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Abstract The Block Matching 3D (BM3D) is an ef-
ficient image model, which has found few applications
other than its niche area of denoising. We will develop
a Magnetic Resonance Imaging (MRI) reconstruction
algorithm, which uses decoupled iterations alternating
over a denoising step realized by the BM3D algorithm
and a reconstruction step through an optimization for-
mulation. The decoupling of the two steps allows the
adoption of a strategy with a varying regularization
parameter, which contributes to the reconstruction per-
formance. This new iterative algorithm efficiently har-
nesses the power of the nonlocal, image-dependent BM3D
model. The MRI reconstruction performance of the pro-
posed algorithm is superior to state-of-the-art algorithms
from the literature. A convergence analysis of the algo-
rithm is also presented.

Keywords Image reconstruction · magnetic reso-
nance · block matching · BM3D · compressed sensing ·
sparsity

1 Introduction

Ill-posed inverse problems in image restoration and re-
construction have been a fertile ground for the appli-
cation of various regularization methods. These image
processing applications include but are not limited to
denoising, deblurring, demosaicking, inverse halftoning,
single or multi-image superresolution, inpainting, and
various image reconstruction problems such as mag-
netic resonance imaging (MRI) and computerized to-
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mography (CT) [16]. The observation or data acquisi-
tion forward model for all of these image restoration
modalities can eventually be approximated as a dis-
cretized linear system [16].

y = Ax? + η (1)

x? ∈ CN denotes the original or desired image to be re-
stored, in a vectorized form. The observed data is given
as the vector y ∈ Cκ. The linear operator A : CN →
Cκ formulates the observation forward model for the
particular image processing paradigm. The various im-
age restoration and reconstruction paradigms as listed
above result in diverse A matrices for the forward ob-
servation model. Possible A matrices include an iden-
tity operator for denoising, convolution operators for
deblurring, filtered subsampling operators for superres-
olution or the Fourier k-domain subsampling operator
for MRI reconstruction. The backward program of re-
constructing an estimate of x? is usually an ill-posed
problem. The ill-posedness of the backward estimation
might be because the problem is underdetermined with
N > κ. On the other hand, the inverse problem might
also be nonstable due to a numerically ill-conditioned
operator A and the presence of noise. Whatever the
reason for the ill-posedness of the inverse problem, reg-
ularization of the problem is a viable approach to reach
a good estimate of x?. The variational formulation for
regularization of the inverse problem, assumes the ad-
dition of a penalty function to the cost function getting
minimized [16].

min
x
‖Ax− y‖22 + λρ(x). (2)

Here, we would like to call ‖Ax − y‖22 as the observa-
tion fidelity term, as it ensures the concurrence of the
restored image x with the observation y. The `2 norm
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presumes normal distribution for the additive noise η.
The penalty function ρ(·) enforces some a priori knowl-
edge about the latent image x? into action. Usually the
regularization function might depend on transform do-
main coefficients of the image, where the transform is
a nonadaptive, linear operator acting on the image. It
is often the case that the dependency on the transform
coefficients is via a norm function. Hence, one viable
option for the regularization penalty is as follows.

ρ(x) = ‖Wx‖pp. (3)

Here, W is a linear transform operator. For p = 2 the
resulting regularization is the well-studied Tikhonov
regularization. Other recently popular choices to use
in (3) are the sparsity inducing `0 and `1 norms. The
penalty function, given in terms of the nonadaptive
transform domain coefficients, should highlight some
sort of structure known to be inherent to the latent
image. One prevalent alternative for the nonadaptive
transform has been the wavelet transform, which pre-
serves scale-invariant structures in the image [3]. On
the other hand, a piecewise-constant assumption for
the latent image leads to the use of derivative functions
for the nonadaptive transform. A two-dimensional (2D)
first-order derivative, discretized as a first-order differ-
ence operation, leads to the Total Variation (TV) min-
imization methods [4].

