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Abstract

Skin lesion segmentation is crucial for the early detection and accurate diagnosis of dermatolog-
ical conditions, as precise boundary delineation enables better identification of lesion features.
While Convolutional Neural Networks (CNNs) and hybrid CNN-Attention models have achieved
notable success in this task, they often struggle to segment fine-grained lesion boundaries and
suppress irrelevant tumor-like artifacts. They also tend to neglect topological features, which are
crucial for accurately identifying complex lesions. To address these limitations, we propose a
novel hybrid model that integrates ConvNeXt blocks with self-attention mechanisms. The model
is also enhanced by a topological loss combined with Binary Cross Entropy (BCE) loss. This
approach enables the model to better capture both local and global context, accurately delineate
lesion boundaries, and suppress irrelevant regions, all without relying on a pre-trained back-
bone. Our method is evaluated on four publicly available skin lesion datasets: ISIC 2016, ISIC
2018, HAM10000, and PH2. Performance is assessed using segmentation metrics such as the
Dice coefficient and Jaccard index. Experimental results demonstrate that the proposed model
outperforms state-of-the-art (SOTA) methods, including MISSFormer, Swin-UNet, LeViT-UNet
FAT-Net, Att-UNet, DoubleU-Net, DeepLabV3 and TransUNet. Notably, the model achieves a
Jaccard index of 0.8529 and a Dice coefficient of 0.913 on the ISIC 2018 dataset, surpassing the
performance of given SOTA models in boundary delineation and tumor-like region suppression.
These results highlight the potential of our hybrid ConvNeXt-Attention model with topological
loss to improve lesion segmentation accuracy, which would lead to more effective and precise
dermatological diagnoses.

Keywords: Deep Learning, ConvNeXt module, Multi Head Attention, Topological Loss,
Segmentation, Skin Lesion
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1. Introduction

Skin cancer, one of the most prevalent forms of cancer, continues to affect more people each
year (Roky et al., 2025). Among the different types of skin cancer, melanoma is the most aggres-
sive and accounts for 90% of the deaths associated with cutaneous tumors (Garbe et al., 2016).
Early intervention in skin cancer, particularly melanoma, is crucial to ensure high survival rates
in the growing number of cases. Melanoma survival exceeds 95% when detected early, while it
decreases to 20% when detected late (Garrison et al., 2023). Identifying melanoma, especially in
its early stages, can be challenging, even for highly experienced dermatologists. It is estimated
that experienced dermatologists achieve around 70% sensitivity when diagnosing melanoma us-
ing only visual examination (Garbe et al., 2016). On the other hand, recent works have shown
that machine learning (ML) based algorithms are more accurate and can better support dermato-
logical clinical studies.

Medical image segmentation commonly relies on an Encoder-Decoder network with skip
connections, a structure effectively represented by U-Net (Ronneberger et al., 2015). U-Net
has become a staple in medical image segmentation, inspiring numerous variations in recent
years. Since the introduction of Vision Transformers by Dosovitskiy et al. (2020), Transformer-
based models have grown in popularity due to their strong ability to capture global context,
which greatly benefits segmentation tasks. Initially developed for Natural Language Processing
(NLP), Transformers have proven effective in semantic segmentation by employing attention
mechanisms that selectively focus on crucial regions of the input. Moreover, recent developments
in ConvNeXt, built upon traditional ConvNet principles, have demonstrated promising results in
medical image segmentation (Liu et al., 2022).

