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Abstract

MR image reconstruction techniques based on deep learning have shown their

capacity for reducing MRI acquisition time and performance improvement

compared to analytical methods. Despite the many challenges in training

these rather large networks, novel methodologies have enhanced the capa-

bility for having clinical-grade MR image reconstruction in real-time. In

recent literature, novel developments have facilitated the utilization of deep

networks in various image processing inverse problems. In particular, it has

been reported multiple times that the performance of deep networks can be

improved by using short connections between layers. In this study, we intro-

duce a novel MRI reconstruction method that utilizes such short connections.

The dense connections are used inside densely connected residual blocks. In-

side these blocks, the feature maps are concatenated to the subsequent layers.

In this way, the extracted information is propagated until the last stage of the

block. We have evaluated this densely connected residual block’s efficiency
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in MRI reconstruction settings, by augmenting different types of effective

deep network models with these blocks in novel structures. The quantitative

and qualitative results indicate that this original introduction of the densely

connected blocks to the MR image reconstruction problem improves the re-

construction performance significantly.

Keywords: Magnetic resonance imaging, Image reconstruction, Deep

learning, DCR blocks

1. Introduction

Magnetic resonance imaging (MRI) is a widely used non-invasive medical

imaging technique [1]. However, despite its popularity and advantages, the

required data acquisition and image formation process is a rather lengthy op-

eration. During this reconstruction procedure, patients need to be motionless

in order to acquire high-quality images without artifacts. MRI data are ac-

quired in the k-space, and the data acquisition process necessitates a tradeoff

between reconstruction quality and reconstruction time. As a possible solu-

tion to this tradeoff, various MRI acceleration methods using compressed

sensing (CS) [2, 3] and deep learning (DL) have been introduced. These

pipelines have led to both faster and better reconstruction of MR images

from reduced (undersampled) k-space data acquired in the Fourier domain.

As another example, in [4] high-quality MR images were reconstructed from

initial low-resolution images in two steps. The MR image blurring effects

(originating from the initial super-resolution step) were lessened in a sparse

derivative prior process. In other studies, CS-MRI models were developed
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by employing the plug-and-play framework [5], where image denoising is di-

rectly utilized as a regularization prior [6, 7]. In these particular works, the

block matching 3D (BM3D) denoiser is employed to reconstruct MR images

by using a sparsity prior technique. However, the iterative CS-MRI methods

are rather slow, and they also suffer from high computational costs because

of the iterative optimization solutions. Hence, deep learning-based solutions

for MRI reconstruction have experienced a great surge in the recent literature

[8, 9, 10].

Lately, deep learning-based methods have received attention as a means

of accelerating MRI reconstruction. In this regard, some novel deep learning

techniques from image processing and computer vision have been applied

to this problem. One important example of these successful deep learning

methods utilizes domain-transform manifold learning [11]. In this work, au-

tomated transform by manifold approximation (AUTOMAP) [11] is adapted

to the MRI reconstruction problem using data-driven learning. In another

paper, a variational reconstruction network is developed, and it is applied in

particular to knee image reconstruction [12]. Among various deep learning

models, the U-Net algorithm has gained noticeable success in diverse fields

of image processing. Initially, the U-Net [13] had been suggested as an im-

age segmentation framework. However, it has found its way in other image

processing inverse problems, including MR image reconstruction. The su-

periority of the U-Net is attributed to its capability in extracting features

with different scales using upsampling (decoder) and downsampling (encoder)

stages.

In [14] an encoder-decoder model has been provided for compressed sens-
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ing MR image reconstruction. The model has been evaluated using two

different datasets. In another study, a wide multimodal U-Net [15] has been

proposed for accelerating MRI reconstruction by working on the k-space data

in the feed-forward path of encoding. Better perceptual quality has been

gained by using this method. In [16], a deep residual U-Net is trained in the

k-space domain to reduce the aliasing artifacts. In [17], Hyun et al. pro-

vided an improved U-Net based structure by applying a correction step in

the k-space.

