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ABSTRACT

Sparse representations over redundant dictionaries offer an efficient
paradigm for signal representation. Recently block-sparsity has been
put forward as a prior condition for some sparse representation ap-
plications, where the coefficients of the sparse representation occur
in blocks rather than being distributed randomly over the sparse vec-
tor. Block-sparse representation algorithms, which are extensions
of the regular sparse representation algorithms have been developed.
However, these algorithms work under the assumption that both the
dictionary and its corresponding block structure are known. In this
paper, we consider the problem of recovering the optimally block-
sparsifying block structure for a given data set and dictionary pair.
We propose a block structure identification framework employing a
clustering step which can be realized using the standard clustering
schemes from the literature. The block structure identification algo-
rithm works efficiently, and for synthetically generated block-sparse
data the underlying block structure is retrieved even for comparably
short data records.

Index Terms— Block-sparsity, dictionary block structure, clus-
tering.

1. INTRODUCTION

Utilizing an overcomplete dictionary to sparsely represent signals
leads to efficient representations. The literature is rife with methods
developed for sparse decomposition of signals using an overcom-
plete dictionary formed as a redundant set of basis vectors or atoms.
The representation of the signals under consideration in terms of the
dictionary atoms might exhibit additional properties other than spar-
sity. The nonzero coefficients might occur in blocks, in which case
the signals will be referred to as block-sparse signals. Block-sparse
representations for signals find usage in certain applications, such as
multi-band signal reconstruction [1] or sampling of signals from a
union of subspaces [2].

Sparse signal representation methods have been extended to
block-sparse domain successfully. Attempts at block-sparse repre-
sentation algorithms include the greedy Block Orthogonal Matching
Pursuit (BOMP) [3], combined ℓ2/ℓ1 optimization [4, 5] and exten-
sions of iterative sparse coding algorithms to model-based sparse
representation [6]. In block-sparse signal representation problem, a
dictionary and the corresponding block structure are supplied. The
aim is to find the most block-sparse decomposition of the signal
under consideration for the given dictionary and block structure pair.

Data driven dictionary design suitable for joint sparse represen-
tation of data sets, that is dictionary learning has also garnered con-
siderable attention [7]. There have been some recent attempts at dic-

tionary learning for block-sparse signals [8]. In block-sparse dictio-
nary design the final goal is to find a dictionary and the correspond-
ing block structure suitable for joint block-sparse representation of
the observed data set. A common theme underlying both block-
sparse signal representation and block-sparse dictionary design is
the need for the dictionary block structure which defines how the
atoms of the dictionary are grouped together into blocks. The block-
sparse signal representation algorithms assume the block structure
to be given. A block-sparse dictionary design algorithm on the other
hand should generate the block structure together with the evolving
dictionary design. Hence, one important step in block-sparse signal
processing seems to be the recovery of the underlying block structure
for a given block-sparsifying dictionary and data set pair.

In this paper we propose a method for capturing the block struc-
ture of the atoms included in a block-sparsifying dictionary. The
proposed method utilizes clustering at a certain stage, and we also
develop a hierarchical agglomerative clustering algorithm suitable
for use at this clustering stage. An algorithm for block structure re-
covery called as Sparse Agglomerative Clustering (SAC) has been
proposed in [8]. The clustering section of SAC comes out to be a
special case of the clustering framework proposed in this paper. The
clustering framework developed in this paper allows the use of dif-
ferent proximity measures between blocks, and it allows the use of
standard clustering algorithms from literature.