For example, the sparsity regularized MRI recon-
struction problem has been described as given below
[20],

min
x

1
2‖Fux− y‖22 + β1‖Θx‖1 + β2‖x‖TV (4)

where the operator Fu : CN → Cκ, with κ < N , de-
notes the subsampled Fourier transform. In this cost
function, which is regularized by a composite penalty
function ρ(·), Θ is an orthogonal wavelet transform,
‖·‖TV denotes the TV measure, and β1 and β2 are
the regularization parameters. This compressed sens-
ing (CS) or sparse MRI cost function has been studied
in various papers [17,20–22,24,31], leading to an assort-
ment of solvers. Sparse MRI provides an effective reg-
ularization framework for solving the MRI reconstruc-
tion problem. A distinct line of work has considered the
parallel MRI reconstruction problem resulting in mul-
ticoil parallel MRI algorithms such as SENSE [23] and
GRAPPA [15].

The nonadaptive models using fixed regularizers such
as the wavelet transform or the TV seminorm have
been quite popular. However, there are more recent,
data-dependent and nonlocal image models which of-
fer better performance. There have been MRI recon-
struction algorithms based on the nonlocal processing

paradigm. The Low dimensional-structure Self-learning
and Thresholding (LOST) algorithm as introduced in
[1] and the more recent Patch-based Nonlocal Oper-
ator (PANO) algorithm of [25] are examples for such
nonlocal MRI algorithms. Another recent popular line
of algorithms for solving reconstruction problems have
used denoising as an explicit substep. One of the earliest
examples for this approach has been the decoupled de-
blurring and denoising algorithm of [30]. Another more
recent denoising based algorithm is the plug-and-play
prior framework which has been applied to bright field
electron tomography [28]. A different algorithm which
uses denoising as a substep is the Approximate Message
Passing (AMP) with image denoising algorithm which
has been applied to compressive imaging [29].

The Block Matching 3D (BM3D) image model facil-
itates nonlocal structures in the image by using group-
ings of image patches. The BM3D model has first been
introduced in the image denoising setting with great
success [7]. Despite its state-of-the-art performance in
image denoising, further applications of the BM3Dmodel
have been limited. To the best of our knowledge, appli-
cations for the BM3D model other than denoising in-
clude deblurring [8,10,11,18], inpainting [19], superres-
olution [9], tomographic reconstruction [12] and com-
pression [6]. In this paper we intend to harness the
power of the BM3D image model as a regularizer for
the MRI reconstruction problem. We will utilize the
BM3D model inside a novel algorithm which decouples
the observation fidelity and model fidelity steps, as we
will call them. The decoupling will be based on the de-
coupled deblurring and denoising algorithm of [30].

The outline of the rest of the paper is as follows.
In Section 2, we will give a summary of the decoupled
algorithm and the BM3D image model, which we will
adopt. Section 3 develops the novel MRI reconstruc-
tion algorithm we propose. We discuss the convergence
and implementation details of the proposed algorithm
in Section 4. The simulations in Section 5 compare the
MRI reconstruction performance of the proposed algo-
rithm against state-of-the-art methods from the liter-
ature. We conclude the paper with an overview of the
proposed method and possible research directions.

2 The decoupled algorithm and the image
model

2.1 Decoupled algorithm for image restoration and
reconstruction

The regularized minimization problem (2) has been the
target of various optimization approaches. In general
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these optimization procedures bargain a tradeoff be-
tween the observation fidelity term and the prior struc-
ture enforcement term. An efficient algorithm for solv-
ing regularized image restoration problems has been
presented in [30]. The strength of this algorithm lies
in the fact it explicitly decouples the two steps for en-
forcing the two individual components of the regular-
ized cost function (2). The individual steps which get
iterated in this algorithm can be given as follows [30].

x̂i = argmin
x

‖Ax− y‖22 + α‖x− xi−1‖22. (5a)

xi = argmin
x

‖x− x̂i‖22 + λρ(x). (5b)

The first step (5a) updates the current estimate xi−1
as to better agree with the observation vector y, where
the regularization parameter α determines the degree
of this agreement. The second step realizes a further
update to better conform with the prior image model
or structure as enforced by the penalty function ρ(x).
In [30], the forward matrix A has been assumed to be
a blurring matrix, hence the algorithm has been used
for deblurring. In this context, the two decoupled steps
(5a) and (5b) have been called as the deblurring and
denoising steps, respectively [30]. However, this two-
step algorithm can in general be used for other image
restoration and reconstruction problems. For a general
forward model matrix A, we would like to call the two
steps as the observation fidelity and the model fidelity
steps, respectively. In [30], the wavelet domain sparsity
and the TV seminorm have been utilized as the prior
structure enforcement terms in ρ(x). We would like to
employ other, more efficient image models. The BM3D
as described in the next section provides such a more
advanced image model.

