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Abstract. Unfolding provides a potent method to improve deep net-
work performance in image restoration problems. Recent results in the
literature have demonstrated the improvement achieved by unfolding
structures when compared to the non-unfolding singular use of a given
network. Lately, unfolding models have been offered as promising solu-
tions for the Magnetic Resonance Image (MRI) reconstruction problem.
In this work we propose a novel deep unfolding structure for MR image
reconstruction. We introduce an adaptive noise level parameter to the
unfolding structure, inspired by the conventional iterative thresholding-
based reconstruction models. The noise level parameter is calculated at
each iteration using the error between the network output and the ini-
tial zero filling estimate. This new parameter is given as an additional
input to the network, and it acts as an evolving regularizer for the im-
age manipulation strength of the network over the unrolling iterations.
The introduction of this adaptivity over iterations in the training step
also improves the deep models’ reconstructed image quality in the infer-
ence stage. Empirical results indicate that the recommended technique
can converge to better reconstruction results when compared to state-of-
the-art unfolding structures devoid of such an adaptive parameter. The
introduction of the additional adaptive parameter results in an incremen-
tal increase in the parameter complexity, and the required reconstruction
times also stand very similar. In this study, the statistical differences be-
tween developed techniques are investigated using the one-way ANOVA
method. Additionally, a t-test is used to specify the major difference
between the means of the two proposed structures. These results indi-
cate that differences in the performance metrics results are statistically
significant.

Keywords: Magnetic resonance imaging · MR Image Reconstruction ·
Deep learning · Unfolding deep networks.
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1 Introduction

Magnetic Resonance Imaging (MRI) is an important modality in clinical imag-
ing because of its non-invasive nature and capability of providing high-quality
images, especially for soft tissues. However, it suffers from long data acquisition
times [42]. To tackle this drawback, three major approaches for accelerating MR
scans have been established. These mainstream approaches include faster imag-
ing based on MRI physics, hardware modification by using multiple coils for
parallel imaging, and signal processing techniques by reconstructing MR images
from undersampled data acquisition. Much effort has been directed to speed up
the scanning operation by utilizing undersampled k-space measurements [41, 17].

In last two decades, MRI reconstruction has extended from linear analytic
reconstruction techniques like sensitivity encoding (SENSE) [29], GeneRalized
Autocalibrating Partially Parallel Acquisitions (GRAPPA) [13] and SiMulta-
neous Acquisition of Spatial Harmonics (SMASH) [37] to nonlinear iterative
reconstructions methods including generalized series (GS) model [26], sparsity
models [5], statistics distribution regularization [44], low-rank [14] and so on.
Regularization based on sparsity or compressed sensing (CS) has been offered as
a solution in image reconstruction with reduced measurements. CS-based on the
sparsity prior has become a viable tactic for accelerating MRI in recent decades
[27]. As another example in [39] patch-based transform learning was enhanced
using extra global regularization terms. This particular technique incorporates
both global regularization and patch-wise terms. The iterative optimization pro-
cess used in CS-based reconstruction takes a long time to reach optimal results,
and the regularization parameter selection is rather empirical. As a result, the
computational complexity of these methods is quite high. Deep learning, on the
other hand, is a subfield of machine learning that learns data patterns by em-
ploying multiple layers and can be used for both unsupervised and supervised
training [20].

Deep learning lately has achieved tremendous breakthroughs, resulting in a
lot of interest in different tasks. Image processing inverse problems like image
segmentation [7, 46, 34] and image denoising [10, 18, 50] have greatly benefited
from the deep learning tide. The popularity of deep learning methods is be-
ing elevated by advancements in computing capability and the development of
novel network architectures. Some common deep learning arrangements can be
named as convolutional neural network (CNN), U-Net [34], Multilayer percep-
tron (MLP) [40], residual network (ResNet), recurrent neural network (RNN)
and generative adversarial network (GAN) [12].