An increase in the number of convolutional layers and consequent deep-

ening of networks leads to performance improvement. However, due to the

concurrent amplification of the number of parameters, the network becomes

more susceptible to gradient loss, and the training procedure becomes prone

to failure. Vanishing gradients during the training step hampers the param-

eter update in the backpropagation procedure [18]. The quest for deeper

but still trainable networks motivated researchers to develop designs with an

increased number of connections through the use of unrolled solutions, e.g.

the cascade network of [19] for MRI reconstruction. As another approach

for the solution of the vanishing gradients problem, in [20] dense connections

through densely connected blocks were introduced in the DenseNet setting.

This block has found its way to other image processing problems. A hierar-

chical densely connected network was developed for image denoising in [21].

Converting the model to a hierarchical framework mitigates the memory con-

sumption and alleviates the computational burden. In [22], DenseNet and

ResNet were combined leading to the Residual Dense Network and densely

connected residual blocks (DCRs). In another recent work, DenseNets have
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been used for segmentation problems using the encoder-decoder network [23].

In this work, the convolutional neural network in both the downsampling

and upsampling stage has been replaced with DenseNets [23]. In yet another

study, the dense connection was tested for a super-resolution problem in MRI

[24]. In [25] on the other hand, convolutional layers were reused through a

super-resolution CNN with dense skip connection.

Encouraged by these successful applications of dense connections, here

we are leveraging the use of DCR blocks to the MRI reconstruction problem

by using them inside residual convolutional neural networks (CNNs) and

encoder-decoder type U-Nets. To the best of our knowledge, this forms

the first use of DCR blocks in MR image reconstruction applications. The

application of DCR blocks enables us to make the network deeper and to

increase the number of model parameters without the consequent training

difficulties and vanishing gradient problems. The extracted feature maps

in each step are carried to the following convolutional layers by successive

concatenation operations. The qualitative and quantitative results point out

that the reconstruction performance of the DCR infused deep networks are

considerably enhanced when compared to their original counterparts.

The rest of this paper is arranged as follows. In the second section, we

detail the novel MRI reconstruction framework utilizing the densely con-

nected DCR blocks. Afterward, we review the particular network structures

introduced through the developed DCR framework. In the next step, the

utilized dataset and the experimental setup details are provided. The third

section reports the quantitative and qualitative results of reconstructed im-

ages, including the results for the novel structures and also structured from
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Figure 1: Densely Connected Residual CNN with L layers.

the literature. Moreover, in this section we highlighted the statistical sig-

nificance and difference of proposed models regarding the state-of-the-art

models in MR image reconstruction. Finally in the last part, the conclusions

are stated.

2. Method

2.1. Densely connected residual network in MR image reconstruction

In our proposed framework (as detailed in Figs.1 and 2), a single channel

zero-filling (ZF) image is fed as input into a convolutional neural network with

L layers. The network includes non-linear convolutional layers indicated by

the operator FL (·). Here, L is the index of the particular convolutional

layer.

FL (xi) = λ(Wi ∗ xi + bi) (1)

In the above equation, λ is the rectified linear unit (ReLU) activation

function [26]. Wi indicates the ith layer’s weights, and bi denotes the bias.
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Figure 2: Densely Connected Residual U-Net.

Residual connections [27] add input and output and bypass the mapping

function FL (.) with a skip connection.

xL = FL (xL−1) + xL−1 (2)

The dense connections [20] as shown in Fig. 3 concatenate successive con-

volutional layers’ outputs. Hence, the L th layer’s input will include all the

feature maps created by the previous convolutional layers.

xL = FL ([x0, x1, x2, ..., xL−1]) (3)

The growth rate on the other hand can be defined as follows.

K = k0 + k × (L − 1) (4)
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Figure 3: Densely Connected Residual block.

Here, K is the number of input feature maps to the L th layer. k is the

number of feature maps created by FL , and k0 indicates the input channel

size.