2.2 Using BM3D as the image model

The BM3D approach provides an advanced image model
which has been initially used for image denoising [7].
The BM3D image model is based on a nonlocal group-
ing of image patches (or blocks), and a subsequent 3D
transformation of the resulting patch groups. In [7],
where the BM3D model was first presented, the devel-
oped image denoising algorithm also included an addi-
tional collaborative Wiener filtering step. A more stream-
lined version of BM3D model which comprised only the
main 3D transform shrinkage was presented in [11]. The
framework as introduced in [11] is important, because
the complicated BM3D model analysis operation gets
summarized as a simple matrix multiplication with a
proper non-tight frame. We want to repeat a brief sum-
mary of this analysis. For further details, one can con-
sult [11]. The analysis equation for the BM3D image

model in the case of a vectorized image is formulated
as given below [11].

ω = Φx (6)

Here, ω ∈ CM is the joint 3D groupwise spectrum,
which stores the 3D transform coefficients for patch
groups extracted from the image. The patches (or blocks)
extracted from the image are grouped together using a
similarity criterion. The frame Φ ∈ CM×N with M �
N implements a highly overcomplete transform into
the groupwise spectrum space. The backward transform
from the groupwise spectrum space into the image space
can be realized by a second frame, which basically in-
verts all the operations implemented by the analysis
frame Φ [11].

x = Ψω (7)

Ψ ∈ CN×M is the synthesis frame for the BM3D model.
Φ and Ψ are dual frames with ΨΦ = IN×N [11]. Both
the analysis frame Φ and the synthesis frame Ψ em-
ploy in their definitions the particular 3D transform
applied on the patch groups. This 3D transform is cho-
sen such that it is separable into a pair of 2D-intrablock
and 1D-interblock subtransforms. These separate trans-
forms efficiently exploit the data structure of the 3D
patch cubes, and they also greatly reduce the computa-
tional complexity when compared with a nonseparable
transform. These two subtransforms are nonadaptive,
and they can be chosen freely from available transforms
such as DCT, DFT or wavelet transforms among oth-
ers. However, the definitions for these frames also de-
pend on the distinct grouping structure of the extracted
patches, which is unique for the particular image to be
processed. Hence, the frames Φ and Ψ are adaptive and
image-dependent. This dependence of the analysis and
synthesis frames on the processed image x, is one of the
reasons for the strength of the BM3D model.

3 BM3D-MRI Formulation

The frame representation of the BM3D image model
has been applied to image deblurring in [11]. Here, we
want to bring together the decoupled algorithm (5) of
[30] and the BM3D image model. We will apply this
novel approach to the MRI reconstruction problem. We
specify the main iteration of our novel decoupled MRI
reconstruction algorithm as follows.

x̂i = argmin
x

‖Fux− y‖22 + α‖x− xi−1‖22. (8a)

xi = argmin
x

‖x− x̂i‖22 + λ‖Φix‖p . (8b)
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The BM3D analysis frame Φi is adapted to the inter-
mediary image x̂i, at each iteration. One can use a con-
stant frame Φ created using the initial image estimate
x0. This would result in a reduction both in complexity
and reconstruction performance of the algorithm.

Now we will try to outline the solutions to the indi-
vidual steps (8a) and (8b). The observation fidelity up-
date (8a) has an exact least-squares solution. Solutions
to similar problems have been discussed in the literature
both in the MRI [26] and deblurring [11, 30] settings.
The least-squares solution for (8a) will be given as the
solution of the following equation.

