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Denoising AMP for MRI Reconstruction: BM3D-AMP-MRI\ast 

Ender M. Eksioglu\dagger and A. Korhan Tanc\ddagger 

Abstract. There is a recurrent idea being promoted in the recent literature on iterative solvers for imaging
problems, the idea being the use of an actual denoising step in each iteration. We give a brief
review of some algorithms from the literature which utilize this idea, and we broadly label these
algorithms as Iterative Denoising Regularization (IDR) algorithms. We extend the Denoising Ap-
proximate Message Passing (D-AMP) algorithm from this list to the magnetic resonance imaging
(MRI) reconstruction problem. We utilize Block Matching 3D (BM3D) as the denoiser of choice for
the introduced MRI reconstruction algorithm. The application of the denoiser for complex-valued
data necessitates a special handling of the denoiser. The use of the adaptive and image-dependent
BM3D image model prior together with D-AMP results in highly competitive MRI reconstruction
performance.
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1. Introduction.

1.1. A new breed of algorithms on the horizon: Iterative denoising regularization. It-
erative algorithms for the solution of linear inverse problems in imaging can get interpreted
as a competition between two forces. These two competing principles acting on the recon-
structed image might be summarized as the data fidelity, which enforces adherence to the
observation through the forward operator, and the model fidelity, which usually acts through
a regularization term to enforce compliance with an image model prior [13]. Iterative thresh-
olding algorithms [7], approximate message passing (AMP) [8], and decoupled approaches [43]
for regularized image reconstruction can be seen as different manifestations of the struggle
between these two forces. Among these algorithms, AMP introduces the Onsager correction
term, which at each iteration approximately Gaussianizes the residual error [27]. The On-
sager term enhances the reconstruction performance of AMP when compared to other iterative
solvers [8].

The very recent literature on the regularized iterative solutions of imaging problems has
seen an idea being independently and repeatedly reintroduced under different disguises. This
simple but strong idea is the utilization of actual denoising algorithms for the image model
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prior of the iterative reconstruction algorithms. Denoising is a well-matured art with esti-
mates to the bound on the optimal performance close to the limits of current algorithms [2].
Denoising algorithms are still getting polished to improved performances with each genera-
tion such as the recently introduced global image denoising paradigm [39]. There have been
quite a few concurrent and independent algorithms which have incorporated denoising as a
distinct substep in iterative image reconstruction. We would like to brand this novel breed
of algorithms under the term Iterative Denoising Regularization (IDR). We first want to give
a noncomprehensive list of the methods which have utilized this idea independently and in a
rather short time span. One of the earliest examples for methods utilizing denoising explicitly
as a substep is the iterative decoupled deblurring Block Matching 3D (BM3D) (IDD-BM3D)
method of [6]. Here, a game theoretic equilibrium condition is used to decouple the denoising
and blur inversion steps. The Plug-and-Play Prior (P\&PP) framework of [38] on the other
hand uses denoising as a substitute for one of the substeps of the alternating direction method
of multipliers (ADMM). The P\&PP framework has been applied to bright-field electron to-
mography in [38], to superresolution and single-photon imaging in [1], and to compressive
sampling image recovery in [21]. The model-based image reconstruction (MBIR) model [41]
presents a potent framework for the possible inclusion of denoising in iterative image re-
construction. Reference [32] presents an example for the application of iterative denoising
regularization to tomographic reconstruction using the MBIR approach. In [32] a quadratic
data fidelity term is combined with a model prior term composed of \ell denoisers with different
parameters. Another iterative reconstruction algorithm which has been extended to the IDR
setting is the Vector AMP (VAMP) algorithm [34]. VAMP provides a robust AMP variant
which has a rigorous state evolution analysis even for the case of ill-conditioned measurement
matrices. Reference [4] studies the use of the BM3D denoiser together with VAMP in radar
coded-aperture imaging.

The iterative decoupled inpainting BM3D (IDI-BM3D) algorithm of [19] uses BM3D de-
noising as a substep of a variable splitting based solution for the inpainting problem. The
iterative decoupled transform domain inpainting (IDTDI) algorithm of [20] extends the work
in [19] and the IDI-BM3D algorithm to inpainting in a transform domain. The Regularization
by Denoising (RED) engine from [37] utilizes for regularization a prior term proportional to
the inner product between the current image estimate and its denoising residual.

The BM3D-MRI algorithm of [10] utilizes the decoupled image restoration framework as
introduced in [43]. BM3D denoising is used as the prior step of this decoupled framework in
the magnetic resonance imaging (MRI) reconstruction setting. As additional IDR examples,
there have been two concurrent attempts to reconcile AMP with actual denoising algorithms.
These attempts include the denoising-based AMP (D-AMP) of [27] and the denoising AMP
framework in [40]. In D-AMP [27], a numerical method to approximately calculate the Onsager
correction for general denoisers has been developed. D-AMP has already been applied to
computed tomography (CT) in [28], to image phase retrieval in [26], and to Compressed
Sensing (CS) image recovery in [27] with promising results. In almost all of the above listed
IDR examples a common thread has been the usage of the powerful BM3D denoiser [5].
BM3D was used as the only denoiser [4, 6, 10, 19, 20, 28] or as one of the possible denoisers
[21, 27, 38, 40] for enforcing the image model prior in an IDR setting.
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1.2. Contributions. In this work we will introduce a new algorithm for the MRI recon-
struction problem based on the D-AMP algorithm [27].1 We will be using BM3D as the
denoiser of choice. The introduced algorithm is designed for possibly complex MR data,
which necessitates a special and novel handling of the BM3D denoiser. This novel applica-
tion of D-AMP in the MRI setting combines the benefits of the adaptive, image-dependent,
and nonlocal BM3D image model and the AMP algorithm boosted by the Onsager correc-
tion. This combination results in improved performance when compared to state-of-the-art
CS-based reconstruction algorithms. The outline for the rest of the paper is as follows. In
section 2, we will first introduce the D-AMP-MRI framework. Then we will develop the
BM3D-AMP-MRI algorithm, by devising a novel procedure for processing possibly complex
data. In this section we give a step-by-step outline of the BM3D-AMP-MRI algorithm. We
compare the BM3D-AMP-MRI algorithm to related work from the literature, and we discuss
some implementation details. In section 3, we compare the MRI reconstruction performance
of the BM3D-AMP-MRI algorithm with recent competing methods from the literature. We
also realize different complex domain variants for the BM3D denoising approach. We include
both complex and real MR images, three types of sampling masks, and differing sampling
ratios. In the conclusions we will review the proposed method.