Skin lesion segmentation remains a challenging task due to the complex nature of skin le-
sions and their variability in medical images. Figure 1 illustrates the challenges inherent in skin
lesion segmentation, including external markings, hair occlusions, artifacts, and varying lesion
shapes, colors, and textures. Ambiguous borders and low contrast between lesions and surround-
ing healthy skin further complicate accurate segmentation. Existing approaches, as discussed in
the related works section, attempt to address these challenges but often face limitations such as
increased model complexity, high computational costs, reliance on pretrained models, and a loss
of global context while focusing on capturing local details like lesion boundaries. Moreover,
skin lesions, such as melanoma, possess intrinsic topological structures that are reflected in their
connected components and higher-order features. These approaches often fall short in effec-
tively capturing both the global and local topological context of tumors, resulting in suboptimal
segmentation performance. To address these challenges, we propose the topology-aware Att-
Next model, a hybrid approach that integrates ConvNeXt modules with attention mechanisms in
the deeper layers of the network. ConvNeXt and attention mechanisms effectively capture both
spatial details by extracting fine-grained local features and the broader global context, without
requiring any pretrained backbone. Moreover, the model gains topological awareness through
the use of a topological loss function. This function is based on the persistent homology of cu-
bical filtration, where H0 and H1 features are considered, and the Wasserstein distance is used to
quantify the loss value. The inclusion of topological loss enables the model to capture the un-
derlying structure of the lesions, making it easier to differentiate between true lesion boundaries
and noise. To the best of our knowledge, our proposed work is the first to explicitly incorporate a
topological loss function for skin lesion segmentation. In this paper, we propose an efficient hy-
brid ConvNeXt-Attention architecture, topology-aware Att-Next, for skin lesion segmentation.
Our contributions are as follows:
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Figure 1: Challenges in skin lesion segmentation: (a) Images from the ISIC 2018 dataset highlight external markings,
hair occlusions, artifacts, and varying lesion shapes, colors, and textures, which complicate accurate classification and
boundary detection. (b) Images from the HAM10000 dataset illustrate ambiguous borders and low contrast between
lesions and surrounding skin, increasing the difficulty of precise segmentation.

1) Att-Next combines modified ConvNeXt components and attention blocks in a U-shaped
architecture to capture both short- and long-range dependencies.

2) We redesigned the ConvNeXt modules by reducing the kernel size, adding normaliza-
tion layers, and replacing the Multi-Layer Perceptron (MLP) in the Transformer encoder with
a ConvNeXt module. This redesign improves local detail capture, training stability, and feature
representation for segmentation tasks.

3) We introduced a topological loss based on the Wasserstein distance, utilizing homological
features H0 and H1, to effectively capture the data’s topological structure and further improve
segmentation accuracy.

The content for the rest of the paper is as follows. Chapter 2 discusses related works in the
field. Chapter 3 introduces the proposed model architecture, emphasizing the use of topologi-
cal loss functions to enhance segmentation performance. Chapter 4 describes the experimental
setup, including dataset characteristics, preprocessing steps, and training strategies. Chapter 5
presents a comprehensive analysis of the results, incorporating both quantitative data and qualita-
tive insights. The performance of the proposed model is compared with existing approaches, and
the improvements achieved through ablation studies are highlighted. Additionally, this chapter
discusses the model’s generalization capabilities, main findings, limitations, and future recom-
mendations. Chapter 6 concludes the paper.

2. Review of Related Works

2.1. Model Structures utilized in the Literature
In medical image segmentation tasks, capturing both global and local contextual informa-

tion, as well as understanding the connectivity and structure of regions, is crucial. In recent
years, numerous CNN models have been proposed, showcasing their capability in these tasks.
For instance, Liu et al. (2022) introduced ConvNeXt modules, which utilize depthwise and point-
wise lightweight separable convolutions (Chollet, 2017), enhanced with LayerNorm and GeLU
activation functions. Similarly, Liu et al. (2022) proposed ConvUNeXt, which incorporates Con-
vNeXt modules within a U-shaped structure to reduce model complexity and parameter count.
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Additionally, Zhang et al. (2023) developed the BCU-Net, a parallel U-Net-ConvNeXt archi-
tecture specifically designed for medical image segmentation tasks, further improving perfor-
mance and efficiency. Han et al. (2022) demonstrated that, compared to the standard U-Net, their
ConvNeXt-based U-shaped model reduces the number of parameters by 20%.