(FH
u Fu + αI)x̂i = FH

u y + αxi−1. (9)

Here, FH
u is the adjoint operator for the MRI obser-

vation matrix Fu. The vector FH
u y is simply the zero-

filling based reconstructed image for the given observed
Fourier data y. The partial Fourier matrix Fu is diago-
nalized by the full Fourier matrix, such thatFFH

u FuFH

= Λ is a diagonal matrix with ones and zeros on the
diagonal. Here, F is the full-sized, unitary Fourier ma-
trix. Λ is only nonzero at the diagonal elements k ∈ Ω,
where Ω denotes the set of indices for Fourier data in-
cluded in y [26]. If we use FHF = FFH = I and take
the Fourier transform of both sides of (9), we end up
with the following result:

F(FH
u Fu + αI)(FHF)x̂i = F(FH

u y + αxi−1). (10)

⇒ (Λ + αI)F x̂i = FFH
u y + αFxi−1. (11)

We should note that the zero-filled Fourier domain vec-
tor FFH

u y is zero for k /∈ Ω. The simplified solution
for (8a) is finalized as follows.

F x̂i =

Fxi−1 , if k /∈ Ω

FFH
u y + αFxi−1

1 + α
, if k ∈ Ω

(12)

This final equation, which is formalized in the k-space,
is similar to the image update equation in [26]. The
limit α → 0 corresponds to the noiseless observation
case, with y = Fux?. In this case, the Fourier coef-
ficients of x̂i for k ∈ Ω are simply restored to their
original, observed values in y. All the regularization
parameters in equations (2), (4), (5) and (8) are posi-
tive valued in general. Of particular interest is (8a) with
the α parameter. We calculate the solution for (8a) by
using (12). If we consider (12) as the utilized solution
for (8a), α = 0 becomes a legitimate regularization pa-
rameter leading to a unique solution.

The model fidelity equation (8b) can be considered
as a denoising problem with an analysis prior defined
over the analysis frame Φi. There are various iterative
algorithms for solving these type of problems, such as

operator splitting methods [5] , split Bregman iterations
[14] or the iterative frame shrinkage (IFS) algorithm
[27]. If we consider only the very first iteration of the
IFS algorithm [27] for solving this problem, this initial
iteration will be calculated as follows:

xi = ΨibΦix̂icλ (13)

In (13), the operator b·cλ denotes the hard or soft thresh-
olding operations for p = 0 and p = 1, respectively. This
operator is calculated as follows [11].

bωcλ =

{
ω ◦

(
ω =

√
λ
)
, p = 0

sign(ω) ◦max(ω − λ
2 , 0), p = 1

(14)

Here, “◦” denotes an elementwise vector multiplication.
We should note that equation (13) is simply the BM3D
denoising algorithm formulated using the frame nota-
tion [11]. In our algorithm, we plan to use the frame
shrinkage step (13) as an approximate solution for (8b).
Hence, the model fidelity update of our algorithm will
be realized by a BM3D based denoising of the input
image.

Our proposed MRI reconstruction algorithm uses
(8) and the corresponding solutions as its main iter-
ation. This algorithm utilizes the nonlocal, patchwise
block matching image model. We call this novel ap-
proach as the BM3D-MRI algorithm. A synopsis of the
proposed BM3D-MRI algorithm is given in Alg.1. We
should note that here we adopted a varying regular-
ization parameter λj for model fidelity. This allows for
a reconstruction method similar to the deterministic
annealing based approaches [19], where the changing
parameter allows for adaptivity to gradually uncover
the underlying image structure. In Alg.1, the J pa-
rameter denotes the number of outer iterations where
the λ parameter is varied as λj . The λj parameter de-
creases uniformly on a logarithmic scale starting from
λ1 = λmax and ending with λJ = λmin. For each λj
value the inner iteration is run I times.

4 Convergence and Implementation of the
BM3D-MRI algorithm

4.1 Convergence of the BM3D-MRI algorithm

In [30], the convergence to a fixed point has been proven
for the iterative, decoupled algorithm (5) under certain
conditions. We will utilize this convergence analysis to
achieve a similar result for a simplified version of our
BM3D-MRI algorithm.

We consider the BM3D-MRI algorithm, with the
assumption that the analysis frame and the regulariza-
tion parameter are kept constant, that is Φi = Φ and
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Algorithm 1 BM3D-MRI Algorithm

Input : Observation, y = Fux? + η; α, λmax, λmin.

1: Initialize: x0 = FH
u y.

2: Initialize: λ1 = λmax, ∆ = exp
( ln(λmax)−ln(λmin)

J−1
)
.