2. MRI reconstruction using BM3D-AMP.

2.1. Application of D-AMP to MRI reconstruction: D-AMP-MRI. The observation
forward model for MRI is modeled as follows [10]:

(1) \bfity = \bfscrF \Omega \^\bfitx + \bfiteta .

\^\bfitx \in \BbbC N denotes the latent image in a vectorized form. The operator \bfscrF \Omega : \BbbC N \rightarrow \BbbC M , with
M < N , denotes the subsampled Fourier transform, where \Omega \in \{ 1, 2, . . . , N\} M is the set of
indices for the partial Fourier data included in \bfity . Hence, \Omega defines the sequence of sample
locations included in the MRI acquisition procedure [9]. \bfiteta \in \BbbC M is additive observation noise.
The D-AMP [27] algorithm for MRI reconstruction is formulated as follows:

\bfitr t =\bfitx t - 1 +\bfscrF H
\Omega \bfitz t - 1,(2a)

\sigma t =
\| \bfitz t - 1\| 2\surd 

N
,(2b)

\bfitx t =D\sigma t(\bfitr t),(2c)

\bfito t =\bfitz t - 1D\prime 
\sigma t(\bfitr t)/M,(2d)

\bfitz t =\bfity  - \bfscrF \Omega \bfitx 
t + \bfito t.(2e)

Here, \bfscrF H
\Omega : \BbbC M \rightarrow \BbbC N is the adjoint operator for \bfscrF \Omega which realizes zero-filled reconstruction.

\bfitx t is the reconstructed image estimate at the tth iteration. D\sigma is the denoiser operator tuned
for a particular noise deviation \sigma . D\prime 

\sigma is the divergence of that particular denoiser. The diver-
gence is approximated using a Monte Carlo method, as detailed in [27] and [31], when there is
no closed form formulation for the denoiser. \bfito t is the so-called Onsager correction term, which

1http://dsp.rice.edu/software/DAMP-toolbox

http://dsp.rice.edu/software/DAMP-toolbox
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improves the performance of the algorithm by increasing the Gaussianity of the residual term
\bfitz t [27]. The algorithm is similar to the regular AMP and other iterative shrinkage algorithms.
However, the usual frame shrinkage step has been replaced by a denoising step, (2c). We can
call (2a) the data fidelity step, where adherence to the observation \bfity is emphasized. (2c) can
be called the model fidelity step, where the image prior model is enforced via a denoising step.

2.2. BM3D as the denoiser in D-AMP: BM3D-AMP-MRI. We will utilize BM3D as
the denoiser of choice in this setting. BM3D as introduced in [5] and detailed in [6] calculates
an adaptive sparsity model for the specific image under consideration. The BM3D framework
originally includes a thresholding step succeeded by a Wiener filtering step. In this work we
will only consider the initial thresholding step of the BM3D model, and we will omit the
Wiener filtering step. Without the secondary Wiener filtering step, the BM3D denoiser sim-
plifies to a shrinkage operation under an overcomplete frame [6]. In our simulations we have
observed that using the full denoising setup with the Wiener filter does not significantly en-
hance the reconstruction performance despite the increased computational complexity. Under
this assumption, the image-dependent sparsity model as introduced by the BM3D is realized
by a heuristic shrinkage operation [11] as follows:

(3) D\sigma (\bfitx ) = \Psi \lfloor \Phi \bfitx \rfloor \lambda .

Here, \Phi is the image-dependent BM3D analysis frame, which is learned for a given image using
patch similarities [6]. \Psi is the corresponding synthesis frame, which is calculated as a dual
to \Phi [6]. The \lfloor \cdot \rfloor \lambda operator denotes the thresholding operation applied on the calculated 3D
spectral coefficients, where \lambda denotes the thresholding constant. The thresholding operator is
taken to be hard-thresholding as in the original work [5]. The hard-thresholding operation is
calculated as follows:

(4) \lfloor \bfitomega \rfloor \lambda = \bfitomega \circ 
\bigl( 
| \bfitomega | \geqq \lambda 

\bigr) 
.

Here, ``\circ "" indicates the elementwise vector multiplication. The thresholding parameter \lambda 
is calculated using the noise standard deviation estimate, i.e., \sigma t in (2b). As in [5], \lambda is
calculated with \lambda = \lambda 3\mathrm{D}\sigma , where \lambda 3\mathrm{D} is an empirically chosen constant. To calculate the
Onsager correction, we extend the divergence of the denoiser for the general complex case as
follows:

(5) D\prime 
\sigma (\bfitx ) \approx 

1

\epsilon 
\bfitb H

\bigl( 
D\sigma (\bfitx + \epsilon \bfitb ) - D\sigma (\bfitx )

\bigr) 
.

Here, \bfitb \sim \scrC \scrN (0, I) is an independent identically distributed (i.i.d.) complex Gaussian dis-
tributed random vector with zero mean and unit variance, and \epsilon is a small constant. We have
adopted the value \epsilon = \| \bfitx \| \infty 

1000 , which has also been utilized in [27]. A detailed derivation for
our divergence approximation is provided in Appendix A.

