖x− P̂(X̂ )‖22. (7)

In (7) we have a combination of a non-smooth data fidelity
term with a smooth, quadratic regularization term. We will
adopt a gradient descent algorithm for solving (7). Because
of the `1 term we will be using a subgradient for the data
fidelity term. We present the gradient descent step and the
corresponding gradient definition in the following.

x = x− γ∇g(x). (8a)
∇g(x) = FH

u sgn(Fux− y) + τ ′(x− P̂(X̂ )). (8b)

The parameter γ is the step-size for the gradient descent. The
operator FH

u which realizes zero-filled reconstruction is the
adjoint of Fu. The sgn{·} operator which calculates the el-
ementwise sign function for the argument vector arises from



Algorithm 1 LAD-TLMRI Algorithm
Input: Observation, y = Fux? + η; parameters
λ, β, τ, τ ′, γ.
Goal: min

W,X̂ ,A,x
‖WX̂ −A‖2F + λQ(W) + β‖A‖1

+τ‖P(x)− X̂‖2F + η‖Fux− y‖1
1: Initialize x = FH

u y.
2: for i := 1, 2, . . . do . main iteration
3: Initialize X̂ = P(x). . denoising starts
4: Iterate (4), N1 times.
5: Iterate (5), N2 times.
6: Initialize x = P̂(X̂ ). . reconstruction starts
7: Iterate (8a), N3 times.
8: end for . end of main iteration
9: Output reconstructed MR image x.

the subgradient of the `1 data fidelity. The reconstruction step
realized by iterating (8a) completes the algorithm for solving
(P1) (2). We will call the resulting overall algorithm as the
Least Absolute Deviation TLMRI (LAD-TLMRI). A com-
plete portrayal of the LAD-TLMRI is depicted in Alg.1.

4. SIMULATION RESULTS

In this section, we investigate the performance of our LAD-
TLMRI algorithm through simulations. For comparison, we
also simulate zero-filling reconstruction and original TLMRI
algorithm [6]. In our MRI acquisition scenario we assume
random sampling mask with 4-fold undersampling [7]. Fur-
thermore we assume complex impulsive noise with mean zero
and standart deviation σ, where real and imaginary parts are
i.i.d. and have generalized Gaussian distribution [9, 10]:

f(η) =
b

2aΓ{1/b}
exp{−|η/b|2}. (9)

Here, Γ is the complete Gamma function, b is the shape pa-
rameter, and a is the scale parameter defined by

a = σ

√
Γ{1/b}
2Γ{3/b}

. (10)

For the special cases of b = 2 and b = 1, the resulting
noise would have Gaussian and Laplacian distributions, re-
spectively. As b approaches zero, the distribution becomes
more and more impulsive. Here, we utilize b = 0.2 which
corresponds to a rather heavy tailed distribution. We test brain
and shoulder MR images with size 256× 256 and a pixel in-
tensity range of [0, 1]. In the transform learning phase, we
utilize 7200 maximally overlapping patches where each patch
has size 6 × 6. Both algoritms are realized with common
parameters λ = 105, β = 0.02, τ = 0.5, and inner itera-
tion numbers N1 = N2 = 10. For LDA-TLMRI algorithm,

Fig. 1: Brain image results. First row: Original image (left),
Zero-filling reconstruction (right). Second row: TLMRI re-
construction (left), LAD-TLMRI reconstruction (right).

γ = τ ′ = 0.01 and N3 = 5. Our main performance metric
is high-frequency error norm (HFEN) which is particularly
useful for its relation with the human visual quality percep-
tion [5]. In order to calculate HFEN, the difference between
the original and reconstructed images is filtered by rotation-
ally symmetric Laplacian of Gaussian filter with size 15× 15
and standart deviation 1.5. Afterwards, the Frobenius norm of
the filter output is calculated. Assuming σ = 50, Figs. 1 and
2 show the original and reconstructed images for the brain and
shoulder cases, respectively. Zero-filling has the worst recon-
struction performance as expected. On the other hand, LAD-
TLMRI provides better reconstruction when compared with
original TLMRI. Fig. 3 detailing the evolution of HFEN ver-
sus iteration supports this observation. Tables 1 and 2 present
HFEN values for reconstructed images with different σ val-
ues. It can be further stated that the HFEN enhancement ob-
tained via LAD-TLMRI improves as σ increases.

Table 1: HFEN for brain image.

Reconstruction Zero-filling TLMRI LAD-TLMRI
σ = 20 2.17 1.64 0.99
σ = 50 3.46 2.56 1.39
σ = 100 4.98 3.43 1.96

5. CONCLUSIONS

We have developed an MRI reconstruction algorithm with an
impulsive or non-Gaussian observation noise prior. We con-



Fig. 2: Shoulder image results. First row: Original im-
age (left), Zero-filling reconstruction (right). Second row:
TLMRI reconstruction (left), LAD-TLMRI reconstruction
(right).

Table 2: HFEN for shoulder image.

Reconstruction Zero-filling TLMRI LAD-TLMRI
σ = 20 1.73 1.16 0.72
σ = 50 2.82 1.87 1.05
σ = 100 4.07 2.60 1.54

join an effective analysis sparsity image model of reduced
complexity with a data fidelity term which uses the `1 norm.
The resulting LAD-TLMRI algorithm successfully combines
a very recent image model used for regularization with a non-
smooth data fidelity term especially suitable for impulsive
noise. Under impulsive noise, the developed LAD-TLMRI al-
gorithm demonstrates improved reconstruction performance
when compared to the original algorithm using a quadratic
data fidelity assumption.
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