Deep learning-based methods also find their way into the MR imaging field
as a replacement for conventional model-based methods. With the groundbreak-
ing progress in deep learning, the contribution of deep learning in MRI science
appears to be continuously growing. Deep learning techniques have shown sub-
stantial gains in several aspects of MR imaging like MR image segmentation and
reconstruction [23]. The advantage of residual connection has been introduced
in a seminal study [22]. Subsequently, many studies [31, 32, 28, 11] were inspired
by this successful application of the residual U-Net.
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2 Related works

Recent deep models for MR image reconstruction have included unfolding-based
techniques [36, 3, 24, 49, 43]. Unfolding strategies in deep learning usually begin
with an assumed optimization problem the solution of which is a reconstructed
image. Thereafter, they unfold the iterative optimization solution into a deep
network. As an outcome, the steps arising from iterations are used to build the
architecture of an unfolding-based model. CS reconstruction methodology is used
in the majority of current unfolding-based deep-learning solutions. The deep-
learning techniques based on unfolding provide an opportunity for a broader
perception of the link between network architecture and efficiency [25]. The
initial unrolling-based iterative network was offered by introducing the ADMM
(Alternating Direction Method of Multipliers) network [4] in 2016.

Inspired by these successful applications, researchers introduced novel struc-
tures by unrolling networks like Iterative Shrinkage-Thresholding Algorithm
(ISTA) under the title of ISTA-Net [48]. At almost the same time, similar
structures including MoDL (Model-based reconstruction using Deep Learned
prior) [2], cascade CNN [36], and variational network [15] have been introduced.
Schlemper et al.’s cascade CNN network [36, 35] was one of these deep iterative
structures that garnered prominence in tackling the inverse problem of MR image
reconstruction. A Deep Cascade of Convolutional Neural Networks (DC-CNN)
with data fidelity blocks is used in this proposed technique. The variational
network [15] combined compressed sensing and deep learning methodologies to
accelerate MR image reconstruction using an unrolled scheme. In [6], the author
utilized a variational network for variable-density single-shot fast spin-echo MR
imaging. Aggarwal et al. proposed MoDL [2] by including the DC layer inside
a variational network to reconstruct MR images in an unrolled platform. In an-
other study, PD-Net was offered by unfolding the primal-dual hybrid gradient
(PDHG) pipeline [1] to solve inverse problems.

In [31] yet another unfolding structure is proposed for cardiac MR image re-
construction. Convolutional recurrent neural networks (CRNN) take advantage
of spatial sequence dependencies as well as the iterative features of standard opti-
mization techniques. The concatenation of U-Nets has been offered in [38] under
the name of W-nets for MR image reconstruction. W-nets have been utilized in a
dual-domain (image and k-space) approach. The author designed VS-Net (Vari-
able splitting network) [9] by unfolding the obtained unrolling variable splitting
optimization technique to implement a fast MR image reconstruction.

In another study, a self-attention deep network (SAT-Net) was suggested by
utilizing a self-attention network and applying the data fidelity layer to the car-
tilage images [45]. Taking advantage of long-range dependencies, incorporating
the DC layer and self-attention pathway into CNNs, effectually speeded up and
improved their overall reconstruction result. Qiao et al [30] developed a com-
pound unfolding architecture using the Approximate Message Passing (AMP)
algorithm. Compared to other state-of-the-art MR image reconstruction tech-
niques, they benefited from both model-based and data-based methodologies
without using the weight-sharing policy in each CNN layer. FFDNet for the first
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time is introduced by Kai Zhang et al [51] as a quick and flexible denoising CNN.
The proposed denoiser, namely DRUNet, receives the noise level map as input
and further incorporates residual blocks into the U-Net. Zhang et al [49] pre-
sented a Plug-and-Play Image Restoration (IR) model. Generally, plug-and-play
IR entails two steps in an alternating iterative framework. The first step involves
the solution of a data consistency sub-problem, and the second step ponders an
image prior sub-problem. The Plug-and-play approach considers the use of stan-
dard denoisers to solve the image prior sub-problem. Hence, unlike conventional
model-based techniques, plug-and-play IR can use advanced denoisers from the
literature to implicitly specify the image prior.

In this work by getting inspiration from the recent unfolding structures, we
tried to improve iterative unfolding network models’ performance by introducing
a noise parameter σi adaptively calculated for each ith iteration. σi is calculated
using the dissimilarity between the reconstructed MR image at the ith iteration
and the original zero-filled (ZF). The addition of this parameter to the unfold-
ing pipeline as an input feature map enhances the reconstruction performance
considerably. This input acts as a regularizer for the network over the unfolding
iterations. This additional feature map increases the overall complexity of the
network only incrementally.