In the MRI reconstruction problem the latent image is complex-valued in general. This
raises the problem of applying the BM3D algorithm to the real and imaginary channels of
the reconstructed image. The straight application of BM3D separately to the two channels
does not result in the best performance. The imaginary channel for the complex MR images
generally contains less information when compared to the real channel. Hence, learning a
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separate frame from the imaginary channel results in performance degradation. We propose
to use the same analysis and synthesis frame pair in both channels, and the frame pair is
learned from the real-valued channel. We denoise the two channels separately using this single
pair of learned frames. The thresholding parameter is also common for both channels. This
approach helps us to learn a well sparsifying frame using the patch similarity structure from
the real channel of the denoised image. The resulting algorithm will be called BM3D-AMP-
MRI. Similar ideas have been used in [14] and [36]. Reference [14] considers photon-counting
computed tomography image denoising, where an improved shared patch grouping based on
multiple images is proposed. Reference [36] studies multichannel image denoising by utilizing
the correlation in the spectral domain of a localized region. An outline of the BM3D-AMP-
MRI algorithm is detailed in Algorithm 1. The \Re \{ \cdot \} and \Im \{ \cdot \} operators in Algorithm 1
denote the real and imaginary parts of the argument vector, respectively. When we realize
the BM3D-AMP-MRI algorithm, we will utilize the publicly available implementation of the
BM3D denoiser. This implementation operates on real-valued data, and it outputs images
in the [0, 1] range. Hence, we introduce an affine transformation \scrT at the beginning of the
algorithm that maps the initial zero-filled image estimate into the [\Delta , 1  - \Delta ] range where \Delta 
is a small positive parameter utilized to prevent clipping. \scrT  - 1 is the corresponding inverse
transformation. The resulting BM3D-AMP-MRI algorithm is relatively lucid with almost no
parameters to tinker with. In general we have kept all the parameters from BM3D at their
default values in [5], including the threshold constant \lambda 3\mathrm{D}. Hence, we do not optimize any of
the parameters depending on input image, sampling mask type, or subsampling ratio.

2.3. Comparison of BM3D-AMP-MRI with other methods. As discussed in [27], when
we omit the Onsager term \bfito t from the D-AMP algorithm as given in (2), the algorithm
becomes equivalent to iterative thresholding. The remaining difference is the fact that the
thresholding step has been replaced by denoising. The resulting reduced algorithm has been
labeled Denoising-Iterative Thresholding (D-IT) in [27]. The D-IT iteration is summarized as
follows:

\bfitr t =\bfitx t - 1 +\bfscrF H
\Omega (\bfity  - \bfscrF \Omega \bfitx 

t - 1),(6a)

\bfitx t =D\sigma t(\bfitr t).(6b)

If we apply the Onsager-free D-IT in the MRI reconstruction setting, the resulting algorithm
would naturally be called D-IT-MRI. If the denoiser is BM3D, the algorithm will be called
BM3D-IT-MRI.

An iterative denoising based MRI reconstruction algorithm has already been introduced
in [10] under the title of BM3D-MRI. BM3D-MRI utilized the decoupled reconstruction algo-
rithm of [43] together with the BM3D image model. The main iteration of the BM3D-MRI
reconstruction algorithm is formulated as follows using the current notation [10]:

\bfitr t = argmin
\bfitx 

\| \bfscrF \Omega \bfitx  - \bfity \| 22 + \alpha \| \bfitx  - \bfitx t - 1\| 22,(7a)

\bfitx t = argmin
\bfitx 

\| \bfitx  - \bfitr t\| 22 + \gamma t\| \Phi t\bfitx \| 0.(7b)

Equation (7b) is solved by BM3D denoising just as in (6b). Equation (7a) formulates the
data consistency in a Tikhonov regularization setting. In [10], (7a) is solved in the Fourier
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Algorithm 1 BM3D-AMP-MRI Algorithm.

Input : Observation data, \bfity = \bfscrF \Omega \^\bfitx + \bfiteta .

1: Initialize: \bfitx 0 = 0; \bfitz 0 = \^\bfity = \bfscrF \Omega \scrT \{ \bfscrF H
\Omega \bfity \} ; \lambda 3\mathrm{D}.

2: for t := 1, 2, . . . T do  \triangleleft main iteration starts

3: \bfitr t = \bfitx t - 1 +\bfscrF H
\Omega \bfitz t - 1  \triangleleft data fidelity step

4: Generate the frames \Phi t and \Psi t using \Re \{ \bfitr t\} .  \triangleleft start defining the denoiser functions

5: Define the real-valued BM3D denoiser operator for \bfitx \in \BbbR N :

Dr
\sigma (\bfitx ) = \Psi t\lfloor \Phi t\bfitx \rfloor \lambda , with \lambda = \lambda 3\mathrm{D}\sigma 

6: Define the complex-valued denoiser operator for \bfitx \in \BbbC N :

D\sigma (\bfitx ) = Dr
\sigma (\Re \{ \bfitx \} ) + jDr

\sigma (\Im \{ \bfitx \} )
7: Define the approximation for the divergence of the complex-valued denoiser:

D\prime 
\sigma (\bfitx ) \approx 1

\epsilon \bfitb 
H(D\sigma (\bfitx + \epsilon \bfitb ) - D\sigma (\bfitx )), where \bfitb \sim \scrC \scrN (0, I) is an i.i.d. random vector

 \triangleleft necessary denoiser functions defined

8: \sigma t = \| \bfitz t - 1\| 2\surd 
N

 \triangleleft approximate noise std

9: \bfitx t = D\sigma t(\bfitr t)  \triangleleft model fidelity step

10: \bfito t = \bfitz t - 1D\prime 
\sigma t(\bfitr t)/M  \triangleleft calculate the Onsager correction

11: \bfitz t = \^\bfity  - \bfscrF \Omega \bfitx 
t + \bfito t  \triangleleft calculate the residual

12: end for  \triangleleft end of main iteration

13: Output reconstructed MR image \bfitx = \scrT  - 1\{ \bfitx T \} .

domain using the fact that \bfscrF \Omega is diagonalized by the full Fourier matrix, \bfscrF . This means
\bfscrF \bfscrF H

\Omega \bfscrF \Omega \bfscrF H = \Lambda \Omega . \Lambda \Omega is equal to one at the diagonal elements k \in \Omega and equal to zero
everywhere else [10]. It can be proven that the data fidelity step as given in (6a) is equivalent
to the optimization problem given in (7a) for \alpha = 0.

Proposition 2.1. Consider the following quadratic regularization problem, where \bfscrF \Omega \in \BbbC M\times N

is a subsampled unitary matrix, with M < N :

(8) \^\bfitx = argmin
\bfitx 

\| \bfscrF \Omega \bfitx  - \bfity \| 22 + \alpha \| \bfitx  - \bfitx 0\| 22.

