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Ender M. Ekşioğlu and Ahmet H. Kayran

Department of Electrical and Electronics Engineering,
Istanbul Technical University,

Istanbul, 34469, Turkey

ABSTRACT

A novel lattice-ladder structure for the realization of 2D
ARMA digital filters is presented. The new realization is
based on the 2D AR lattice filter. The algorithm to calcu-
late the lattice-ladder structure coefficients for a given 2D
ARMA transfer function is included. The 2D lattice-ladder
structure has the properties of orthogonality and modularity
as in the 1D case. The lattice-ladder structure might prove
useful in 2D adaptive filtering applications.

1. INTRODUCTION

ARMA or pole-zero digital filters are important in that they
can provide parsimonious yet efficient system models. 1D
ARMA lattice-ladder structures have found applications in
adaptive filtering and speech processing [1], [2]. The 1D
ARMA lattice-ladder structure consists of an all-pole lattice
section realizing the AR part of the system and the all-zero
ladder section providing the MA part . The ladder section
employs linear regression on the backward prediction er-
rors generated by the lattice section. However, in the liter-
ature there is yet no compatible lattice-ladder structure for
2D ARMA digital filters, which are utilized for 2D digital
filtering and digital image processing.

In this brief we develop a new lattice-ladder structure
for the realization of 2D ARMA digital filters. This struc-
ture utilizes the 2D AR lattice model recently proposed in
[3] as the backbone and juxtaposes a ladder section to this
2D AR model to create the full ARMA structure. In [4]
a two-channel AR lattice approach for 2D ARMA lattice
modelling was reported. However, this approach suffers
from a four-fold increase in the number of reflection co-
efficients due to the multichannel structure. The model in
this paper eliminates any redundancy from the lattice re-
flection coefficients. A recursive algorithm to calculate the
lattice-ladder coefficients for any given 2D ARMA transfer
function is also presented. In 1D filtering, lattice and lattice-
ladder structures have been studied because of their advan-
tages such as modularity, built-in stability and robustness to
finite-word-length effects. The 2D lattice-ladder structure

maintains the orthogonality of prediction errors and modu-
larity properties of its 1D counterpart. Hence, this structure
will be useful for adaptive filtering applications.

2. 2D LATTICE-LADDER MODEL

The system function for the 2D ARMA pole-zero model is
given as follows:

H(z1, z2) =
Y (z1, z2)
X(z1, z2)

=
B(z1, z2)
A(z1, z2)

=

∑ ∑
(n1,n2)∈R

b(n1, n2)z−n1
1 z−n2

2

1 +
∑ ∑

(n1,n2)∈R−(0,0)

a(n1, n2)z−n1
1 z−n2

2

(1)

Here, R denotes the 2D region of support for the numerator
and denominator polynomial parameters. Without loss of
generality, we assume that the support for both polynomi-
als is the same. In [3], a 2D orthogonal lattice structure for
2D AR models has been presented. In the synthesis mode
this structure can be utilized to form a 2D AR random field
with a given AR transfer function. This model simultane-
ously creates the orthogonal backward prediction errors cor-
responding to the 2D AR system model. A Levinson-type
recursion to compute the 2D lattice filter reflection coeffi-
cients for a given 2D AR transfer function was also devel-
oped in [3]. We present a novel structure for 2D ARMA
filters by adding a ladder section to the 2D AR model of
[3]. The complete 2D lattice-ladder structure for a quarter-
plane shaped support R of size N1 × N2 is presented in
Fig. 1. In this figure M = N1 · N2 − 1. The scheme
used for ordering the samples on the support region is also
included in this figure. The internal structures of the basic
lattice modules utilized in the lattice-ladder model are de-
picted in Fig. 2 and Fig. 3 for completeness. In Fig. 1, the
lattice section realizes the AR part of the transfer function(
1/A(z1, z2)

)
, whereas the ladder section realizes the MA

part
(
B(z1, z2)