The rest of this article is organized as follows. In the first part of Section
3, the general framework of MR image reconstruction based on deep networks
is discussed. The second part of section 3 introduces the contribution and in-
novation of this study in contrast to prior deep networks. The third part of
section 3 delves into the specifics of the suggested innovative network architec-
tures. Section 4 present the quantitative and qualitative results. Eventually, in
the concluding part, the findings are summarized.

3 Proposed Approach

3.1 General Framework

To accelerate MR image reconstruction, we need deep learning models to re-
construct images from undersampled datasets. Deep learning techniques learn
from the difference between the reconstructed and gold-standard images to re-
construct MR images. As the initial procedure of the reconstruction process, we
need to visualize the acquired data, namely undersampled k-space data using an
inverse Fast Fourier Transform (IFFT):

y = FΩxorig + n (1)

xzf = F−1y (2)

Here, y can be defined as the undersampled data in the spatial domain.
FΩ is the encoding matrix or the subsampled Fourier transform function. n
is disruption or noise created in the measurement process. The sequence of
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selected points used in the MRI acquisition technique is described by Ω and
Ω ∈ {1, 2, 3, ..., N}M . Here N ×M denotes the image total pixel size. The IFFT
and real image is shown by F−1 and xorig, respectively. xzf is the subsampled
image. Before, feed forwarding the ZF image into the network we defined a zero-
filled initial σ (σ0) and applied it as a second channel to the input. In fully
sampled data, y fulfill the Nyquist sampling theorem and the MR image can
be easily created using an inverse Fourier transform but in undersampled data,
different techniques should be applied to address the non-determined properties
resulting from undersampling. CS or deep learning methods can be one of these
solutions.

FΩ = UF (3a)

FΩ = UFS (3b)

Here, U is the subsampling mask function. F indicates the FFT and S de-
notes the sensitivity map for the multi-coil volumes. The MR image reconstruc-
tion template attempts to fill in missing points in the ZF image. In the training
step, it seeks to learn by mitigating the difference between the output or recon-
structed slice x̃ and the target image. In this line, the target is to achieve the
most cost-effective H function. As a result, the training step matches up with
the following optimal solution:

x̃ = H(xzf) (4)

argmin
θ

ndata∑
i=0

∥Hθ(x̃
(i) − x(i))∥ (5)

Here, Hθ indicates the network quantified function, and θ signifies the deep
model’s parameters.

The structural details of CNN and U-Net networks which have been utilized
as baseline for all the developed frameworks are detailed in Table 1 and Fig. 1.

3.2 Proposed Structure

In this study, we introduce a new parameter σ. We calculate this parameter as
follows:

σi =
∥x̃i − xzf∥F√

N ×M
(6)

In this regard, we calculated the σ within the Data consistency (DC) layer [8]
and appended it to the DC layer output. The DC layer is implemented as follows:

xout = F−1
{
M ◦ (F x̃) + y

}
(7)
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Table 1. Structural details of baseline networks.

Network
Layer detail

# conv. layers Initial layer detail Middle layers detail
Reconstruction
Layer detail

CNN 5

Input Ch. size 1 Input Ch. size 64 Input Ch. size 64
Output Ch. size 64 Output Ch. size 64 Output Ch. size 1

Kernel size 3 Kernel size 3 Kernel size 3
Stride 1 Stride 1 Stride 1

Padding 1 Padding 1 Padding 1
Bias False Bias False Bias False

U-Net

5 downsampling block

+

5 upsampling layers

Downsampling block Upsampling block
1st conv. layer 2nd conv. layer 1st conv. layer 2nd conv. layer

Input Ch. size n Input Ch. size n×2 Input Ch. size n×2 Input Ch. size n
Output Ch. size n×2 Output Ch. size n×2 Output Ch. size n Output Ch. size n

Kernel size 3 Kernel size 3 Kernel size 3 Kernel size 3
Stride 1 Stride 1 Stride 1 Stride 1

Padding 1 Padding 1 Padding 1 Padding 1
Bias False Bias False Bias False Bias False

Here, M is the inverse of the subsampling function that was used to undersample
the raw data. ◦ is used for performing the point-wise product, and y is addressed
in (1).

In a nutshell, the proposed adaptive noise level parameter, in addition to
all other parameters, travels through and gets updated in each iteration of the
unfolding structure. Thereafter, the optimizer function minimizes the error be-
tween the last network output and input dirty image based on these updated
parameters.