The optimal solution is calculated as

(9) \^\bfitx = \bfitx 0 +
1

1 + \alpha 
\bfscrF H

\Omega (\bfity  - \bfscrF \Omega \bfitx 0).

The proof for Proposition 2.1 is given in Appendix B. The data fidelity step of IT as given
in (6a) can be introduced using a variety of incentives [12, 44], including taking a step in the
direction of the gradient. However, Proposition 2.1 states that for the special case of \bfscrF \Omega , (6a)
can be motivated by an optimization problem as in (7a). The algorithm definitions given in
(6), (7), and Proposition 2.1 together indicate that the BM3D-IT-MRI algorithm of (6) and
the BM3D-MRI algorithm of (7) [10] are related. BM3D-IT-MRI as in (6) is a special case of
BM3D-MRI in (7) as \alpha \rightarrow 0.
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The BM3D-AMP-MRI algorithm on the other hand includes the additional benefit of
the Onsager correction. Hence, we expect improved performance from the BM3D-AMP-MRI
algorithm, when compared to the D-IT-MRI and BM3D-MRI pair of algorithms. In [10],
where the BM3D-MRI was introduced, the benefit of using the BM3D model prior in an IDR
setting was demonstrated. The Patch-based Nonlocal Operator (PANO) algorithm of [30] is
another algorithm which inherently utilizes the nonlocal patch-similarity--based image model.
PANO also has impressive reconstruction performance [30]. In [10], BM3D-MRI was shown
to have better performance than PANO for the special case of real-valued data. With BM3D-
AMP-MRI, we have generalized to the general case of complex-valued data with possibly
negative values. We have also extended to the AMP setting with the use of the Onsager
correction. Hence, BM3D-AMP-MRI is expected to surpass these previous algorithms.

There are numerous other CS types of MRI reconstruction algorithms. The original Sparse-
MRI algorithm of [23] has been succeeded by numerous similar approaches. The members of
this plethora of algorithms in general either propose improved methods to solve the sparsity
regularized MRI reconstruction cost function or proposed enhanced cost functions with better
sparsifying transforms. Some notable examples include the shift-invariant discrete wavelet
transform-based MR reconstruction (SIDWT) method [30], the Fast Composite Splitting Al-
gorithm (FCSA) [16], the joint constraint patch-based total variation (JCTV) algorithm [22],
and the Wavelet Tree Sparsity MRI (WaTMRI) algorithm [3]. The common thread in most
of these algorithms is the use of fixed sparsifying transforms, which range from variants of
wavelet transforms to other types of x-lets. PANO, BM3D-MRI, and the proposed BM3D-
AMP-MRI algorithms on the other hand utilize image-dependent, adaptive transforms with
better sparsification capacity, which was demonstrated by the performance of the PANO and
BM3D-MRI algorithms in earlier studies. BM3D-AMP-MRI as proposed here implies even
better performance by presenting a combination of the powerful image-dependent, nonlocal
model from BM3D with the AMP.

2.4. Implementation of the BM3D-AMP-MRI algorithm. In [27], it is stated that for
D-AMP parameters might get tuned greedily. Hence, it is simply optimal to tune the denoising
algorithm that is employed in D-AMP. In our work, just as in [27], we have utilized all the
original parameters for the BM3D denoiser as listed in the original realization [5]. We have
also utilized the original \lambda 3\mathrm{D} parameter value from [5] for all of the simulations with noise-free
data. Hence, the introduced BM3D-AMP-MRI algorithm does not necessitate any simulation
setting dependent parameter tuning. There is also a need for the choice of the 3D sparsifying
transform which defines \Phi and \Psi . As in [5], we choose the 3D transformation as separable
into 2D and 1D transformations. The 2D transformation is chosen as a biorthogonal wavelet
transform, and the 1D transformation is the Haar transform. All of the utilized parameters
are preserved for all the different images, different sampling masks, and different sampling
ratios.

For the case of i.i.d. sub-Gaussian observation matrices A \in \BbbR M\times N with zero mean, the
AMP algorithm has a state evolution (SE) with fixed points when M,N \rightarrow \infty with fixed
M/N [33]. There have been efforts to extend the SE results to wider classes of transforms;
however, the behavior of AMP under general random A is still an open problem [35]. The
Gaussian i.i.d. distribution property of the measurement matrix is a necessary assumption for
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the SE analysis of the AMP [8] and DAMP [27] algorithms. However, this property is not a
necessary condition for the performance improvement as brought by the AMP algorithm over
the regular iterative thresholding. Regular iterative thresholding methods lack the Onsager
term derived from the theory of belief propagation in graphical models. The Onsager term in
AMP considerably improves the sparsity-undersampling tradeoff when compared to regular
iterative thresholding, because the residual gets a better approximation via Taylor expansion
[25]. Hence, even without improved Gaussianity of the residual error at each iteration, the
DAMP method is expected to benefit from the Onsager correction for improved reconstruction
performance.

In works such as [42] and [33], damping and mean-removal procedures have been utilized
to ensure convergence of the Generalized AMP (GAMP) algorithm. These studies suggest
that transforms with high peak-to-average singular values lead to divergence. A chosen from
the set of subsampled unitary matrices is studied as a special case in [33]. It is shown that
the Gaussian GAMP (GGAMP) variant converges for subsampled unitary matrices with or
without damping [33]. This result follows from the fact that the condition number \kappa (A) = 1 for
subsampled unitary matrices. Another recent work, where again subsampled unitary matrices
acting as transformation matrices are studied, is the Orthogonal AMP (OAMP) algorithm
of [24]. In [24] it is shown that SE predictions for OAMP agree well with the simulations in
the case of partial orthogonal matrices. These recent works suggest that subsampled unitary
matrices are rather well suited for use in AMP. In our study here, we have utilized the D-AMP
algorithm for the particular case of the well-conditioned observation matrix \bfscrF \Omega which is also
a subsampled unitary matrix with condition number \kappa (\bfscrF \Omega ) = 1. We have not encountered
any divergence issues throughout the set of implemented simulations.