In MR image data acquisition model, data is undersampled using the

following equation.

y = FΩxorig (5)

Here, y is the undersampled data (observed data) in the k-domain. The

FΩ operator denotes the undersampled Fourier transform function, and xorig

indicates the ground truth image.

2.2. Architecture

In this paper, we have implemented deep learning models for MR image

reconstruction by converting two benchmark networks of standard CNN and

U-Net into densely connected residual networks. In all of the implementa-
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tions in this paper, we have normalized ZF images immediately after com-

puting the absolute value of the complex-valued image tensor. To minimize

the learning error, for CNN-based structures we applied the Adam optimizer

with a weight decay of 10−7 and a learning rate of 10−4. In this structure,

the β values are set as 0.9 and 0.999. On the other hand, for the U-Net

pipeline, the gradient-based optimization technique RMSprop was leveraged

with zero weight decay and a 10−3 learning rate. In both CNN and U-Net

based frameworks we avoided dropout in training, hence we set dropout as

zero by default.

2.2.1. CNN based networks

For the standard CNN, we opted for a structure similar to the one that has

been used in [19]. We dedicated 5 convolutional layers followed by the ReLU

activation functions. Through this configuration, ZF images go through the

initial layer with input and output channel sizes 1, and 64 respectively. The

next three subsequent layers individually generate 64 feature-map. The final

reconstruction layer convolves 64 feature-map into a single channel output.

All layers have the same default values for the filter parameters, namely a

kernel-size of 3, a stride of 1 and padding size of 1. Then, we modified

standard CNN into a densely connected residual CNN by adding DCR Blocks

as shown in Fig.1. In this new structure, the initial and final reconstruction

layers are the same as the conventional setup without any change. The

three central convolutional layers are replaced by 3, 8, and 10 DCR blocks.

The DCR block as shown in Fig. 3 contains three convolutional layers that

activate by the ReLU function. Inside DCR block, input and generated

feature maps of all layers couple with each other and go through the final
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convolutional layer which generates 64 feature maps. In the last step, input

and output feature maps are added together as a residual output [27].

2.2.2. U-Net based networks

In this paper, we have compared two U-Nets with different structures with

the proposed DCR U-Net regarding their MR image reconstruction results.

Initially, we benefited from the U-Net model that has been introduced in the

fastMRI collaborative challenge held jointly by the Facebook AI Research

(FAIR) Team and NYU Langone Health [28]. This U-Net framework con-

sists of contracting (or encoding) and expanding (or decoding) parts. Each

step of the encoding path contains 2 blocks of 3×3 convolutional layers which

downsample the image to half size using the average-pooling method. The

decoding part deconvolves and upsamples the image through a 2D transpose

convolutional layer. In the decoding path, the input to the deconvolutional

blocks couples with feature-map from the same downsampling step. This

action prevents a serious reduction in the amount of data. The final step

of this U-Net pipeline end with two 1 × 1 convolutional layers. The final

convolutional layer generates the reconstruction image from 16 feature maps

after mapping residual learning [27] by adding learned information in output

to the input. Then we modified this structure to the one which has been

used in [21] as a DensNet for image denoising problem (with fewer parame-

ters to train). In this regard, we added an initial 1 × 1 convolutional layer

that creates 32 feature-maps from one channel ZF image. The activation

functions were changed to Parametric Rectified Linear Unit (PReLU). After

final expansion, the final layer reconstructs the final image using only one

1× 1 convolutional layer with input and output channel sizes of 64 and one,
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respectively. Contrary to the FAIR U-Net, the encoder path reduces the size

of the image up to 40 × 40 (not 20 × 20). In this U-Net framework, the

downsampling is performed by the max-pooling operation. While the max-

pooling function half the size of feature maps by stride 2, the convolutional

layer doubles the number of feature maps to hinder feature loss. The up-

sampling path double the size of slices using the pixel-shuffle function with

upscaling factor of two. So, as the result of using the sub-pixel interpolation

method for the upsampling path, the number of feature maps is alleviated

to one quarter. Thereafter, this U-Net pipeline was modified to densely con-

nected residual U-Net as shown in Fig. 2. In this proposed structure, the

convolutional blocks were replaced by the DCR block. Here, the DCR block

again possesses three convolutional layers but these layers are followed by

PReLU in contrary to densely connected residual CNN. We set the growth

rate of our model to half size of the feature maps.