3.3 Architecture

In this study, we have taken advantage of two state-of-the-art variants of U-
Net and CNN for MRI reconstruction. The conventional unfolding structure
and the proposed unfolding structure are represented in Fig. 2. As shown in
Fig. 2, initially ZF image is created by applying IFFT to the undersampled k-
space data. After calculating the absolute value of input tensors, ZF images are
normalized. All images are then center-cropped to 320×320 pixels to ensure that
all slices from the dataset are the same size. Same as Fig. 2, these two models
were unfolded by performing five iterations over each network and implementing
the DC layer to each network output.

CNN based networks Regarding CNN implementations, a CNN architecture
similar to the one used in [36, 3] is chosen. The model includes five convolutional
layers. ReLU activation function was applied inside these layers. In this layout,
the channel sizes in the initial and reconstruction layers are both set to two. In
all convolutional layers, the feature map sizes are arranged as 64. In all layers,
the kernel size, stride, and padding size are set to be three, one and one, respec-
tively. This model was converted to a residual model in order to get a better
reconstruction result. The Adam optimizer is chosen with a learning rate of 10−4

and a weight decay of 10−7.
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         : Concatenation

       : 2*2 Up sampling

       : 2*2 Down sampling

       : conv2d
                       

[Batch size, channel size, H, W]

         : Concatenation

       : 2*2 Up sampling

       : 2*2 Down sampling

       : conv2d
                       

[Batch size, channel size, H, W]

         : Concatenation

       : 2*2 Up sampling

       : 2*2 Down sampling

       : conv2d
                       

(b)  

Fig. 1. Detailed outlines of the baseline networks. (a) U-Net. (b) CNN.

U-Net based networks For U-Net based frameworks simulations, we used
the arrangement released by the Facebook AI Research (FAIR) team [47]. This
architecture includes downsampling and upsampling steps. Each of these steps
consists of two 3×3 convolutional layers which are activated by ReLU. The con-
traction layer applies average pooling for halving the feature map’s size. The
expanding layer doubles the size of feature maps using the 2D transposed con-
volutional layer. The reconstruction layer includes a 1×1 convolutional layer for
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Fig. 2. Unfolding networks for MRI reconstruction. (a) Conventional unfolding struc-
ture. (b) Proposed unfolding structure.

generating an image with two channels. The U-Net model reconstruction loss
is quantified using the mean absolute error (L1 loss) and it is optimized using
the Root Mean Squared Propagation (RMSprop). The dropout probability is
considered to be zero. The number of pooling layers is configured to four.

In Algorithm 1, we provide an algorithmic description for the proposed un-
folding structure described in this article. Here, N is the network that has an
additional input in the form of the noise level parameter σ. xi on the other hand,
indicates the data consistency layer output. ∥·∥F is the matrix Frobenius norm.
N andM denote the dimensions of the target image.

Initialization: σ0, x0 = xzf

for i = 1 : n− 1 do
x̃i = Nσi−1(xi−1)

σi =
∥x̃i − xzf∥F√

N ×M
xi = DC(x̃i, y)

end for
xout = xn

Algorithm 1: The steps for proposed unfolding structure.
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3.4 Simulation Setting

Experimental setup Python 3.6 was used in conjunction with Pytorch 1.4.0.
The training was implemented by using two GeForce RTX 2080Ti GPUs, each
with 11GB of RAM. All models in this study, including suggested and state-of-
the-art networks, were trained for 20 epochs, which was found to be sufficient
for all model simulations.

Evaluation Methodology In this study, we evaluated developed models’ per-
formance using three metrics of performance, namely Peak Signal to Noise Ratio
(PSNR), Normalized Mean Squared Error (NMSE), and Structural Similarity In-
dex Measure (SSIM). PSNR is the ratio of the signal’s highest achievable power
to the power of the distorting noise that influences the quality of its depiction.
Therefore, PSNR between the real image Gt and network output image Ri can
be given as follow.

PSNR(Ri, Gt) = 10 log10
max(Gt)

2

MSE(Ri, Gt)
(8)

The MSE indicates the mean square error. On the other hand, the NMSE
index is computed by calculating the pixel-by-pixel difference between the real
and reconstructed images.