2. BLOCK-SPARSE SIGNAL REPRESENTATION

We consider the block-sparse representation of observed signals over
a given dictionary and corresponding block structure. The observed
signal at each time point n is of dimension M , xn ∈ RM for
n = 1, . . . , N . The dictionary consists of a total of K atoms. Hence,
when the atoms di ∈ RM are ordered as columns, the dictionary is
given as a matrix D ∈ RM×K . The block structure defines how
the atoms of the dictionary are sorted in groups or blocks. The dis-
tribution of atoms to blocks can be given by an assignment vector
Γ ∈ RK [8]. Assuming there are a total of B blocks, Γ(i) ∈
{1, 2, . . . B} denotes which block the atom di belongs to. Each
atom is assumed to belong only to a single block, hence block over-
laps are not allowed. The set of the indices of atoms included in
the jth block of block structure Γ will be denoted by ΩΓ

j , where
ΩΓ

j = {i|Γ(i) = j}. The number of atoms included in block j or
the size of block j will be denoted as the cardinality |ΩΓ

j |.
The representation of a signal vector x over dictionary D is a

vector w ∈ RK such that x = Dw. The weight terms corre-
sponding to only block j defined by block structure Γ is given as
the subvector wΓ

j = {w(i)|i ∈ ΩΓ
j }. The block-sparsity of a

weight vector w over a block structure defined by Γ is the num-



ber of blocks in which w has non-zero components. Hence, the
block-sparsity value of w is equal to the pseudo mixed norm ∥w∥Γ2,0
which counts the number of nonzero blocks in w, where ∥w∥Γ2,0 =∑B

j=1 I
(
∥wΓ

j ∥2
)
. Here, I(·) is an indicator function, which out-

puts zero if the argument is zero and one if the argument is non-zero.
We will denote the block-sparsity over Γ as ∥w∥Γ = ∥w∥Γ2,0 to
make the notation simpler. A vector w is said to be block k-sparse
over Γ, if its non-zero components occur in only k of the total B
blocks, hence if ∥w∥Γ = ∥w∥Γ2,0 = k. Using the developed nota-
tion, a noise-free formulation for the block-sparse signal represen-
tation problem of signal vector x over a dictionary D and block
structure Γ can be given as follows.

ŵ = argmin
w
∥w∥Γ s.t. x = Dw (1)

For the solution of (1), [3] presents a generalization of the greedy Or-
thogonal Matching Pursuit (OMP) sparse representation algorithm
to the block-sparse representation. [4] and [5] both present convex
relaxation on the block-sparsity argument à la the Basis Pursuit ap-
proach, which utilizes convex relaxation on the ℓ0 norm in the reg-
ular sparse representation problem. The block-sparsity ∥w∥Γ =
∥w∥Γ2,0 gets replaced with a mixed ℓ2/ℓ1 norm [4].

3. BLOCK-SPARSE REPRESENTATION WITH BLOCK
STRUCTURE IDENTIFICATION

The block-sparse representation algorithms [3, 4] necessitate the
block structure to be given. In this paper we consider the problem of
identifying the optimum block-sparsifying block structure and the
corresponding block-sparse representation for a given data set and
dictionary. This problem is encountered when in block-sparse signal
representation the dictionary is known, but the block structure is
not available. We define the block-sparse representation with block
structure identification problem as follows.

{Γ̂,Ŵ} = argmin
Γ,W

N∑
n=1

∥wn∥Γ s.t. X = DW and |ΩΓ
j | ≤ s, j ∈ Γ

(2)
Here, X = {xn}Nn=1 ∈ RM×N and W = {wn}Nn=1 ∈ RK×N

are the time concatenated data matrix and the corresponding time
concatenated representation matrix, respectively. The argument to
minimize is the sum of the block-sparsity values for all wn. The
|ΩΓ

j | ≤ s condition forces the maximum number of atoms included
in each block to be s. Obviously, if we do not put any constraint
on Γ, the most block-sparsifying block structure is Γ̂ = [1 1 . . . 1],
which summons all the atoms in a single block. There should be
some constraint on the desired block structure. This constraint might
for example be in the form of a required minimum number of blocks
or a required maximal block size. We assume that there is a size
constraint on the blocks rather than some prior knowledge about the
number of groups. Hence, we require a final block structure Γ̂ with
maximal block size s.