2.3. Simulation Setting

2.3.1. Dataset

Throughout this study, all models were trained using the fastMRI single-

coil dataset [28]. The fastMRI dataset provides a complete and rather recent

dataset for MR image reconstruction. This dataset includes both single and

multi-coil images. The fastMRI dataset are saved in DICOM, fully sampled

k-space data, and reconstructed image formats. There are a total of 1372

single-coil volumes, and the details of these are provided in Table 1.

Each volume contains both k-space domain information and the real im-

age. In this study, the MR data acquisition process was modeled by under-

sampling the fully sampled k-space data using the random mask function.

11



Table 1: fastMRI single-coil dataset configuration [28].

Subset name Volumes Slices

Training 973 34742

Validation 199 7135

Test 108 3903

Challenge 92 3305

Then, the training was initiated from created real-valued ZF images. The un-

dersampling is carried out using 8-fold and 4-fold acceleration factors. The

target image slices are applied to the simulation settings to calculate the

pixel-wise L1 loss between the ground truth and realizations results.

2.3.2. Experimental setup

In this study, MR image reconstruction models were trained using Python

3.6 alongside Pytorch machine-learning package with version 1.4.0. We uti-

lized two GeForce RTX 2080 Ti GPUs with a total memory of 22GB. It was

experimentally figured out that 20 epochs would be sufficient for training

each of the proposed models. For the baseline realizations (CNN and U-Net)

the batch size was set to 16. However, the batch size was reduced as the

networks get deeper to be able to fit the data into the available GPUs.
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3. Results

3.1. Quantitative results

In this paper, we have performed realization for the two novel DCR based

networks in addition to various state-of-the-art MR image reconstruction

methodologies from the literature. To evaluate the performance of the net-

works, Normalized Mean Squared Error (NMSE) [29], Structural Similarity

Index Measure (SSIM) [30], and Peak Signal to Noise Ratio (PSNR) [31] in-

dices have been used. The results are reported in Tables 2 and 3, where the

methods are ordered with respect to increasing performance. These two ta-

bles summarize the simulation results for all the trained networks for both 4-

fold and 8-fold acceleration factors. In the preprocessing step, fully-sampled

k-space data is undersampled by the random subsampling mask. Afterwards,

the data is transformed to the image domain by applying the 2D Inverse Fast

Fourier transform (2D-IFFT).

As illustrated in Tables 2 and 3, the addition of DCR blocks leads to

promising results and improved MR image reconstruction performance for

both U-Net [28] and standard CNN. Appending 10 DCR blocks to the stan-

dard CNN improves reconstruction PSNR about 1.25 dB. It can be noticed

that as CNN gets deeper by the addition of more DCR blocks, its results

improve in all of the performance metrics. The densely connected residual

U-Net includes a total of 14 DCR blocks. U-Net with DCR is faster than

the DCR-CNN in the testing phase, despite its larger number of network pa-

rameters. DCR-CNN performs its computations in all convolutional layers

on feature maps of a constant pixel size (320 × 320) without downsampling

them. Hence, this leads to slightly reduced reconstruction speed for the
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DCR-CNN when compared with the DCR based U-Net.