NMSE(Ri, Gt) =
∥Ri −Gt∥22

∥Gt∥22
(9)

∥·∥22 is the squared Euclidean norm. Additionally, SSIM generally is addressed
between two patches of an image.

SSIM(P1, P2) =
(2µP1

µP2
+ C1)(2σP1P2

+ C2)

(µ2
P1

+ µ2
P2

+ C1)(σ2
P1

+ σ2
P2

+ C2)
(10)

Here, σ2
P1 and σ2

P2 are pixel variances related to P 1 and P 2, respectively.
The average values for P 1 and P 2 are denoted as µP1 and µP2 , respectively. The
covariance value is indicated as σ P1 P2

. C1 and C2 are stabilizer of the division
and can be calculated as follow.

C1 = (0.01L)2 (11a)

C2 = (0.03L)2 (11b)

Here, L is equal to the maximum pixel value of the ground truth image. The
superior performance of models is expressed by higher PSNR and SSIM and
lower NMSE magnitudes.
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Dataset In a variety of applications, deep convolutional networks have out-
performed state-of-the-art approaches. As a consequence, deep learning-based
approaches have become increasingly popular; but the availability of training
datasets limits their improvements [19, 34, 21]. Until now, different methods and
training datasets were provided in the literature to tackle this limitation. Among
these novelties, the fastMRI dataset is a fresh and rather a comprehensive form
of an MR image dataset designed towards MR image reconstruction [47]. This
collection contains data for numerous types of MR images in a number of forms.
Images of single and multiple coils are included inside this dataset. The data
includes the fully sampled k-domain slices, image domain, and DICOM format
images. The single-coil image type of this dataset is used in this study. Table
2 summarize data distribution in this collection. The fastMRI dataset contains
1372 volumes and 49085 slices of single-coil MRI. These volumes are separated
into subsets of training, validation, test, and challenge. Each volume provides
fully sampled slices both in image and k-domain. In this study, the simula-
tion started by undersampling the k-domain slices with a random Cartesian
subsampling function with 4-fold and 8-fold acceleration factors. Subsequently,
subsampled data were transferred into the image domain by applying IFFT.

Table 2. Volume and slice distribution in the fastMRI single-coil dataset [47].

Subset name Volumes Slices

Training 973 34742

Validation 199 7135

Test 108 3903

Challenge 92 3305

4 Experimental Results

4.1 Quantitative Results

In this paper, we have proposed a novel trainable parameter. We enforced this
parameter into the unfolding structure of state-of-the-art pipelines. Random
Cartesian subsampling functions with 4-fold and 8-fold acceleration factors were
used to undersample the fully-sampled slices in the k-domain. The results of de-
veloped simulations and their standard deviations are reported in Tables 3 and
4 for two undersampling acceleration factors. The proposed novelty improved
reconstruction results based on PSNR, NMSE, and SSIM indices. The time for
reconstruction of 32 slices using developed models is provided. These reconstruc-
tion times are appropriate for real-time clinical applications.

In this work, we used statistical evaluation tools to assess the acquired quan-
titative results. To do so, one-way analysis of variance tryouts and paired t-tests
were used to confirm the statistical significance of the simulated models in terms
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Table 3. Simulation results for fastMRI dataset undersampled with 4-fold random
Cartesian mask.

Acceleration 4-fold
#Parameter Time (s)

Network Loss NMSE (×10−3) SSIM(×10−3) PSNR

ZF - 41.679 711.59 29.876 - -

CNN [36] 0.308 34.259±17.43 755.65±78.76 30.880±2.49 111,744 0.095

k-space DL [16] 0.257 32.060±18.92 763.45±79.35 31.273±2.66 7,756,418 0.173

KIKI-net [11, 33] 0.291 31.297±17.33 766.52±81.23 31.419±2.78 1,168,128 0.78

Deep Cascade CNN [36] 0.280 26.520±18.61 790.00 ±85.15 32.412 ±3.14 111,744 0.417

Unfolding CNN with σ 0.274 25.225±17.38 797.65±82.30 32.762±3.29 112,896 0.487

U-Net [47, 3] 0.281 26.821±18.18 785.93±86.16 32.419±3.17 7,756,097 0.15

Unfolding U-Net [3] 0.261 22.489±17.29 813.83±83.73 33.585±3.72 7,756,097 0.913

Unfolding U-Net with σ 0.260 22.360±17.28 815.62±83.71 33.631±3.74 7,756,418 1.032

Table 4. Simulation results for fastMRI dataset undersampled with 8-fold random
Cartesian mask.