3: for j := 1, 2, . . .J do . parameter iteration
4: x0 = xj−1. . warm start initialization
5: λj+1 = λj/∆. . parameter update
6: for i := 1, 2, . . . I do . main iteration
7: x̂i = argmin

x
‖Fux− y‖22 + α‖x− xi−1‖22

observation fidelity update, solved by:

F x̂i =


Fxi−1 , if k /∈ Ω

FFH
u y + αFxi−1

1 + α
, if k ∈ Ω

8: Generate Φi and Ψi using x̂i. . frame
update

9: xi = argmin
x

‖x− x̂i‖22 + λj‖Φix‖0
model fidelity update: xi ≈ ΨibΦix̂icλj

10: end for . end of inner iteration
11: xj = xI . . image update
12: end for . end of main iteration
13: Output reconstructed MR image x = xJ .

λj = λ. Now, the observation and model fidelity steps
of the simplified BM3D-MRI algorithm can be written
in the following form:

So(f) = argmin
x

‖Fux− y‖22 + α‖x− f‖22. (15a)

Sm(f) = argmin
x

‖x− f‖22 + λ‖Φx‖p . (15b)

Using these operators, the simplified BM3D-MRI iter-
ation can be succinctly summarized.

xi = Sm
(
So(xi−1)

)
= S(xi−1) (16)

In [30] it is shown that for a full-rank observation ma-
trix, such asFu, the So operator is firmly non-expansive
for α > 0. It is also proven that for a positive regular-
ization parameter λ, if the function ρ(x) = ‖Φx‖p is
convex and semi-continuous, then the operator Sm will
also be firmly non-expansive (Lemma 3.3, [30]). Hence,
the Sm operator (15b) will be firmly non-expansive for
p ≥ 1. When both operators So and Sm are firmly non-
expansive, the composite operator S = SmSo will be
β-averaged non-expansive for some β ∈ (0, 1) (Lemma
3.2, [30]). Theorem 2.1 in [2] (reiterated as Theorem 3.5
in [30]) states that a β-averaged non-expansive opera-
tor (such as S in (16)) will converge to a fixed point,
assuming there is one. Hence, we can state the final con-
vergence result for the simplified BM3D-MRI iteration
of (16) as follows.

Theorem 1 Let λ > 0, α > 0 and p ≥ 1. Assume that
the set of the fixed points of S is nonempty. Then, the
iteration in (16) will converge to a fixed point.

Theorem 1 suggests that under certain assumptions
the BM3D-MRI algorithm converges to a fixed point.

4.2 Implementation aspects for the BM3D-MRI
algorithm

The model fidelity steps 8-9 of Alg. 1 simply correspond
to BM3D shrinkage based denoising of the image x̂i. We
opted to realize this model fidelity update using the
highly optimized BM3D denoising code made available
online1 by the authors of [7]. Again, we only used the
3D transform shrinkage part of BM3D denoising which
realizes (13), avoiding further Wiener collaborative fil-
tering.

In our simulations we utilized the default param-
eter and transform selection as advised by the avail-
able BM3D denosing code. Hence, we used a separable
3D transform, with a 2D intrablock transform defined
over the blocks, and a 1D interblock transform defined
over the third dimension of the patch groups. The 2D
transform is chosen as a bi-orthogonal spline wavelet
transform, where the decomposing and reconstructing
wavelet functions have vanishing moments of order 1
and 5, respectively. The 1D transform over the third
group dimension is the Haar transform. The algorithm
is implemented with p = 0, hence the coefficient shrink-
age (14) is realized by hard thresholding with the pa-
rameter λj .

The regularization parameter λj which determines
the amount of shrinkage is reduced as iterations pro-
ceed. This varying regularization allows for adaptive
learning of the image model as the algorithm progresses.
A similar approach has been adopted in the determin-
istic annealing inspired image restoration algorithm of
[18] and [19]. In [19], it is suggested that a gradual
change in the regularization or “temperature” parame-
ter enables the algorithm to discover different structures
in the restored image. A similar approach of changing
the regularization parameter was also adopted in [13],
where an expectation maximization (EM) algorithm for
image inpainting and superresolution was developed. In
our simulations, we have found out that diminishing the
regularization parameter gives better results when com-
pared to a constant or increasing parameter sequence.
In our algorithm, the regularization parameter λj de-
termines the severity of thresholding in the model fi-
delity step. We can state that with decreasing λj , the