Table 2: Simulation results for fastMRI dataset for 4-fold acceleration factor.
Acceleration factor 4-fold

#Parameter Time (s)
Network Loss NMSE (x10-3) SSIM(x10-3) PSNR

ZF - 41.679 711.59 29.876 - -

CS-MRI (TV based) [32, 28] - 36.719±43.5 712.2±224.3 30.846±5.78 - 138.3

CNN [19, 33] 0.308 34. 259±17.43 755. 65±78.76 30.880±2.49 111,744 0.095

k-space DL [9] 0.257 32.060±18.92 763.45±79.35 31.273±2.66 7,756,418 0.173

CNN with 3 DCR blocks 0.298 31.344±17.62 765.97±82.16 31.402 ±2.69 360,960 0.28

KIKI-net [34, 35] 0.291 31.297±17.33 766.52±81.23 31.419±2.78 1,168,128 0.78

CNN with 8 DCR blocks 0.287 28.426±18.09 778.68±84.93 32.038±2.98 960,640 0.73

CNN with 10 DCR blocks 0.286 28.042±18.15 780.73±85.04 32.133±3.03 1,200,512 0.92

Deep Cascade CNN [19, 33] 0.280 26.520±18.61 790.00±85.15 32.412±3.14 111,744 0.417

fastMRI U-Net [28, 35] 0.281 26.821±18.18 785.93±86.16 32.419±3.171 7,756,097 0.154

Modified U-Net 0.282 26.637±18.25 784.77±85.28 32.466±3.172 6,618,597 0.45

U-Net with DCR 0.279 25.961±18.20 790.14±86.15 32.651±3.271 10,516,083 0.79

Table 3: Simulation results for fastMRI dataset for 8-fold acceleration factor.
Acceleration 8-fold

#Parameter Time (s)
Network Loss NMSE (x10-3) SSIM(x10-3) PSNR

ZF - 77.751 603.37 26.921 - -

CS-MRI (TV based) [32, 28] - 71.921±44.66 608.9±242.2 27.351±4.133 - 134.65

CNN [19, 33] 0.451 69.277±19.88 637.76±100.66 27.462±2.01 111,744 0.096

CNN with 3 DCR blocks 0.433 62.360±19.59 650.92±104.83 27.953±2.08 360,960 0.28

KIKI-net [34, 35] 0.431 62.103±19.41 644.20±103.54 28.020±2.11 1,168,128 0.78

k-space DL [9] 0.437 58.376±21.89 651.80±103.98 28.292±2.07 7,756,418 0.174

CNN with 8 DCR blocks 0.406 52.318±21.54 670.19±112.73 28.857±2.22 960,640 0.73

CNN with 10 DCR blocks 0.402 50.766±21.94 672.01±115.39 29.026±2.28 1,200,512 0.92

Deep Cascade CNN [19, 33] 0.417 54.827±23.25 654.92±113.77 28.639±2.24 111,744 0.418

fastMRI U-Net [28, 35] 0.380 43.275±23.47 692.96±118.22 29.952±2.55 7,756,097 0.154

Modified U-Net 0.381 43.234±23.36 691.95±117.12 29.950±2.55 6,618,597 0.506

U-Net with DCR 0.376 41.605±23.67 699.77±117.36 30.198±6.51 10,516,083 0.8

The testing error loss curves are presented in Figs. 4(a) and 4(b). In

general, this curve gives an idea of how well the model is generalizing through
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the validation/testing steps. As we can see, the loss value decreases with the

increasing number of epochs and converges to a stable point. Moreover, the

application of DCR blocks significantly reduced the resulting loss amplitude,

when compared to the structures which lack the DCR blocks.

(a)

(b)

Figure 4: Testing phase loss curves depending on the epochs; (a) undersampled data with

4-fold acceleration factor (b) undersampled data with an 8-fold acceleration factor.
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In Fig. 5, run time versus PSNR values are given for both the developed

networks and also the networks used for comparison. The given time values

indicate the time needed for reconstructing 32 slices in the testing phase.

It can be concluded that all these frameworks with noticeable reconstruc-

tion results can get realized in a real-time setting. It can also be seen that

the results given for the 4-fold and 8-fold settings complement each other

naturally.

Figure 5: The run time vs. PSNR value of different models.