Acceleration 8-fold
#Parameter Time (s)

Network Loss NMSE (×10−3) SSIM (×10−3) PSNR

ZF - 77.751 603.37 26.921 - -

CNN [36] 0.451 69.277±19.88 637.76±100.66 27.462±2.01 111,744 0.095

KIKI-net [11, 33] 0.431 62.103±19.41 644.20±103.54 28.020±2.11 1,168,128 0.78

k-space DL [16] 0.437 58.376±21.89 651.80±103.98 28.292±2.07 7,756,418 0.174

Deep Cascade CNN [36] 0.417 54.785±22.32 655.84±112.67 28.639±2.20 111,744 0.417

Unfolding CNN with σ 0.405 50.772±22.59 670.04±113.30 29.037±2.30 112,896 0.487

U-Net [47, 3] 0.380 43.275±23.47 692.96±118.22 29.952±2.55 7,756,097 0.15

Unfolding U-Net [3] 0.356 35.791±24.64 715.45±125.47 31.185±3.19 7,756,097 0.913

Unfolding U-Net with σ 0.355 35.589±24.43 717.78±124.31 31.267±3.12 7,756,418 1.032

of all evaluation indices and configurations. In this setup, the threshold p-value
is set as α = 0.05. In Table 5, the ANOVA test findings reveal more than 99% re-
liability for both of acceleration factors and all evaluation metrics. As indicated
in result section of Table 5, the null hypothesis, which states that the popula-
tion means of the different networks are identical, is rejected. In addition, the
effectiveness of the proposed models was assessed pair-wised in comparison to
that of state-of-the-art structures by t-test. The paired t-tests yielded p-values
less than the threshold value of 0.05, indicating more than 95% reliability in our
suggested structures.

Table 5. ANOVA (one-way analysis of variance).

Acceleration factor
p-value

Result
NMSE SSIM PSNR

4x 3.01E-10 2.71E-14 1.34E-20 H0 rejected

8x 2.43E-45 1.06E-12 2.33E-48 H0 rejected
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Additional MRI reconstruction experiments have been also performed us-
ing a non-Cartesian down-sampling mask. We have retrained the deep learning
methodologies for the case of a 4-fold acceleration factor when using a non-
Cartesian, namely radial sampling mask. The results of the different methods
for the radial mask sampling case are given in Table 6. The results in Table
6 show that the methods proposed in this study can maintain their superior
reconstruction performance in the case of a non-Cartesian sampling mask. The
performance robustness of the proposed model is approved by the application of
a different type of undersampling mask function. As we expected from the result
table related to the random Cartesian mask function, the concatenation of the
adaptive noise level map again improved the result of cutting-edge unfolding
structures.

Table 6. Simulation results for fastMRI dataset undersampled with 4-fold radial mask.

Acceleration factor 4-fold
#Parameter Time (s)

Network Loss NMSE(×10−3) SSIM(×10−3) PSNR

ZF - 37.483 731.15 30.344 - -

CNN [36] 0.317 32.491±15.90 765.49±75.55 31.052±2.35 111,744 0.102

U-Net [47, 3] 0.276 24.041±17.81 793.97±89.45 33.121±3.43 7,756,097 0.156

k-space DL [16] 0.270 23.218±17.07 803.26±82.52 33.235±3.36 7,756,418 0.170

Deep Cascade CNN [36] 0.259 20.976 ±16.90 820.10 ±85.79 34.017 ±3.87 111,744 0.421

Unfolding CNN with σ 0.257 20.565±16.76 824.16±84.66 34.184±3.96 112,320 0.539

Unfolding U-Net [3] 0.254 20.128±16.70 828.96±84.47 34.361±4.08 7,756,097 0.945

Unfolding U-Net with σ 0.253 20.121±16.71 830.80±84.66 34.458±4.07 7,756,418 0.987

In Fig. 3, the σ evolutions are given for each iteration of the novel unfolding
structure in the case of random Cartesian sampling. In this figure, each point
indicates the average σ value for all slices of the full dataset in a specified epoch
of training. It can be inferred that the σ value evolves through each iteration
and training epoch in a regular fashion. Moreover, the σ value also evolves in
the test phase. The evolution of σ over the test iterations significantly overlaps
with the final σ values obtained in the training phase.