1 http://www.cs.tut.fi/foi/GCF-BM3D
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Fig. 1 Graphical outline of the BM3D-MRI algorithm.

algorithm identifies the transform domain coefficients
in the groupwise spectrum ω starting from the most
significant ones. The algorithm steadily adds in the less
significant coefficients as the regularization slackens. In
our simulations, we decreased the λj parameter uni-
formly on a logarithmic scale starting from an initial
maximum value and ending with a minimum value at
the final iteration. We determined that this logarith-
mic decrease gave better results when compared with a
linear change in the same parameter interval. For the
inner iteration we used varying number of iterations Ij ,
starting from 1 and ending with 10. A basic graphical
outline of the BM3D-MRI algorithm is given in Fig 1.

4.3 Complexity of the BM3D-MRI algorithm

The observation fidelity update as realized by (12) dic-
tates the application of forward and inverse Fourier
transforms. Hence, it necessitates O

(
N log(N)

)
opera-

tions. The frame operators in the model fidelity update
(13) are highly overcomplete with M � N . However,
due to the structured nature of these frames, the com-
plexity of this step comes out to be linear in the number
of pixels of the image, that is O(N) [11]. In our sim-
ulations we have observed that the execution time for
a BM3D-MRI iteration is dominated by the model fi-
delity update realized through BM3D denoising.

4.4 Comparison with existing algorithms

There are nonlocal, patch similarity based MRI recon-
struction algorithms proposed in the literature. LOST
algorithm of [1] and the more recent PANO algorithm
of [25] are two examples for these nonlocal approaches.
The LOST algorithm employs a sequence of shrink-
age iterations based on hard thresholding followed by
subsequent Wiener filtering iterations. In PANO algo-
rithm variable splitting approach is utilized together
with linear conjugate gradient iterations. Another sim-
ilar reconstruction algorithm is the Compressed Sensing
Image Reconstruction via Recursive Spatially Adaptive

Filtering (CS-RSAF) [12]. CS-RSAF is a recursive algo-
rithm, where for each iteration a denoising filter is ap-
plied after the injection of random noise. The denoising
filter realizes a nonparametric image model [12].

Both of the LOST [1] and PANO [25] algorithms im-
plicitly utilize the block matching structure of BM3D
as the image model. The PANO algorithm in partic-
ular provides very competitive MRI reconstruction re-
sults, which showcases the power of the nonlocal patch-
similarity based image model. Our algorithm is differ-
ent from all these approaches, as we introduce a dis-
tinct decoupling of the overall reconstruction problem.
In this decoupled BM3D-MRI algorithm, the BM3D
based model fidelity and the observation fidelity steps
are clearly separated. The model fidelity step explic-
itly simplifies to a basic BM3D denoising procedure.
Our algorithm allows a simple way to sequentially vary
the regularization parameter λ, which enables the algo-
rithm to converge to better reconstructions. The decou-
pling methodology in BM3D-MRI also allows a simple
convergence analysis.

5 Simulation Results

In the simulations four images from the literature are
used. Two of the images are a brain MR image and
a bust MR image which have been adopted from [17].
Another image is a T2-weighted brain image which has
also been utilized in [25], where the details for the ac-
quisition process are given. The fourth and final image
is a synthetic phantom image. All images are fixed to
be real and positive valued, and they are normalized
as to have a maximum pixel value of unity. The sam-
pling in the Fourier domain is realized using three dif-
ferent downsampling strategies, namely random, radial
and Cartesian sampling. The downsampling ratio κ/N
is varied over two values, 20% and 30%. Fig. 2 shows
the example random and radial undersampling masks
in the k-space and also the four original images. No
observation noise is considered in this setting.

We compare the MRI reconstruction performance of
the proposed BM3D-MRI algorithm with recent, spar-
sity based algorithms from the literature. The compared
methods include the shift-invariant discrete wavelet trans-
form based MR reconstruction (SIDWT) method and
the nonlocal patch similarity based PANO method from
[25]2. Another method we realized for comparison is
the Fast Composite Splitting Algorithm (FCSA) [17]3.
FCSA considers the cost function (4) which enforces
both wavelet domain and TV seminorm sparsity. FCSA

2 http://www.quxiaobo.org/index_publications.html
3 http://ranger.uta.edu/~huang/R_CSMRI.htm
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Table 1 Reconstruction SNR in dB for different sampling masks under 20% random sampling.