Although CNNs have achieved significant success, their limitations in capturing global fea-
ture information, due to the constraint of local receptive fields, have paved the way for the in-
troduction of Transformer models. Unlike CNNs, Transformers extend the model’s ability to
focus on both image details and boundaries by capturing feature information across the entire
image. However, Transformer-based models often lack the translational invariance and local
correlation biases found in CNNs, meaning that they generally require large datasets to outper-
form CNNs. To tackle this challenge, hybrid models combining CNNs and Transformers have
become increasingly prevalent in medical image segmentation. Att-UNet, introduced by (Oktay
et al., 2018), incorporates attention mechanisms into the U-Net framework to improve the fo-
cus on salient features. TransUNET, developed by (Chen et al., 2024b), was the first to modify
the Vision Transformer (ViT) into a U-Net architecture. UNETR, presented by (Hatamizadeh
et al., 2022), employs a purely Transformer-based encoder for segmentation tasks. To address
computational complexity, (Cao et al., 2023) introduced Swin-Unet, an architecture that uses
self-attention within shifted windows to enhance efficiency. TransFuse, described by (Zhang
et al., 2021), combines CNN and Transformer features to effectively integrate spatial and global
context. LeViT-U, proposed by (Xu et al., 2024), incorporates LeViT transformers into a U-Net
framework, providing efficient feature learning. AS-Net, presented by (Hu et al., 2022), improves
discriminative power by utilizing both spatial and channel attention mechanisms. FAT-Net, de-
scribed by (Wu et al., 2022), integrates a Transformer branch within a CNN-based encoder-
decoder architecture and employs feature adaptation modules alongside a memory-efficient de-
coder to capture local and global contexts. MISSFormer, introduced by (Huang et al., 2023),
employs hierarchical Transformer blocks to enhance segmentation performance. Additionally,
TransAttUnet, a Transformer-based attention-guided U-Net, improves segmentation across vari-
ous medical imaging tasks by leveraging self-aware attention modules and multi-scale skip con-
nections (Chen et al., 2024a). Furthermore, D-TrAttUnet, a hybrid CNN-Transformer model
with dual decoders, is designed to segment lesions and organs simultaneously (Bougourzi et al.,
2024).

Hybrid models that combine ConvNeXt and attention mechanisms have gained attention in
recent years due to their potential advantages, especially in classification tasks. FNeXter, a U-
shaped network that integrates ConvNeXt and Transformer blocks, incorporates Region-Aware
Spatial Attention (RASA) and a Self-Adaptive Multi-Scale Feature Fusion Attention (SMFFA)
module (Niu et al., 2024). This design efficiently extracts local features via ConvNeXt and
captures long-range dependencies through Transformers. However, the architectural complexity
increases computational demands and training overhead. A two-stream network was introduced
to fuse ConvNeXt and Swin Transformers using a simplified MIX-Block for feature fusion, re-
ducing computational costs compared to more intricate hybrid models (Wang et al., 2023). Nev-
ertheless, reliance on pre-trained backbones may limit adaptability to highly diverse or noisy
datasets. To address artifacts, ConvNeXt-ST-AFF enhances hybrid architectures by combining
ConvNeXt and Swin Transformers with Attentional Feature Fusion (AFF) modules and Efficient
Channel Attention (ECA) (Hao et al., 2023). Recently, MedNeXt has been proposed as a fully
Transformer-driven ConvNeXt segmentation model designed to tackle the limitations of hybrid
architectures in medical imaging by incorporating residual inverted bottlenecks and compound
scaling techniques (Roy et al.). However, its ability to accurately segment small and low-contrast
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lesions remains a challenge. Similarly, Response Fusion Attention U-ConvNeXt (RFAU-CNxt)
integrates ConvNeXt with novel attention mechanisms to enhance segmentation accuracy in fun-
dus images and optic disc and cup segmentation. Despite its strong performance, the increased
architectural complexity can lead to longer training times (Mallick et al., 2023).

Many approaches struggle to simultaneously capture both fine local details and broader con-
textual relationships while maintaining a smaller parameter count and reduced computational
cost. Additionally, some methods rely on pretrained models, which may limit their adaptability
to highly diverse or noisy datasets. To address these challenges, we propose a topology-aware
hybrid ConvNeXt-Transformer approach for skin lesion segmentation.