This problem is studied as a segment of block-sparse dictionary
optimization in [8]. We propose an iterative refinement technique
similar to the method proposed in [8], however the clustering sec-
tion will be different then the method proposed in [8]. We propose
a two-step approach for the solution of (2). The approach we pro-
pose for the solution of (2) is presented in Alg.1. The first step in
Alg.1 initializes the sparse representation as the solution to the regu-
lar sparse representation problem. This step can be realized by OMP
or BOMP with trivial block structure Γ = [1 2 . . .K]. The third

Algorithm 1 Block-Sparse Representation with Block Structure
Identification

Input: D, X = {xn}Nn=1, and some a priori information on the
block structure. We assume maximal block size s is required.

Goal: {Γ̂,Ŵ} = argmin
Γ,W

∑N
n=1∥wn∥Γ s.t. X =

DW and |ΩΓ
j | ≤ s, j ∈ Γ.

1: Initialize W as the solution of the regular sparse representation
problem: W(0) = argmin

W

∑N
n=1∥wn∥0 s.t. X = DW

2: Find optimally block-sparsifying Γ for constant W(0):

Γ̂ = argmin
Γ

N∑
n=1

∥w(0)
n ∥Γ s.t. |ΩΓ

j | ≤ s, j ∈ Γ (3)

3: Find optimally block-sparse W for constant Γ̂:

Ŵ = argmin
W

N∑
n=1

∥wn∥Γ̂ s.t. X = DW (4)

step in Alg.1 solving (4) is simply the block-sparse representation
problem (1) formulated for all time points jointly. This step can be
handled by a block-sparse representation solver such as BOMP.

4. CLUSTERING BASED FRAMEWORK FOR BLOCK
STRUCTURE IDENTIFICATION

The second step (3) of Alg.1 is where the optimally block-sparsifying
block structure for a given representation matrix W should be
found. This block structure identification step necessitates the clus-
tering of atoms together into multiple blocks. We propose a general
framework for the block structure identification, which can utilize
different clustering algorithms in its clustering step. The clustering
section of the SAC algorithm proposed in [8] appears to be a special
case of this general framework. In the clustering step we allow the
use of different metrics which measure similarity between clusters.
The use of different metrics helps to achieve better performance in
finding the optimally block-sparsifying block structure.

The algorithm we propose for block structure identification is as
follows. The row j of W, wj ∈ RN holds all the information for
the usage of the jth atom by the sparse representations {wn}Nn=1.
Atoms which belong to the same block should have nonzero values
occurring concurrently in the same positions. Hence, if two atoms
j1 and j2 belong to the same block, the non-zero values of wj1 and
wj2 should occur mostly at the same positions. Let us define what
we call as the sparse representation indicator matrix, IW = I

{
W

}
.

I{·} is an indicator function which acts elementwise on the argu-
ment matrix. Hence, IW ∈ RK×N is equal to zero at the positions
where W is zero and equal to one elsewhere. For the block clus-
tering problem, the usable information for each atom j is contained
in the jth row of IW , ij = I

{
wj

}
. The identification of the block

structure for the atoms can be simplified to clustering the rows of IW
into groups. The general framework we propose for the solution of
the block structure identification problem (3) is described in Alg.2.

Block structure identification algorithm as described by Alg.2
necessitates clustering of the K rows of the sparse representation
indicator matrix IW into groups. The indicator matrix rows ij are



Algorithm 2 Block Structure Identification

Input: W = {wn}Nn=1, and some a priori information on the
block structure such as maximal block size s or total number of
blocks B.
Goal: Find optimal Γ̂ = argmin

Γ

∑N
n=1∥wn∥Γ such that the a

priori information on the block structure is valid.

1: Form the sparse representation indicator matrix IW = I
{
W

}
.

2: Apply clustering algorithm on the rows of IW , {ij}Kj=1. Use
the a priori knowledge on the block structure.