The acquired quantitative results have been evaluated using statistical

assessment tests. To do so, one-way analysis of variance (ANOVA) tests and

paired t-tests were applied to verify statistically significant differences among

developed networks and their related assessment metrics. These two tests can

prove that the acquired reconstruction results are attributed to a specific

cause and they are not provided by chance or randomly. In this evaluation,

threshold p-values are set to α=0.05. For the proposed pipelines, the paired
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t-tests ended up with the overwhelming suggestion of 95% confidence (p-

values ≤ 0.05). The ANOVA test results reported more than 99% confidence

by indicating p-values ≤ 0.01 for all the proposed methods, in all different

settings including different assessment metrics and acceleration factors.

In addition to the benchmark fastMRI dataset, we have tested our trained

models using yet another comparatively common dataset, namely the IXI

dataset (https://brain-development.org/ixi-dataset/) [14, 36]. This dataset

contains around 615 lateral brain MR image volumes. Each volume includes

150 real-valued slices of the size 256×256. The results for the IXI dataset

are summarized in Tables 4 and 5. These results indicate that, the proposed

novel models can reconstruct MR images from different parts of the body

without the need for retraining.

Table 4: Simulation results for IXI dataset for 4-fold acceleration factor.
Acceleration factor 4-fold

#Parameter Time (s)
Network Loss NMSE (x10-3) SSIM(x10-3) PSNR

ZF - 50.427 727.39 28.078 - -

CNN [19, 33] 0.189 39.281±4.79 751.86±37.03 29.164±1.64 111,744 0.220

k-space DL [9] 0.122 38.011±6.38 758.72±39.62 29.454±1.73 7,756,418 0.485

CNN with 3 DCR blocks 0.181 35.935±4.43 762.43±36.00 29.554±1.66 360,960 0.393

KIKI-net [34, 35] 0.174 36.440±5.68 777.40±34.07 29.513±1.70 1,168,128 0.504

CNN with 8 DCR blocks 0.166 31.100±3.58 791.20±29.13 30.176±1.62 960,640 0.416

CNN with 10 DCR blocks 0.165 30.474±3.48 792.65±29.69 30.263±1.62 1,200,512 0.546

Deep Cascade CNN [19, 33] 0.164 29.814±4.35 801.91±25.82 30.365±1.73 111,744 0.325

fastMRI U-Net[28, 35] 0.162 29.232±3.17 802.21±33.38 30.445±1.61 7,756,097 0.15

Modified U-Net 0.168 30.056±3.17 801.79±39.44 30.320±1.59 6,618,597 0.502

U-Net with DCR 0.164 28.287±3.09 806.03±38.27 30.586±1.59 10,516,083 0.505
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Table 5: Simulation results for IXI dataset for 8-fold acceleration factor.
Acceleration factor 8-fold

#Parameter Time (s)
Network Loss NMSE (x10-3) SSIM(x10-3) PSNR

ZF - 97.763 632.04 25.211 - -

CNN [19, 33] 0.296 90.867±13.20 636.31±50.29 25.523±1.80 111,744 0.221

CNN with 3 DCR blocks 0.283 85.317±11.49 654.08±48.94 25.791±1.76 360,960 0.393

k-space DL [9] 0.295 88.09±14.28 640.11±52.95 25.601±1.81 7,756,418 0.481

KIKI-net [34, 35] 0.28 83.825±10.66 663.46±54.12 25.868±1.72 1,168,128 0.504

CNN with 8 DCR blocks 0.271 82.235±10.17 680.08±43.45 25.943±1.67 960,640 0.477

CNN with 10 DCR blocks 0.266 78.691±10.03 680.87±43.31 26.136±1.67 1,200,512 0.55

Deep Cascade CNN [19, 33] 0.262 73.726±11.33 689.13±42.32 26.335±1.74 111,744 0.327

fastMRI U-Net [28, 35] 0.263 77.472±10.05 684.72±47.74 26.209±1.69 7,756,097 0.15