2.2. Use of Topological Awareness

Recently, Topological Data Analysis (TDA), particularly persistent homology (PH), has been
employed in deep learning segmentation tasks to enhance the topological similarity between
segmented regions and the ground truth, which may otherwise be missed by traditional pixel-
wise comparisons (Mosinska et al.). Various approaches have been proposed to incorporate
persistent homology into deep learning models. These methods include extracting topological
features from input images via PH and feeding them into a CNN(Hofer et al., 2017), or creating
topologically aware layers (Hofer et al., 2020; Love et al., 2023) and networks (Papamarkou
et al., 2024).

In line with our proposed work, some studies have integrated topological information into
deep learning models through loss functions, such as those presented by (Hu et al., 2019; Clough
et al., 2020; Gupta et al., 2022; Demir et al., 2023; Yang et al., 2021). Topological loss func-
tions have demonstrated improved performance, particularly in detecting thin structures, which
is essential for the accurate segmentation of certain subjects. These functions have shown effec-
tiveness in segmenting vascular networks, road maps, and other data involving high-dimensional
interactions, such as 3D fMRI data.

Specific to our dataset, the ground truth skin lesions are connected structures. Consequently,
the model output can be constrained to maintain the same topological structures as the ground
truth across different scales. Additionally, border irregularities are critical features for detecting
malignant lesions (Marghoob et al., 2019). Vandaele et al. (2020) showed the effectiveness of
a persistent homology-based approach in unsupervised skin lesion segmentation. While their
approach utilized persistent homology, they did not incorporate a topological loss function based
on persistent homology. By integrating this topological loss into our proposed hybrid ConvNeXt-
Attention model, we enhance skin lesion segmentation, achieving more precise and topologically
reliable outputs.

3. Proposed model with Topological Awareness

3.1. Model Structure

The methods mentioned earlier are not yet sufficient to fully address the challenges discussed
in the introduction, and achieving precise segmentation of skin lesions in dermoscopic images
remains a complex task. The proposed model integrates attention mechanisms and modified
ConvNeXt blocks to efficiently capture both global and local contexts, as well as short- and
long-range dependencies, while considering a reduction in model complexity, parameters, and
FLOPs. Within a U-shaped architecture, we sequentially employ modified ConvNeXt and Multi-
head self-attention blocks.
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Figure 2: Traditional (left) and Modified (right) ConvNeXt Block

In medical imaging, such as skin lesion segmentation, capturing fine local details like edges
and textures is crucial. To achieve this, we modified the ConvNeXt block by reducing the con-
volutional kernel size from 7 × 7 to 3 × 3, as illustrated in Figure 2. The input tensor is first
processed through a depthwise convolution (DConv3×3) to extract spatial information. Layer
Normalization (LN) and the Gaussian Error Linear Unit (GELU) activation function are then
applied to introduce non-linearity. Next, pointwise convolutions (PConv1×1) are used to ini-
tially expand the channels to 4C and subsequently reduce them back to C. This combination
of depthwise and pointwise convolutions captures multi-scale local features. By incorporating
additional normalization and activation functions, we achieved more efficient feature extraction,
improved model convergence, and overall enhanced performance on the skin lesion segmentation
tasks. Experimental results verified that reducing the kernel size and increasing normalization
improved stability, enabled more effective learning, and enhanced overall performance compared
to using fewer normalization layers.

As part of the model structure, the first two stages incorporate double modified ConvNeXt
modules, which are well-suited for capturing local spatial features, such as edges and textures,
to extract feature maps. These modules utilize pointwise and depthwise separable convolutions,
which are efficient in terms of model parameters and computational cost. In the third and fourth
stages, we employ an attention mechanism following the modified ConvNeXt modules to capture
the global context of the tumor regions.

In addition, we replace the standard MLP in the Transformer encoder with modified Con-
vNeXt modules. Unlike MLPs, which process each pixel independently of its neighbors, Con-
vNeXt modules preserve local spatial relationships, a critical factor in tasks like image segmen-
tation. By substituting MLPs with ConvNeXt modules, we mitigate the limitations caused by
the inability of the former to account for spatial location. Figure 3 illustrates the comparison be-
tween the traditional transformer encoder and the proposed attention mechanism integrated with
ConvNeXt blocks.