Image Brain Bust T2-weighted Brain Phantom
Mask Random Radial Cart. Random Radial Cart. Random Radial Cart. Random Radial Cart.

Zero-filled 8.67 10.55 9.41 8.00 8.65 7.69 7.98 9.91 9.73 13.42 18.80 18.51
SIDWT 14.86 14.96 10.32 18.07 16.54 9.56 19.73 18.29 11.68 21.56 26.02 20.32
FCSA 21.87 17.49 10.93 22.02 18.08 10.64 19.57 17.90 12.02 23.72 22.62 19.92
PANO 22.43 18.93 11.95 22.75 20.26 11.95 22.17 21.11 14.16 29.18 29.21 22.03

CS-RSAF 23.32 20.77 12.46 21.93 21.21 13.45 21.37 21.99 16.67 28.72 29.61 26.49
BM3D-MRI 25.55 21.42 12.25 24.47 22.44 12.67 23.64 23.70 15.21 29.74 29.18 24.34

Table 2 Reconstruction SNR in dB for different sampling masks under 30% random sampling.

Image Brain Bust T2-weighted Brain Phantom
Mask Random Radial Cart. Random Radial Cart. Random Radial Cart. Random Radial Cart.

Zero-filled 13.34 12.69 11.40 12.60 10.19 9.77 12.64 11.55 11.86 20.38 19.68 20.31
SIDWT 21.64 19.17 13.25 23.42 20.73 13.27 23.82 22.91 16.40 29.85 28.88 23.69
FCSA 26.95 22.77 14.03 25.81 22.71 13.74 23.35 22.73 15.83 27.65 25.41 22.33
PANO 27.02 23.94 15.63 26.60 24.29 15.85 26.26 25.54 19.60 31.20 30.94 23.97

CS-RSAF 27.06 25.28 16.97 25.68 24.60 18.04 24.83 25.40 21.91 30.86 30.71 30.34
BM3D-MRI 29.38 26.77 16.64 28.28 26.72 17.43 28.09 28.32 22.47 30.87 30.40 28.08

uses a composite algorithm with both operator and
variable splitting. We have also implemented the CS-
RSAF reconstruction algorithm from [12]. In [12], only
the simulation setup with radial samples in the Fourier
domain was considered, which simulates Radon pro-
jections. Here, we have adapted the publicly available
code4 for CS-RSAF algorithm to our simulation setting.
We also list the results for the zero-filling based recon-
struction as a benchmark. SNR (signal-to-noise ratio)
is the main measure for performance, and SNR in dB
is calculated as follows.

SNR = 10 log10
‖x‖22

‖x? − x‖22
(17)

The number of outer iterations has been set as J =

40 for FCSA and J = 20 for BM3D-MRI. FCSA em-
ploys regularization parameters β1 = 10−4 and β2 =

10−4 for (4). All the other parameters for SIDWT, PANO
and FCSA algorithms are set using the default values
from their publicly available codes. PANO has been re-
alized using the setting where the guide image is re-
constructed from the available data. For CS-RSAF the
parameters for exponential decay of excitation noise are
set as α = (1+1/300)2 and β = 1000. The total number
of iterations for CS-RSAF is chosen as 500. For BM3D-
MRI the initial and final regularization parameters are
chosen as λmax = 200/255 and λmin = 1/255, respec-
tively. The observation fidelity parameter for BM3D-

4 http://www.cs.tut.fi/~comsens/

Table 3 Time required for the algorithms.

Algorithm BM3D-MRI FCSA SIDWT PANO CS-RSAF

Time (sec) 13.9 0.74 50.8 98.9 167.4

MRI is α = 0. All these parameters are kept constant
over the whole range of different simulation settings.
Hence, we did not optimize the parameters for par-
ticular simulation settings. The simulations were exe-
cuted in Matlab on a computer with an Intel i7 CPU
at 1.8GHz, 8GB memory and 64-bit operating system.