3. Simulation results.

3.1. Simulation settings. For comparison with competing methods, we have utilized both
complex- and real-valued MR images. Two of the images are T2-weighted complex-valued
brain images which have been adopted from the publicly available toolbox of the PANO
algorithm in [30].2 The other two images are real- and positive-valued bust and chest images.
We realize the sampling in the Fourier domain using three different subsampling strategies,
which are random, radial, and Cartesian sampling [30]. Three subsampling ratios M/N ,
namely 15\%, 20\%, and 30\% subsampling, are utilized. Figure 1 showcases sample subsampling
masks in the k-space.

We realize the proposed BM3D-AMP-MRI together with other methods for performance
evaluation. The algorithms for comparison include the zero-filling based method and the
TV-based Sparse-MRI [23]. The zero-filling reconstruction gets calculated as \bfitx \mathrm{Z}\mathrm{F} = \bfscrF H

\Omega \bfity .
Other implemented methods are the shift-invariant discrete wavelet transform based MR
reconstruction (SIDWT) [30] and the PANO method [30]. We also realized the BM3D-IT
variant, which is realized by cancelling the Onsager correction from the BM3D-AMP-MRI
algorithm. Again, the BM3D-IT variant is actually related to the BM3D-MRI algorithm as
introduced in [10]. The SNR (signal-to-noise ratio) is calculated as a measure of performance

2https://sites.google.com/site/xiaoboxmu/publication

https://sites.google.com/site/xiaoboxmu/publication
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Figure 1. Sampling mask examples. Random, radial, and Cartesian sampling masks with 20\% subsampling.

for the reconstructed images. SNR in dB is calculated using the images as follows:

(10) SNR = 10 log10
N

\| \^\bfitx  - \bfitx \| 22
.

For the BM3D-AMP-MRI and BM3D-IT-MRI realizations, we have made use of the pub-
licly available BM3D toolbox.3 In particular, we have utilized the color image denoising
function to process the real and imaginary valued channels in tandem as previously described
in Algorithm 1. The number of outer iterations for the BM3D-based algorithms has been
set as T = 50 for real and T = 100 for complex MR images. For the BM3D realization we
have assumed the default parameters (\lambda 3\mathrm{D} = 2.7) as defined in the fast implementation of the
BM3D toolbox. For complex MR image reconstruction, \Delta is selected as 0.2. On the other
hand, the regularization parameters of SIDWT, PANO, and TV algorithms are optimized
as 107. In PANO, a single iteration is assumed, and the guide image is reconstructed from
the available data. The simulation parameters do not change unless otherwise stated. The
simulations were executed in MATLAB using a computer with an Intel i5 CPU at 1.7GHz,
8GB memory, and a 64-bit operating system.

3.2. Comparison with state-of-the-art algorithms. In Table 1, we provide the SNR per-
formance of a total of six algorithms for three different masks with 15\% subsampling rate.
Tables 2 and 3 provide the SNR values with 20\% and 30\% subsampling rates, respectively.
In all tables, we boldface the best SNR result for each particular mask. The BM3D-AMP-
MRI has superior performance in most of the different image and mask settings. The PANO
algorithm and the BM3D-IT algorithm are generally the next closest contenders in SNR per-
formance. Hence, the algorithms which utilize the nonlocal patch similarity framework have
a clear superiority over the more conventional regularization methods. BM3D-IT and PANO
have comparable performances, with PANO slightly having the edge. However, the Onsager
correction clearly helps, and BM3D-AMP-MRI provides the best overall performance. The
performance edge displayed by BM3D-AMP-MRI is more pronounced for 15\% and 20\% sub-
sampling rates. Table 4 shows the computation time required by the different algorithms for

3http://www.cs.tut.fi/\sim foi/GCF-BM3D

http://www.cs.tut.fi/~foi/GCF-BM3D
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Table 1
Reconstruction SNR in dB for different sampling masks under 15\% sampling.

Image Brain1 Brain2 Bust Chest

Mask Rand. Radial Cart. Rand. Radial Cart. Rand. Radial Cart. Rand. Radial Cart.

Zero-filled 22.5 24.6 24.8 21.1 23.7 23.1 18.9 20.8 19.9 17.9 22.2 22.2

TV 29.5 29.7 25.9 28.4 28.3 24.3 27.5 27.1 21.5 23.1 26.3 22.8

SIDWT 31.5 30.7 25.9 30.7 29.5 24.1 27.0 26.9 21.0 23.9 26.2 22.8

PANO \bfthree \bffour .\bfsix 32.7 26.8 \bfthree \bfthree .\bfseven 31.8 25.0 32.9 30.0 22.1 32.0 29.0 23.3

BM3D-IT 32.1 31.5 26.6 29.9 28.0 23.9 33.8 29.8 21.9 30.9 27.5 23.0

BM3D-AMP 33.7 \bfthree \bfthree .\bffour \bftwo \bfseven .\bfseven \bfthree \bfthree .\bfseven \bfthree \bfthree .\bffive \bftwo \bffive .\bfnine \bfthree \bffour .\bfseven \bfthree \bftwo .\bfseven \bftwo \bfthree .\bfone \bfthree \bffour .\bftwo \bfthree \bfzero .\bffour \bftwo \bfthree .\bfeight 

Table 2
Reconstruction SNR in dB for different sampling masks under 20\% sampling.

Image Brain1 Brain2 Bust Chest

Mask Rand. Radial Cart. Rand. Radial Cart. Rand. Radial Cart. Rand. Radial Cart.

Zero-filled 24.9 25.8 25.8 23.9 24.8 24.0 21.0 21.9 21.0 22.0 23.3 23.1

TV 33.4 32.2 27.6 32.3 30.8 26.3 30.8 29.7 24.0 29.2 28.1 24.4

SIDWT 35.3 33.5 27.6 34.1 32.3 26.2 31.2 29.8 22.9 29.8 28.3 24.2

PANO \bfthree \bfsix .\bfnine 35.4 29.5 \bfthree \bffive .\bfeight 34.7 28.2 35.5 32.9 24.9 35.0 31.9 25.4

BM3D-IT 35.5 34.2 28.9 32.6 30.6 25.8 36.5 32.8 24.2 33.7 30.5 24.7

BM3D-AMP 35.9 \bfthree \bffive .\bffive \bfthree \bfzero .\bffour 35.5 \bfthree \bffive .\bfsix \bftwo \bfeight .\bfsix \bfthree \bfsix .\bfsix \bfthree \bffive .\bfthree \bftwo \bffive .\bffive \bfthree \bfsix .\bffive \bfthree \bfthree .\bftwo \bftwo \bffive .\bfseven 

Table 3
Reconstruction SNR in dB for different sampling masks under 30\% sampling.