The input is first embedded as a sequence of features (or called tokens). Let X represent
the input embeddings or tokens. The token sequence X ∈ RN×C , with length N and channel
dimension C, is fed into the ConvNeXt blocks, one of which can be expressed as:

Modified ConvNeXt module can be formulated as follows

X′ = MHS A(X) + Xin (1)
6
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Figure 3: Comparison of Traditional Transformer Encoder (left) vs. Attention with Modified ConvNeXt Block (right)

X′′ = LN(PConv1×1(σ(PConv1×1(σ(LN(DConv3×3(X′,C))), 4C)),C)) (2)

Xout = X′′ + X′ (3)

σ(·) denotes the activation function, which is the GELU. MHSA represents Multi-Head Self
Attention, which captures global relationships in the input sequence. DConv3×3 is the Depthwise
Convolution operation with a 3 × 3 kernel, used to capture spatial information across individual
channels, producing C output channels. PConv1×1 is the Pointwise Convolution with a 1 × 1
kernel, used for channel mixing and operates either with 4C or C output channels to control
dimensionality. LN is applied after convolutions to stabilize training and enhance gradient flow.
Finally, Y represents the output tensor, which is obtained after combining these operations.

In the downsampling layers, we use 3 × 3 convolutions to increase the channel size and
max-pooling with a stride of 2 to decrease spatial dimensions, which helps emphasize edges
necessary for segmentation. For upsampling, 3 × 3 convolutions reduce the channel count, and
nearest-neighbor upsampling increases the spatial size. Although transposed convolutions were
considered, they did not improve validation scores and increased the parameter count.

Combining all these implementations, we constructed a U-shaped network for 2D image
segmentation, as depicted in Figure 4. The input tensor is defined as X ∈ RB×C×H×W , where
B = 8 (batch size), C = 3 (input channels), H = 256, and W = 256. In the encoder, the
channel dimensions progressively double from 3 up to 512, while the spatial dimensions are
halved at each downsampling step. In the decoder, this process is reversed so that the channel
dimensions decrease from 512 back to 1, and the spatial dimensions are incrementally restored
to their original size.

We designed different model variants, starting with either attention mechanisms or ConvNeXt
blocks. However, experimental results showed that using ConvNeXt blocks from the start led to
higher Dice and Jaccard scores and lower computational costs.
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Figure 4: Overall Design of Att-Next Architecture
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3.2. Topological Data Analysis (TDA)
TDA comprises a set of methods aimed at extracting meaningful insights from the topolog-

ical structures of data embedded in a topological space (Carlsson, 2009). A topological space
is a mathematical construct characterised by properties such as continuity, connectedness and
convergence. TDA analyses topological features that are often represented in low-dimensional
structures, such as simplicial or cubical complexes. In this section we will briefly introduce the
PH and most common filtration methods. For a more detailed introduction to TDA, readers are
referred to (Chazal and Michel, 2021; Coskunuzer and Akçora, 2024).

PH, the main tool in TDA, tracks the evolution of homologies, such as connected compo-
nents, loops and voids, across different scales. The PH process begins by mapping the data into a
topological space using a filtration method. Filtration methods, such as Vietoris-Rips and cubical
filtration, incrementally increase a scale parameter that acts as a threshold for connecting data
points. Essentially, PH addresses the thresholding problem by considering all possible thresh-
olds. This threshold, or scale, can be defined in various ways, such as using Euclidean distance
to connect points or using pixel values in digital images to determine which pixels are included.
As the scale increases, new simplices or cubes (depending on the filtration type) are added to the
complex, each associated with its corresponding scale value.

Formally, given a simplicial complex K, we create a sequence of subcomplexes, denoted as
K = {Kp | 0 ≤ p ≤ m}, such that ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K, by applying the chosen filtration
method. This process reflects the incremental addition of simplices as the scale increases. A
simplicial complex is constructed from simplices, which include vertices (0-simplices), edges
(1-simplices), triangles (2-simplices) and their higher-dimensional analogues.