)
. Similar to the 1D case, the output of the

overall ARMA system is formed by taking a weighted linear
combination of the backward prediction errors, b(p)

p (n1, n2),
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where the weights are the ladder coefficients cp, for p =
0, 1 . . . ,M :

y(n1, n2) =
M∑

p=0

cp b(p)
p (n1, n2) (2)

3. CALCULATION OF COEFFICIENTS

We derive the algorithm to calculate the lattice and ladder
coefficients necessary for the lattice-ladder realization of a
given ARMA transfer function,

H(z1, z2) =
B(z1, z2)
A(z1, z2)

(3)

In [3], a Levinson-type recursion to compute the reflection
coefficients Γ(n)

fp−n
and Γ(n)

bp
by solving the 2D augmented

normal equations is outlined. These lattice reflection coeffi-
cients realize the given AR transfer function.

HAR(z1, z2) =
1

A(z1, z2)
=

B
(0)
0 (z1, z2)
X(z1, z2)

(4)

We start from this point and assume that the reflection coef-
ficients for the lattice part are already determined using the
results in [3]. It is now necessary to calculate the ladder co-
efficients cp in Fig. 1, which will realize the MA part of the
transfer function,

HMA(z1, z2) = B(z1, z2) =
Y (z1, z2)

B
(0)
0 (z1, z2)

(5)

We need some definitions to this end. The backward
prediction error transfer function

(
G

(p)
p (z1, z2)

)
is defined

as the transfer function between the input of the MA sec-
tion

(
i.e. b

(0)
0 (n1, n2)

)
, and the backward prediction error(

b
(p)
p (n1, n2)

)
:

G(p)
p (z1, z2) =

B
(p)
p (z1, z2)

B
(0)
0 (z1, z2)

=
∑∑

(n1,n2)∈R

g(p)
p (n1, n2) z−n1

1 z−n2
2

(6)

These backward prediction error transfer functions can be
calculated using the step-up recursion formula in [3] and the
lattice reflection coefficients. The coefficients for the back-
ward prediction error transfer functions in (6) are defined as
g
(p)
p (n1, n2), (n1, n2) ∈ R. We will also define the follow-

ing transfer functions Dm(z1, z2), for m = 0, 1, . . . ,M .
These transfer functions will be important in devising the
recursive algorithm for calculating the ladder coefficients.

Dm(z1, z2) =
m∑

p=0

cp G(p)
p (z1, z2)

=
∑∑

(n1,n2)∈R

dm(n1, n2) z−n1
1 z−n2

2

(7)

It is trivial to see from this definition that Dm(z1, z2) can
be computed recursively from the backward prediction error
transfer functions.

Dm(z1, z2) = Dm−1(z1, z2) + cmG(m)
m (z1, z2) (8)

The coefficients of the defined 2D transfer functions, such
as G

(p)
p (z1, z2) and Dm(z1, z2), can be reordered into one-

dimensional vectors of length N1 · N2 = M + 1. This
is accomplished by using the ordering arrangement for the
support region as given in Fig. 1 b). We define the one-
dimensional coefficient vector for g

(p)
p (n1, n2) as g(p)

p , the
coefficient vector for dm(n1, n2) as dm and the coefficient
vector for b(n1, n2) as b. After these definitions, (8) can be
rewritten as,

dm−1 = dm − cm g(m)
m (9)

The backward prediction error transfer functions have the
property that g(p)

p (p + 1) = 1 for all p = 0, 1, . . . ,M [3].
Therefore, the ladder parameters cp can be determined by
noting that

cp = dp(p + 1) (10)

Using (2), (5) and (6), we get the desired starting point for
the recursion which will be employed to determine the lad-
der coefficients.

B(z1, z2) =
M∑

p=0

cp G(p)
p (z1, z2) = DM (z1, z2) (11)

The recursive algorithm for the calculation of the ladder co-
efficients is developed using (9), (10) and (11). The algo-
rithm to calculate the lattice-ladder ARMA structure coeffi-
cients is as follows:

• The 2D transfer function is given.