Image Brain1 Brain2 Bust Chest

Mask Rand. Radial Cart. Rand. Radial Cart. Rand. Radial Cart. Rand. Radial Cart.

Zero-filled 28.5 27.6 27.8 27.6 26.4 26.2 26.2 23.6 23.1 28.0 24.9 25.2

TV 37.4 36.2 31.2 36.5 34.4 30.4 35.5 33.5 27.5 34.9 31.2 27.6

SIDWT 38.9 38.1 31.1 37.9 36.9 30.5 36.5 34.3 26.4 35.7 30.9 27.1

PANO \bffour \bfzero .\bfone \bfthree \bfnine .\bfsix 33.8 \bfthree \bfnine .\bftwo 38.6 \bfthree \bfthree .\bfone 39.6 37.6 \bftwo \bfnine .\bfone 39.6 35.8 \bftwo \bfnine .\bfsix 

BM3D-IT 38.1 37.8 33.0 38.2 35.4 29.4 40.0 37.9 27.7 38.9 35.3 27.8

BM3D-AMP 37.8 37.9 \bfthree \bffour .\bffive 38.4 \bfthree \bfeight .\bfseven 32.9 \bffour \bfone .\bfone \bfthree \bfnine .\bfseven 28.7 \bfthree \bfnine .\bfeight \bfthree \bfsix .\bfnine 28.9

Table 4
Computational time requirements for the algorithms.

Algorithm BM3D-AMP-MRI BM3D-IT-MRI PANO SIDWT TV

Time (sec) 120.2 63.6 204.0 123.1 14.3

the sample case of brain images and 20\% radial downsampling. BM3D-AMP-MRI requires
two denoising operations due to the calculation of the approximate divergence as given in (5).
The BM3D denoiser dominates the computational complexity; hence BM3D-AMP-MRI takes
approximately twice as long as BM3D-IT. However, the time requirement of BM3D-AMP-MRI
is still lower than PANO.

Figures 2 through 5 depict the reconstructed images for a subset of simulations. In these
figures, the first row contains the original image (left), TV result (middle), and SIDWT result
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Table 5
Reconstruction SNR in dB for different sampling masks under 20\% sampling and observation noise with

 - 20 dB power relative to the image power.

Image Brain1 Brain2 Bust Chest

Mask Rand. Radial Cart. Rand. Radial Cart. Rand. Radial Cart. Rand. Radial Cart.

Zero-filled 24.7 25.5 25.5 23.7 24.5 23.7 20.8 21.6 20.8 21.5 22.6 22.5

TV 28.9 28.5 26.3 28.0 27.5 24.9 26.5 25.9 22.4 24.5 24.2 22.6

SIDWT 31.1 30.3 26.7 30.2 29.3 25.3 27.7 26.9 22.2 26.3 25.5 23.1

PANO 32.0 31.3 28.0 31.2 30.5 26.7 29.4 28.3 23.8 28.0 27.0 23.8

BM3D-IT 30.7 29.5 27.6 29.2 28.3 25.4 30.1 29.5 24.6 28.3 28.5 25.0

BM3D-AMP \bfthree \bftwo .\bfseven \bfthree \bftwo .\bffour \bftwo \bfnine .\bffour \bfthree \bfone .\bfseven \bfthree \bfone .\bffive \bftwo \bfeight .\bfthree \bfthree \bfone .\bfthree \bfthree \bfzero .\bffive \bftwo \bffive .\bfeight \bfthree \bfzero .\bfnine \bftwo \bfnine .\bfeight \bftwo \bffive .\bfsix 

(right). The second row contains the PANO (left), BM3D-IT (middle), and BM3D-AMP-MRI
(right) results. From the SNR results and reconstructed images we can state that the BM3D-
AMP-MRI algorithm has superior reconstruction performance with acceptable computational
time requirements.

We have also performed experiments in the presence of Fourier domain additive white
Gaussian complex noise with a total noise power of  - 20 dB relative to the image power.
The SNR results of the algorithms are provided in Table 5, where the algorithm parameters
have been kept the same as in the noiseless case. This table suggests that the BM3D-AMP-
MRI algorithm is advantageous when the Fourier domain observation is disturbed by additive
noise. We have also conducted experiments for brain MR images with higher levels of noise
power. We have optimized the regularization parameter of the PANO algorithm as 102 and
the thresholding parameter of BM3D-AMP-MRI as \lambda 3\mathrm{D} = 4. The SNR results are provided
in Figure 6. We deduce that the BM3D-AMP-MRI algorithm performs the best in all of
the simulation settings realized for the noisy case. The BM3D-AMP-MRI algorithm is more
robust to the existence of measurement noise due to inherent usage of a denoiser as a substep.

3.3. Further simulations. We have also realized experiments with other forms of complex
domain BM3D-type denoising algorithms used in the BM3D-IT-MRI setting. The first of
these denoisers is based on the higher-order singular value decomposition (HOSVD) based
Complex Domain BM3D (CD-BM3D) denoising algorithm, the details of which are provided
in [17, 18]. The second such denoiser is straight application of BM3D to the two channels
of the complex MR image, which we denote as independent channel BM3D denoising. In
the implementation of the HOSVD based BM3D-IT, we have skipped the Wiener filtering
step for computational complexity issues, and we found the optimal threshold parameter as
4. The SNR convergence curves for complex and real MR images are shown in Figures 7 and
8, respectively. For complex MR images, the SNR performance of HOSVD based BM3D-IT
falls between that of BM3D-AMP and BM3D-IT algorithms, and IC based BM3D-IT has the
worst SNR performance. We measure the runtimes for HOSVD based BM3D-IT and IC based
BM3D-IT as 172.5\times 102 and 130.9 seconds, respectively. It can be deduced that our BM3D-
IT has a definite runtime advantage over the HOSVD based BM3D-IT at a price of slight
SNR degradation. Also, comparisons with IC based BM3D-IT confirm the SNR and runtime
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Table 6
KL divergence values for the algorithms.