3: Form the block structure corresponding to the clustering of the
rows of IW .

binary vectors. The general clustering step for these vectors can em-
ploy any one of the many clustering approaches [9]. If one is to
apply a hierarchical clustering method, the first decision to make
is whether to utilize an agglomerative or partitioning (divisive) ap-
proach. In this paper we assume that the a priori knowledge available
to the clustering algorithm is the maximum size of the atom blocks,
s. Hence, an agglomerative approach is appropriate. A hierarchical
agglomerative clustering algorithm initializes with K clusters with
a single element or observation in each. At each iteration of the
clustering algorithm a similarity or distance matrix is recalculated.
The similarity matrix carries the information of the closeness of two
clusters. The similarity or closeness between two clusters is calcu-
lated by a specified similarity or distance metric, which we will dis-
cuss later. After the similarity matrix is generated, the two distinct
clusters with the highest similarity value are merged into one single
cluster, and the algorithm continues with the next iteration until it is
not possible to merge any more clusters without breaking the rule on
the maximal cluster size. The steps for a hierarchical agglomerative
algorithm which outputs clusters with at most s elements are given
in Alg.3.

In Alg.3, the set of the indices of elements included in the mth

cluster is denoted by Ωm. The number of elements included in the
mth cluster is denoted as |Ωm|. sim

{
Ωm1 ,Ωm2

}
represents the

similarity measure between clusters Ωm1 and Ωm2 . There are many
possible similarity or distance measures which can be used to quan-
tify the similarity between clusters. In defining a similarity measure
between clusters, there are two criteria to determine. One is the sim-
ilarity metric between two elements or observations, which we will
denote by d

(
ij1 , ij2

)
. The second criterion is how the linkage be-

tween clusters is realized. The linkage criterion defines how the sim-
ilarity between clusters is calculated using the individual similarity
metric values between the elements of the two clusters. For the simi-
larity metric d

(
ij1 , ij2

)
between the binary observations ij1 and ij2 ,

any one of the many binary similarity measures can be used, rang-
ing from regular Hamming similarity [10] to inner product (IP) met-
rics [9, 11]. Two possible similarity distance metrics are described
below.

Hamming similarity:

d
(
ij1 , ij2

)
=

∑N
n=1 vn where vn =

{
1, ij1 [n] = ij2 [n]

0, ij1 [n] ̸= ij2 [n]
.

Inner Product similarity (IPS):

d
(
ij1 , ij2

)
=

∑N
n=1 vn where vn =

{
1, ij1 [n] = ij2 [n] = 1

0, otherwise
.

Inner product similarity (IPS) counts the number of positions
where both binary observation vectors are equal to one. Hence, IPS

Algorithm 3 Hierarchical Agglomerative Clustering with maximal
cluster size s (HAC-s)

Input: K elements to cluster {ij}Kj=1 and maximal cluster size
s.
Goal: Group the K elements into clusters Ωm such that there
are at the most s elements in each cluster.

1: Initialize the clusters as Ωm ← {m},m = 1, 2, . . . ,K .
2: Initialize the similarity matrix as

A(m1,m2) =

{
sim

{
Ωm1 ,Ωm2

}
m1 ̸= m2

0 m1 = m2

3: while A is not all zeroes matrix do
4: Find the two clusters with the maximal similarity value

max
(
A
)

and join them into a single cluster. Update the cluster
numbering.

5: Update the similarity matrix as

A(m1,m2) =

{
sim

{
Ωm1 ,Ωm2

}
m1 ̸= m2 and |Ωm1 |+ |Ωm2 | ≤ s

0 m1 = m2 or |Ωm1 |+ |Ωm2 | > s

6: end while

counts the total number of time instants, at which both atoms are
active. The linkage schemes are threefold with the single-link, the
complete-link and group average linkage schemes. For a given ob-
servation similarity metric d

(
·, ·

)
, the inter-cluster similarity mea-

sures for the three linkage schemes are given as below.
Single-link (SL) linkage:
sim

{
Ωm1 ,Ωm2

}
= max

j1∈Ωm1 ,j2∈Ωm2

d
(
ij1 , ij2

)
.