H(z1, z2) =
B(z1, z2)
A(z1, z2)

– Find the lattice reflection coefficients Γ(n)
fp−n

and

Γ(n)
bp

for 1/A(z1, z2) using the results in [3].

– Calculate backward prediction error transfer func-
tions G

(p)
p (z1, z2) (i.e. g(p)

p ), for p = 0, 1, . . . ,M .

• Recursive algorithm for the calculation of the ladder
coefficients:

– Initialization:

DM (z1, z2) = B(z1, z2) =⇒ dM = b

– for p = M : 0

∗ cp = dp(p + 1)

∗ dp−1 = dp − cp g(p)
p

– endfor
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Fig. 1. Lattice-ladder structure; a) Lattice-ladder structure for 2D ARMA filter, b) Ordering scheme in the support region
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Fig. 2. Internal structure of the FIR lattice module
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Fig. 3. Internal structure of the IIR lattice module

4. EXAMPLE

We will provide an example for the realization of the 2D
ARMA filters using the proposed structure. We assume we
are given the following transfer function, which has a sup-
port region of N1 = N2 = 2 with M = 3.

H(z1, z2) =
B(z1, z2)
A(z1, z2)

=
1 + 0.5z−1

2 + 0.6z−1
1 z−1

2 + 0.7z−1
1

1 + 0.2z−1
2 − 0.3z−1

1 z−1
2 − 0.1z−1

1

(12)

Using the results in [3], the lattice reflection coefficients for
the AR section are calculated as follows.

Γ(1)
f0

= Γ(1)
b1

= 0.1912

Γ(1)
f1

= Γ(1)
b2

= −0.0432

Γ(1)
f2

= Γ(1)
b3

= −0.0001

Γ(2)
f0

= Γ(2)
b2

= −0.2925

Γ(2)
f1

= Γ(2)
b3

= −0.0001

Γ(3)
f0

= Γ(3)
b3

= −0.1000

(13)
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Fig. 4. Lattice-ladder structure for the example; a) Lattice-ladder structure, b) Ordering scheme in the support region for
M = 3

With these reflection coefficients, we can determine the
backward prediction error transfer functions.

G
(3)
3 (z1, z2) = −0.1000 − 0.0205z−1

2 + 0.0292z−1
1 z−1

2 + z−1
1

G
(2)
2 (z1, z2) = −0.2925 − 0.0991z−1

2 + z−1
1 z−1

2

G
(1)
1 (z1, z2) = 0.1912 + z−1

2

G
(0)
0 (z1, z2) = 1

(14)

The corresponding coefficient vectors necessary for the cal-
culation of the ladder coefficients are defined as given be-
low.

d3 = b =
[
1 0.5 0.6 0.7

]

g(3)
3 =

[−0.1000 −0.0205 0.0292 1.0000
]

g(2)
2 =

[−0.2925 −0.0991 1.0000 0
]

g(1)
1 =

[
0.1912 1.0000 0 0

]

g(0)
0 =

[
1 0 0 0

]

(15)

When we apply the recursive algorithm for the calculation
of the ladder coefficients, we find the ladder coefficients
which finalize the lattice-ladder structure.

c0 = 1.1302, c1 = 0.5718, c2 = 0.5796, c3 = 0.7000
(16)

It can be easily checked that

B(z1, z2) =
3∑

p=0

cp G(p)
p (z1, z2) (17)

5. CONCLUSIONS

This paper has proposed a novel 2D ARMA lattice-ladder
structure. Like the 1D case, the 2D lattice-ladder struc-
ture employs linear regression on the backward prediction
errors generated by the 2D lattice section. Although there
have been previous models for 2D lattice structures, to the
best of our knowledge this is the first successful attempt at
2D lattice-ladder filtering. The algorithm to calculate the
lattice-ladder structure coefficients for a given 2D ARMA
transfer function is included. The 2D lattice-ladder struc-
ture maintains the orthogonality and modularity properties
of its well-known 1D counterpart. The usage of this novel
structure in the 2D adaptive filtering applications and com-
parison with existing structures will be a subject of further
study.
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