Table 1 details the SNR performance of the four al-
gorithms for three different mask types with 20% down-
sampling. Table 2 details the corresponding results for
30% downsampling. The results for the zero-filling based
reconstruction are also listed. In both Tables 1 and 2,
the best SNR result in each column is denoted with bold
case. For both downsampling ratios the BM3D-MRI
outperforms the other four algorithms for most image
and mask type combinations. Table 3 presents the over-
all time required by each algorithm for the sample case
of brain image and 20% random downsampling. Our im-
plementation of BM3D-MRI is about one order slower
than the highly optimized realization of FCSA. How-
ever, BM3D-MRI is faster than the SIDWT, CS-RSAF
and PANO algorithms. Hence, BM3D-MRI presents a
good trade-off between runtime complexity and perfor-
mance.
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8 Ender M. Eksioglu

Fig. 2 Original test images and sampling mask examples.
First row: Brain and bust images [17]. Second row: T2-
weighted brain [25] and phantom images. Third row: Random
and radial sampling masks.

Figs. 3 through 6 present the error or difference im-
ages |x− x?| for the simulations, for which reconstruc-
tion SNR has been given in Table 1. In all of these
figures, first row includes the SIDWT (left) and FCSA
(right) results, whereas second row includes the PANO
(left) and BM3D-MRI (right) results. The error images
are visualized using an inverted colormap, where higher
error intensities correspond to darker pixels. The er-
ror images corroborate the SNR results, and the error
images for BM3D-MRI have in general a lighter col-
oring indicating less energy in the error signal when
compared to the other algorithms. Fig. 7 presents the
dependence of the reconstruction error on the α value
when all the other variables are fixed constant. Fig. 8 on
the other hand depicts the change of the reconstruction
error with the λmax parameter. The results are for 20%
random sampling. BM3D-MRI performance degrades
when these parameters are chosen non-optimally. For
different α values, choosing specific values for the itera-
tion numbers helps to improve final SNR performance.

 

 

0 0.05 0.1 0.15 0.2

 

 

0 0.05 0.1 0.15 0.2

Fig. 3 Magnitude of reconstruction error for brain image
under 20% random sampling. In each of the following images:
first row, zero-filling (left), SIDWT [25] (right); second row,
FCSA [17] (left), CS-RSAF [12] (right); third row, PANO
(left) [25], BM3D-MRI (right).

However, we have observed that the best reachable SNR
result still consistently deteriorates as we get further
from the optimal α value (in this case α = 0).

The SNR results and the presented error images in-
dicate that the BM3D-MRI algorithm has superior re-
construction performance when compared to the con-
sidered powerful compressed sensing based algorithms.
The nonlocal, adaptive BM3D image model success-
fully competes with the popular, wavelet and TV based
static image model from the literature. BM3D-MRI has
similar or better performance and is faster when com-
pared to the recent, state-of-the-art PANO and CS-
RSAF algorithms, which also utilize nonlocal similar-
ities in the reconstructed image.
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Fig. 4 Magnitude of reconstruction error for T2 weighted
brain image [25] under 20% random sampling.

6 Conclusions

We have presented a novel algorithm for MRI recon-
struction by using the nonlocal BM3D image model.
The developed BM3D-MRI algorithm comprises fully
decoupled observation fidelity and model fidelity steps.
This decoupling permits the adoption of a varying regu-
larization parameter strategy, which enhances the per-
formance. The finalized algorithm is relatively lucid and
easy to apprehend with only three parameters which do
not require fine tuning. The convergence of BM3D-MRI
to a fixed point is also proven under certain assump-
tions. The MRI reconstruction performance of BM3D-
MRI is compared with recent sparsity based algorithms
from the literature. BM3D-MRI consistently outper-
forms the competing algorithms under different sam-
pling masks and sampling ratios for a variety of images.
Hence, the nonlocal BM3D image model is shown to be
a valuable addition to the arsenal of possible image pri-
ors and regularization methods for MRI reconstruction
from heavily undersampled observations. The method
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Fig. 5 Magnitude of reconstruction error for bust image un-
der 20% random sampling.

proposed here might be readily extended to other in-
verse reconstruction problems in imaging by changing
the observation fidelity step depending on the acquisi-
tion process of the imaging problem under considera-
tion.
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