The PSNR and SSIM evolution also are given in Figs. 4 and 5 over each
iteration of the unrolling paradigm with σ. Fig. 6 depicts the improvement detail
in each iteration. It can be inferred from Figs. 4, 5 and 6 that the image quality
increases over the unfolding iterations. Around epochs 15 to 20 the network
seems to converge to the best solution.

Additionally, cross-validation has also been applied on the fastMRI dataset
to verify the performance consistency of the proposed technique. In this regard,
12-fold cross-validation has been applied to all of the proposed and compared
networks when using the fastMRI dataset. It has been observed that the proposed
novel structure maintained its performance improvement in comparison to the
competing pipelines in this cross-validation setting also.
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Fig. 3. Sigma evolution during the iteration. (a) Unfolding CNN for 4-fold acceleration
factor. (b) Unfolding CNN for 8-fold acceleration factor (c) Unfolding U-Net for 4-fold
acceleration factor. (d) Unfolding U-Net for 8-fold acceleration factor.
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Fig. 4. PSNR evolution during iterations. (a) Unfolding CNN with σ for 4-fold accel-
eration factor. (b) Unfolding U-Net with σ for 4-fold acceleration factor.

4.2 Qualitative Results

This section provides a visualized analogy between the proposed novel structures
and state-of-the-art networks. Fig. 7 depicts a specific slice in the k-domain and
subsampled representations of the same slice with 4-fold and 8-fold accelera-
tion factors with random Cartesian mask function. One particular reconstructed
image from the test sample is displayed in this section. The suggested models’
performance was assessed by making a comparison of their generated images.
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Fig. 5. SSIM evolution during iteration. (a) Unfolding CNN with σ for 4-fold acceler-
ation factor. (b) Unfolding U-Net with σ for 4-fold acceleration factor.
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Fig. 6. Reconstruction images visual evolution in each iteration of unfolding structure
with σ and their related ROIs.

The reconstruction results are demonstrated in Figs. 8 and 9. These figures also
include the ground truth, ZF images, Region of Interest (ROI), and error map.
Apparently, the proposed unfolding structures are recovered more patterns and
presented richer perceptual quality. Furthermore, the suggested designs’ output
images have fewer significant artifacts and the majority of the blurring issues
have been addressed. As can be observed, the quantitative findings in Tables 3
and 4 match the reconstruction results in Figs. 8 and 9.
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(a)

(b) (c)

Fig. 7. Specific slice representations: (a) k-space, (b) subsampled k-space slice with 4-
fold random Cartesian mask, (c) subsampled k-space slice with 8-fold random Cartesian
mask.
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Ground truth image 4-fold zero-filling image

CNN Deep Cascade CNN

Unfolding CNN with σ U-Net

Unfolding U-Net Unfolding U-Net with σ

Fig. 8. Proposed techniques’ and contender networks’ reconstructed images, ROI, and
error map for 4-fold undersampled slices.
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Ground truth image 4-fold zero-filling image

CNN Deep Cascade CNN

Unfolding CNN with σ U-Net

Unfolding U-Net Unfolding U-Net with σ

Fig. 9. Proposed techniques’ and contender networks’ reconstructed images, ROI, and
error maps for 8-fold undersampled slices.
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5 Conclusion

In recent literature, deep networks have proven their effectiveness in solving
medical imaging issues. Furthermore, unfolding structures have given promis-
ing results for MRI reconstruction as indicated in cascaded and plug-and-play
structures. Inspired by this fact, we introduced a novel noise parameter σ to
the unfolding pipeline. The proposed model improves the performance of the
unfolding structures without leading to any significant complexity increase. The
adoption of an adaptively calculated noise level parameter at the input of the
network results in better reconstruction performance. We conducted comparisons
among models using quantitative and qualitative results. According to the pre-
sented findings, the offered trainable parameter boosts the unfolding structure
outcomes. Using the ANOVA Single Factor approach, the statistical differences
between created methodologies are emphasized. A t-test is also used to indicate
the significant margin between the two suggested structures’ means. In future
work, the effectiveness of this proposed parameter can be tested by applying it
to model-based structures or even by evaluating its performance in other image
restoration problems such as tomographic reconstruction.
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