Connected
components

Loops

Birth Scale

Death Scale

0 1 2 3 4

0

1

2

3

4

  

(a)

(b)

(c)

5

6

5 6

Figure 5: Illustration of Persistent Homology for Cubical Complex Analysis at Different Scales: (a) Filtration Process
Across Scales, (b) Barcode Diagram of Connected Components and Loops, (c) Persistence Diagram Depicting Birth and
Death of Topological Features
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In contrast, cubical complexes use cubes, including vertices (0-dimensional cubes), edges
(1-dimensional cubes), squares (2-dimensional cubes) and higher-dimensional cubes. Digital
images are particularly well-suited for cubical filtration due to their grid-like structure, which
naturally aligns with the cubical representation. In a cubical complex, digital images are repre-
sented as nested sequences of 2D images by considering the gray-scale values, γi, j ∈ [0, 255], of
each pixel, denoted by △i, j ⊂ X. Given a sequence of thresholds (0 ≤ t1 < t2 < · · · < tN ≤ 255),
we generate a series of 2D binary images, X1 ⊂ X2 ⊂ · · · ⊂ XN , where Xn represents the set
of pixels △i, j ⊂ X that have values exceeding the threshold tn. In other words, we start with an
empty 2D image of size n × m and progressively activate pixels by coloring them black as their
values exceed each threshold tn. This process is illustrated in Figure 5.

This cubical complex is stored in a boundary matrix from which we can infer the persistence
of the homologies after a Gaussian elimination process. For a given homology, σ, we have the
scale at which it first appears, b and the scale at which it disappears, d. The difference between
d and b is called the persistence of that homology. For each homology dimension, we have the
(b, d) pairs. These pairs are usually summarized in barcodes or Persistence Diagrams (PDs). The
persistence diagram for dimension k is then the collection of all such pairs, PDk = {(bσ, dσ)}.
This information allows us to identify significant homologies that persist across different scales.

3.3. Topological Loss
Accurately segmenting skin lesions is particularly challenging due to the presence of irrel-

evant tumor-like regions that are difficult for models to distinguish. To address this, we imple-
mented a topological loss function to help the model capture and preserve the intrinsic topology
of tumors. Incorporating topological loss during training enhances the model’s ability to learn
and retain crucial topological information for accurate tumor segmentation.

To achieve this, we compared the persistence diagrams (PDs) of the model’s output and
the ground truth using the Wasserstein distance (p = 2). The Wasserstein distance measures the
minimal cost to transform one distribution into another, assessing the similarity between the PDs.
A smaller distance indicates greater similarity between the topological features of the model’s
predictions and the ground truth, as illustrated in Figure 6.

Given two persistence diagrams D1 = {(bi, di)}ni=1 and D2 = {(b′j, d
′
j)}

m
j=1, the 2-Wasserstein

distance is defined as follows.

W2(D1,D2) =

 inf
φ:D1→D2

n∑
i=1

∥xi − φ(xi)∥2


1
2

(4)

• xi = (bi, di) are points in D1,

• y j = φ(xi) are points in D2,

• ∥ · ∥ is typically the L2 norm in the Euclidean plane,

• φ : D1 → D2 is a bijection (matching) between the points of the two diagrams, extended
to include points on the diagonal (where birth equals death).

We also use BCE loss (LBCE
ω ) as defined below.

LBCE
ω (G, P) = −

1
N

N∑
i=1

(
Gi log Pi + (1 −Gi) log(1 − Pi)

)
(5)
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with Cubical Complex

Figure 6: Topological Loss Integration for Tumor Segmentation Using Persistence Diagrams, Wasserstein Distance.
Green Arrow representing calculation of Persistent Homology with a Cubical Complex

Here, G is the ground truth segmentation, P is the predicted segmentation, and N is the total
number of pixels in the image.

The total loss used in our training is a combination of the BCE loss and the Wasserstein
distance-based topological loss (LTopo

ω ). It is expressed as:

Ltotal = LBCE
ω + λ1W2(D1,D2) (6)

In this equation, λ1 represents the weighting coefficient used to adjust the balance between
the contributions of each loss term.