Algorithm Brain1 MR Brain2 MR Bust Chest

BM3D-IT-MRI 0.048 0.039 0.056 0.138

BM3D-AMP-MRI \bfzero .\bfzero \bffour \bfzero \bfzero .\bfzero \bftwo \bfone \bfzero .\bfzero \bftwo \bfzero \bfzero .\bfzero \bfzero \bffive 

advantages of our denoising strategy based on synthesis and analysis frames learned from the
real channel. Both figures illustrate the SNR advantage attained by utilizing the Onsager
correction. The computational time requirement of the HOSVD based BM3D denoising is
very high when compared to the competing denoising methods. Reconstruction using HOSVD
based BM3D runs almost 300 times slower when compared to our tandem denoising approach.
The simulation results indicate that the tandem denoising procedure as introduced by the
manuscript presents a good compromise between reconstruction performance and computation
time. Despite having very good denoising performance for complex-valued data, the HOSVD
based BM3D denoiser is not the best fit for iterative reconstruction algorithms due to the
highly increased complexity.

We also calculated the Kullback--Leibler (KL) divergence of the power spectrum for \bfitz t

from the white power spectrum as a measure of correlatedness of the residual \bfitz t. Strong
dependence on the residual leads to a worsening of the prediction of the moments of \bfitz t [25].
Hence, an improvement in uncorrelatedness of the residual is expected to lead to performance
improvement. We calculate the KL divergence as follows using the definition from [15]:

(11) D =
1

4\pi 

\int \pi 

 - \pi 

\biggl\{ 
Pz(e

j\omega )

\sigma 2
z

 - ln
Pz(e

j\omega )

\sigma 2
z

 - 1

\biggr\} 
d\omega =  - 1

4\pi 

\int \pi 

 - \pi 
lnPz(e

j\omega )d\omega +
ln\sigma 2

z

2
.

Here Pz(e
j\omega ) denotes the power spectrum of \bfitz t, and \sigma 2

z denotes the variance of \bfitz t, i.e.,
the constant value of the white power spectrum. We approximate Pz(e

j\omega ) by using Burg's
method [29] with FFT size 1024 and model order 5. We have considered brain, bust, and chest
MR images with a radial mask of 20\% sampling. The resulting KL divergence values are given
in Table 6. We should notice that bigger KL divergence corresponds to higher correlation
amongst the samples of \bfitz t. We observe that for all cases, BM3D-AMP-MRI produces \bfitz t

samples with less correlation when compared with those produced by BM3D-IT-MRI.

4. Conclusions. Iterative image reconstruction algorithms are in general as good as the
utilized image model prior. Denoising algorithms, on the other hand, represent the state-
of-the-art in image modeling. Hence, it comes as no surprise that there have been quite
a number of recent and independently proposed iterative reconstruction algorithms which
incorporate actual denoising as a distinct step for model fidelity. We first identified some
of these concurrent novel attempts. D-AMP is one of the important examples from these
algorithms. We have utilized the D-AMP framework together with the BM3D denoiser in the
MRI reconstruction setting. The use of BM3D necessitates an original handling of the BM3D
denoiser, and we name the resulting algorithm BM3D-AMP-MRI. We also show that the case
of D-IT which lacks the Onsager correction is equivalent to an algorithm from the literature.
BM3D-AMP-MRI merges the power of AMP and Onsager correction with the potential of the
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Figure 2. Magnitude of the first complex brain image under 20\% radial sampling. First row: Original
(left), TV (middle), SIDWT (right). Second row: PANO (left), BM3D-IT (middle), BM3D-DAMP (right).

image-dependent, nonlocal, BM3D image model. The algorithm does not need any fine-tuning
for any parameter. We apply the BM3D-AMP-MRI algorithm for different MR images and a
variety of sampling masks and sampling ratios. BM3D-AMP-MRI provides very competitive
reconstruction performance on par with the state-of-the-art algorithms from the literature.

Appendix A. Divergence for the complex-valued denoiser. Let us consider a vector-
valued function \bfitf : \BbbC N \rightarrow \BbbC N and the vectors \bfity , \bfitb \in \BbbC N . The following is written using
Taylor series expansion:

(12) \bfitf (\bfity + \epsilon \bfitb ) - \bfitf (\bfity ) = \epsilon J(\bfity )\bfitb +\scrO (\epsilon 2).

Here J denotes the Jacobian of the argument vector. By multiplying both sides by \epsilon  - 1\bfitb H , we
obtain

(13) \bfitb H
\bfitf (\bfity + \epsilon \bfitb ) - \bfitf (\bfity )

\epsilon 
= \bfitb HJ(\bfity )\bfitb +\scrO (\epsilon ),

where \bfitb H is absorbed in \scrO (\epsilon ) and \bfitb HJ(\bfity )\bfitb is a complex scalar number. We utilize the
cyclic property of trace to obtain \bfitb HJ(\bfity )\bfitb = tr(\bfitb HJ(\bfity )\bfitb ) = tr(J(\bfity )\bfitb \bfitb H). Since J(\bfity ) is
independent of \bfitb which is complex Gaussian with zero mean and unit variance, we have the



DENOISING AMP FOR MRI RECONSTRUCTION: BM3D-AMP-MRI 2103

Figure 3. Magnitude of the second complex brain image under 20\% radial sampling. First row: Original
(left), TV (middle), SIDWT (right). Second row: PANO (left), BM3D-IT (middle), BM3D-DAMP (right).

following expectation with respect to \bfitb :

E

\biggl( 
\bfitb H

\bfitf (\bfity + \epsilon \bfitb ) - \bfitf (\bfity )

\epsilon 

\biggr) 
= E

\Bigl( 
tr(J(\bfity )\bfitb \bfitb H)

\Bigr) 
(14a)

= tr
\Bigl( 
J(\bfity )E(\bfitb \bfitb H)

\Bigr) 
(14b)

= tr(J(\bfity )).(14c)

By definition, div\{ \bfitf (\bfity )\} = tr(J(\bfity )) [31] and (5) serves as the deterministic approximation
div\{ \bfitf (\bfity )\} .