Modified U-Net 0.273 76.996±10.09 684.79±51.37 26.237±1.70 6,618,597 0.502

U-Net with DCR 0.261 71.911±8.64 696.49±46.59 26.529±1.63 10,516,083 0.505

3.2. Qualitative results

In this study, also a fair qualitative comparison was performed between

reconstructed images by 2 state-of-the-art deep learning models and their

densely connected residual form. Figs. 6 and 7 display the real image, ZF

image, Region of Interest (ROI) and error map for images reconstructed by

these frameworks. Fig. 6 provides the resulting images for undersampled

data with 4-fold acceleration factor, whereas Fig. 7 is for undersampled data

with 8-fold acceleration factor. As we expected from Tables 2 and 3, these

figures show that the densely connected residual models restore more detail

and pattern whereas the conventional methods reconstructed blurred images.
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Ground truth image 4-fold zero-filling image

k-space DL KIKI-net

CNN with 8 DCR blocks CNN with 10 DCR blocks

Deep Cascade CNN fastMRI U-Net

Modified U-Net U-Net with DCR block

Figure 6: Developed model’s reconstruction results, ROI, and error map for 4-fold under-

sampled data.
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Ground truth image 8-fold zero-filling image

k-space DL KIKI-net

CNN with 8 DCR blocks CNN with 10 DCR blocks

Deep Cascade CNN fastMRI U-Net

Modified U-Net U-Net with DCR block

Figure 7: Developed model’s reconstruction results, ROI, and error map for 8-fold under-

sampled data.
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As discussed in the introduction section of this paper, the major goal

of MR image reconstruction based on deep learning is to speed up MR im-

age reconstruction. To do so, we need to decrease signal acquisition time

without significantly reducing image quality. In this regard, more aggres-

sive undersampling with larger acceleration factors are also performed. Deep

learning-based advanced methodologies are very effective in fast and high-

quality image reconstruction from this reduced acquired data.

In this paper, we have trained the deep models by using ZF images as

inputs. For the undersampling of k-space data 4-fold and 8-fold acceleration

factors have been used. The below table summarizes the PSNR improvements

of the reconstructed images when compared to the initial ZF estimate for

both 4-fold and 8-fold undersampling cases.

Table 6: Reconstructed image’s PSNR improvement compared to the ZF image.

Network
Acceleration factor

4-fold 8-fold

PSNR difference ( CNN - ZF) 1.004 0.541

PSNR difference (CNN with 10 DCR blocks - ZF) 2.257 2.105

PSNR difference (U-Net with DCR bloks – ZF) 2.775 3.277

The results in Table 6 indicate that the proposed networks are capable to

reconstruct high-quality images even with the more aggressive undersampling

rates. For both 4-fold and 8-fold undersampling, the proposed frameworks

result in significantly better images compared to the ZF estimates.
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4. Conclusion

Recently, dense connections have shown their efficiency in different image

processing problems for preventing the vanishing gradient problem in deep

learning-based solutions. Motivated by this successful application of dense

connections in a variety of problems, here we proposed an MR image re-

construction pipeline that includes a residual densely connected structure.

The quantitative and qualitative results are summarized for images recon-

structed from undersampled data with 4-fold and 8-fold acceleration factors.

By coupling the DCR blocks into two state-of-the-art deep learning frame-

works, promising simulation results have been obtained. The MR image

reconstruction results indicate improved performance when compared to the

original structures lacking dense connections. The results again imply that

DCR blocks provide a possible solution for further deepening of MR recon-

struction network structures, without the information loss problem which

is usually associated with increased depth. The results showcase that in-

creasing the number of DCR blocks, translates into improved reconstruction

performance. These results are observed in both cases when CNN-based

and U-Net based networks are augmented with DCR blocks. The PSNR re-

sults for densely connected CNN structure with 10 DCR blocks are improved

significantly in comparison to the plain CNN, where the improvement lies

around 1.25 - 1.56 dB. Moreover, statistical evaluation tests were realized,

and the statistical significance of the improved results was verified. In con-

clusion, the introduced novel use of dense connections in the form of DCR

blocks has shown great potential for possible use in MRI reconstruction deep

models.
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