4. Experiments

4.1. Dataset

The ISIC dataset offers a comprehensive collection of dermoscopic images, crucial for seg-
mentation tasks in computer vision research. The ISIC 2018 dataset comprises 2, 694 images,
with original dimensions ranging from 540 × 722 to 4500 × 6800 pixels. To ensure uniformity
during model training, all images were resized to 256 × 256 pixels.

In addition to the ISIC 2018 dataset, we also utilized the HAM10000 dataset, which is another
large collection of dermoscopic images containing 10, 015 images of various common pigmented
skin lesions. The images in the HAM10000 dataset have dimensions of 600 × 450 pixels and,
similar to the ISIC 2018 dataset, were resized to 256 × 256 pixels for consistency and to match
the model’s input requirements. The HAM10000 dataset offers a diverse set of lesions, providing
a rich source of training data to improve model generalization.

To test the robustness and generalization of our trained model, we evaluated it on the ISIC
2016 and PH2 datasets (Mendonça et al., 2013) using the proposed architecture and loss function.
The ISIC 2016 dataset consists of 900 images, while the PH2 dataset includes 200 dermoscopic
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images, providing an opportunity to demonstrate the model’s generalization capability on rela-
tively small datasets.

4.2. Implementation Details

We used 80% of the dataset for training, 10% for validation, and 10% for testing. The
network was trained end-to-end using the AdamW optimizer, with an initial learning rate of
1 × 10−4. A cosine annealing learning rate schedule was applied, reducing the learning rate
by a factor of 1/10 during training to gradually decrease the learning rate and encourage better
convergence towards the end of training. The batch size was set to 8, and the model was trained
for 400 epochs. All experiments were implemented in PyTorch and executed on an NVIDIA
GeForce RTX 2080 Ti GPU. The source code will be made available upon publication of the
paper.

To enhance network performance and improve convergence speed, we employed a combi-
nation of loss functions, including the BCE loss (LBCE

ω ) and a topological loss derived from the
persistence information of the data. We set the weight of the topological loss (λ1) to 0.1 in the
combined BCE-Topoloss function.

Furthermore, to address computational complexity, we applied average pooling to reduce
image size while preserving the lesion’s structural features. Instead of using patchify methods,
which can fragment lesion integrity and are unsuitable for skin lesion datasets, we opted for
average pooling to reduce image size.

4.3. Augmentation

In our study, we applied various data augmentation techniques to enhance the robustness
and generalization of our model. We utilized standard augmentations such as random horizontal
and vertical flips, as well as random rotations. Additionally, we incorporated advanced methods
like CutMix and CutOut, each applied with a probability of 0.5 during training. CutMix is an
augmentation technique where patches are cut and pasted among training images, and the ground
truth labels are mixed proportionally to the area of the patches. This encourages the model to
learn from combined visual features and improves its robustness. CutOut, on the other hand,
involves randomly masking out square regions of the input images during training, which forces
the model to focus on less prominent features and prevents overfitting to specific image regions.
The implementations of CutMix and CutOut augmentations are illustrated in Figure 7.

We used a 25 × 25-pixel cutout box to zero out randomly selected areas, which could some-
times cover the entire tumor region. In such cases, we skipped the augmentation to avoid losing
critical tumor information.

We also experimented with other augmentation techniques, including color jitter, perspective
transformations, and affine transformations. However, we observed that these additional aug-
mentations did not improve the model’s performance metrics and instead resulted in increased
computational overhead.

4.4. Evaluation metrics

To assess our model’s performance, we rely on five well-established metrics: Dice coeffi-
cient (DSC), Intersection over Union (IoU), Precision, Recall, and Accuracy. Dice and IoU are
particularly common in segmentation tasks because they assess the overlap and consistency be-
tween the predicted segmentation and the ground truth. Specifically, Dice measures similarity
by calculating twice the overlap area divided by the total number of pixels, providing a balanced
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(a)

(b)

Figure 7: Implementation of Advanced Augmentation Techniques: (a) CutMix Augmentation, (b) CutOut Augmentation

assessment even when class distribution is uneven. On the other hand, IoU calculates the ratio
of intersection to union between predicted and actual segmentation masks, offering an intuitive
measure of overlap.