Complete-link (CL) linkage:
sim

{
Ωm1 ,Ωm2

}
= min

j1∈Ωm1 ,j2∈Ωm2

d
(
ij1 , ij2

)
.

Group average (GA) linkage:

sim
{
Ωm1 ,Ωm2

}
=

1

|Ωm1 ||Ωm2 |
∑

j1∈Ωm1 ,j2∈Ωm2

d
(
ij1 , ij2

)
.

Different observation similarity metrics d
(
·, ·

)
and different

linkage schemes culminate in different cluster similarity measures
sim

{
·, ·

}
which can be used in the HAC-s algorithm given in Alg.3.

The resulting HAC-s algorithm is utilized in the step 2 of the Block
Structure Identification algorithm given in Alg.2. The SAC algo-
rithm proposed in [8] fits into the block-sparse representation with
block structure identification framework presented here. The clus-
tering section of SAC as proposed in [8] can be shown to be in the
same form as the HAC-s algorithm with the following inter-cluster
similarity measure:

sim
{
Ωm1 ,Ωm2

}
= ∨

{
Ωm1

}
· ∨

{
Ωm2

}T (5)

Here, ∨
{
·
}

is an or operator which acts jointly on the members
of the argument set. Hence, ∨

{
Ωm

}
= ∨

j∈Ωm

ij , where ∨ is the

elementwise or operator. For each cluster Ωm, SAC saves a single
vector which is the elementwise or of the member vectors ij , ∀j ∈
Ωm. As a similarity measure SAC takes the inner product of these
vectors. This similarity measure does not correspond to any of the
above given binary similarity measures with the specified linkages.



5. SIMULATION RESULTS

In this section we inspect the capability of the proposed Block Struc-
ture Identification technique (Algs. 1 and 2) in retrieving the under-
lying block structure from a given dictionary D and corresponding
block-sparse data set X corrupted with additive noise. D is a ran-
dom matrix with independent, identically normal distributed entries,
D ∈ R80×90. X is a set of N data observations with xn ∈ R80.
Each data vector is generated as to have a k-block-sparse represen-
tation over D. The block structure for D has 30 blocks with 3 atoms
in each. The active blocks for each xn are chosen randomly, and the
coefficients for W are again random entries. Additive white Gaus-
sian noise is added to the data matrix as to result in desired SNR val-
ues. Hence, X = DW + N where W is the block-sparse weight
matrix and N is the observation noise. For each setting the setup
is repeated 50 times. In each iteration, the dictionary D, the block
structure Γ, the block-sparse coefficients W and hence X are gen-
erated from scratch. The block structure estimate Γ̂ and the original
block structure Γ are compared as to calculate the percent of blocks
which are identified correctly in Γ̂.

Fig.1 presents the percent of correctly identified blocks for dif-
ferent block-sparsity values k. The Block Structure Identification
procedure as detailed in Alg.2 is realized with HAC-s algorithm
employing IP and Hamming similarity metrics with GA linkage
scheme. The SAC algorithm [8] is also included for comparison
purposes. Each subfigure in Fig.1 presents the results for a specific
k value and for three data record lengths N = 50, 100 and 200.
The plots show that clustering using the IP and Hamming distance
metrics result in better block structure identification performance
than the SAC algorithm. All algorithms perform 100% recovery for
SNR’s exceeding a certain threshold. However, before that thresh-
old the HAC-s with IP-GA and Hamming-GA metrics performs
better than the SAC. The results for SL and CL linkage are not
presented. In our experiments we have observed that they produce
results slightly inferior to GA linkage.

6. CONCLUSIONS

We have proposed a framework for the identification of the block
structure for block-sparse data. Block-sparse representation algo-
rithms assume the dictionary and the underlying block structure as
given. Hence, the retrieval of the block structure from data gains im-
portance. The block structure identification procedure we develop
successfully recovers the dictionary block structure even for short
data records.
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