Appendix B. Proof of Proposition 2.1. We want to calculate the solution to the following
optimization problem for the special case of a subsampled unitary matrix \bfscrF \Omega \in \BbbC M\times N , with
M < N .

(15) \^\bfitx = argmin
\bfitx 

\| \bfscrF \Omega \bfitx  - \bfity \| 22 + \alpha \| \bfitx  - \bfitx 0\| 22.

When we calculate the gradient of the cost function and set it equal to zero we get the following
solution:

(16) \^\bfitx = (\bfscrF H
\Omega \bfscrF \Omega + \alpha IN ) - 1(\bfscrF H

\Omega \bfity + \alpha \bfitx 0).
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Figure 4. Magnitude of the real-valued bust image under 20\% radial sampling. First row: Original (left),
TV (middle), SIDWT (right). Second row: PANO (left), BM3D-IT (middle), BM3D-DAMP (right).

This solution can equivalently be written as follows:

(17) \^\bfitx = \bfitx 0 + (\bfscrF H
\Omega \bfscrF \Omega + \alpha IN ) - 1\bfscrF H

\Omega (\bfity  - \bfscrF \Omega \bfitx 0).

Now, we will take the Fourier transform of both sides in (17). We will also use the equalities
\bfscrF \bfscrF H = \bfscrF H\bfscrF = IN and \bfscrF \Omega \bfscrF H

\Omega = IM . We note that \bfity  - \bfscrF \Omega \bfitx 0 = \bfscrF \Omega \bfscrF H
\Omega \bfity  - \bfscrF \Omega \bfitx 0 =

\bfscrF \Omega (\bfscrF H
\Omega \bfity  - \bfitx 0) = \bfscrF \Omega (\bfitx \mathrm{Z}\mathrm{F}  - \bfitx 0), with \bfitx \mathrm{Z}\mathrm{F} = \bfscrF H

\Omega \bfity .

(18) \bfscrF \^\bfitx = \bfscrF \bfitx 0 +\bfscrF (\bfscrF H
\Omega \bfscrF \Omega + \alpha IN ) - 1(\bfscrF H\bfscrF )\bfscrF H

\Omega \bfscrF \Omega (\bfscrF H\bfscrF )(\bfitx \mathrm{Z}\mathrm{F}  - \bfitx 0).

From (18), we can arrive at the following result:

\bfscrF \^\bfitx = \bfscrF \bfitx 0 +
\bigl( 
\bfscrF (\bfscrF H

\Omega \bfscrF \Omega + \alpha IN ) - 1\bfscrF H
\bigr) 
(\bfscrF \bfscrF H

\Omega \bfscrF \Omega \bfscrF H)\bfscrF (\bfitx \mathrm{Z}\mathrm{F}  - \bfitx 0)(19a)

= \bfscrF \bfitx 0 +
\bigl( 
\bfscrF (\bfscrF H

\Omega \bfscrF \Omega + \alpha IN )\bfscrF H
\bigr)  - 1

(\bfscrF \bfscrF H
\Omega \bfscrF \Omega \bfscrF H)\bfscrF (\bfitx \mathrm{Z}\mathrm{F}  - \bfitx 0).(19b)
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Figure 5. Magnitude of the real-valued chest image under 20\% radial sampling. First row: Original (left),
TV (middle), SIDWT (right). Second row: PANO (left), BM3D-IT (middle), BM3D-DAMP (right).

Now, we will use the equality \bfscrF \bfscrF H
\Omega \bfscrF \Omega \bfscrF H = \Lambda \Omega , where \Lambda \Omega is a diagonal matrix equal to one

at the diagonal elements k \in \Omega and zero everywhere else.

\bfscrF \^\bfitx = \bfscrF \bfitx 0 + (\Lambda \Omega + \alpha IN ) - 1\Lambda \Omega \bfscrF (\bfitx \mathrm{Z}\mathrm{F}  - \bfitx 0)

= \bfscrF \bfitx 0 +
1

1 + \alpha 
\Lambda \Omega \bfscrF (\bfitx \mathrm{Z}\mathrm{F}  - \bfitx 0)

= \bfscrF \bfitx 0 +
1

1 + \alpha 
\bfscrF \bfscrF H

\Omega \bfscrF \Omega \bfscrF H\bfscrF (\bfitx \mathrm{Z}\mathrm{F}  - \bfitx 0)

= \bfscrF \bfitx 0 +
1

1 + \alpha 
\bfscrF \bfscrF H

\Omega \bfscrF \Omega (\bfitx \mathrm{Z}\mathrm{F}  - \bfitx 0)

= \bfscrF \bfitx 0 +
1

1 + \alpha 
\bfscrF \bfscrF H

\Omega (\bfity  - \bfscrF \Omega \bfitx 0).

(20)

We take the inverse Fourier transform of both sides to obtain the desired result:

(21) \^\bfitx = \bfitx 0 +
1

1 + \alpha 
\bfscrF H

\Omega (\bfity  - \bfscrF \Omega \bfitx 0).
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Figure 6. Reconstruction SNR for ZF (cross), PANO (square), and BM3D-DAMP (circle) algorithms
under 20\% radial sampling and various noise levels. Left: brain1 MR image. Right: brain2 MR image.

Iteration
0 20 40 60 80 100

S
N

R
 in

 d
B

20

25

30

35

40

Iteration
0 20 40 60 80 100

S
N

R
 in

 d
B

20

25

30

35

40

Figure 7. Convergence of HOSVD based BM3D-IT (point), IC based BM3D-IT (plus), BM3D-IT (star),
and BM3D-DAMP (circle) algorithms under 20\% radial sampling. Left: brain1 MR image. Right: brain2 MR
image.
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Figure 8. Convergence of BM3D-IT (star) and BM3D-DAMP (circle) algorithms under 20\% radial sam-
pling. Left: bust MR image. Right: chest MR image.
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