In addition to these metrics, Precision and Recall provide a more detailed understanding of
model performance. Precision indicates how many of the predicted positive pixels are correct,
highlighting the model’s ability to minimize false positives. Recall, by contrast, measures how
well the model identifies all relevant positive pixels, reflecting its ability to detect all areas of in-
terest. By considering these metrics together, we gain a comprehensive evaluation of our model,
ensuring it consistently produces accurate segmentation results while effectively identifying the
regions of interest.

Dice =
2 × T P

2 × T P + FP + FN
(7)

IoU =
T P

T P + FP + FN
(8)

Precision =
T P

T P + FP
(9)

Recall =
T P

T P + FN
(10)

5. Results

In this section, we present the evaluation results of our proposed topology-aware Att-
Next model, comparing its performance against several baseline models. The ISIC 2018 and
HAM10000 datasets were used for training and testing, while the PH2 and ISIC 2016 datasets
were also evaluated on testing to assess the model’s generalization capability alongside the ISIC
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Table 1: Comparison results on the ISIC 2018 dataset

Methods IoU DSC Rec. Prec. Acc. FLOPs (G) Params (M)

TransUNet (Chen et al., 2024b) 0.7805 0.8741 0.8872 0.8707 0.9509 33.69 67.08

LeViT-U (Xu et al., 2024) 0.7817 0.8791 0.9251 0.8615 0.9501 18.90 19.89

U-Net (Ronneberger et al., 2015) 0.8001 0.8830 0.8940 0.8770 0.9523 65.56 37.66

Swin-Unet (Cao et al., 2023) 0.8012 0.8853 0.8875 0.8885 0.9537 8.00 27.17

MISSFormer (Huang et al., 2023) 0.8133 0.8953 0.8934 0.9045 0.9582 9.86 42.46

DeepLabV3 (Chen et al., 2017) 0.8178 0.8842 0.8556 0.8834 0.94780 43.40 42.00

Att-UNet (Oktay et al., 2018) 0.8199 0.8955 0.9117 0.8846 0.9525 66.69 34.88

TransAttUnet (Chen et al., 2024a) 0.8224 0.9000 0.9178 0.8883 0.9623 88.87 25.97

DoubleU-Net (Jha et al., 2020) 0.8259 0.9024 0.9291 0.8816 0.9610 53.89 29.29

MedNeXt (Roy et al.) 0.8278 0.9045 0.9034 0.9108 0.9605 15.55 12.49

FAT-Net (Wu et al., 2022) 0.8303 0.9061 0.9243 0.8935 0.9620 22.84 28.76

DTrAttUnet (Bougourzi et al., 2024) 0.8358 0.9092 0.9194 0.9025 0.9630 42.03 132.51

RFAU-CNxt (Mallick et al., 2023) 0.8484 0.9100 0.9252 0.9132 0.9673 18.08 100.41

Att-Next (Proposed Model) 0.8529 0.9130 0.9279 0.9169 0.9675 13.47 13.88

Table 2: Validation IoU and Dice scores of different models on the ISIC 2018

Model Validation IoU Validation Dice

U-Net (Ronneberger et al., 2015) 0.80645 0.88845

MISSFormer (Huang et al., 2023) 0.83403 0.90776

FAT-Net (Wu et al., 2022) 0.83919 0.91059

ATT-Next (Proposed Model) 0.84888 0.91721

2018 and HAM10000 datasets. To ensure a fair comparison, we utilized publicly available im-
plementations of the baseline models and applied the same augmentation techniques across all
experiments.

5.1. Comparison with competing methods
ISIC 2018 Dataset: As summarized in Table 1, topology-aware Att-Next was evaluated

against recent models discussed in the related works section, using the ISIC 2018 dataset for
comparison. Att-Next outperforms all these models, achieving the highest Intersection over
Union of 0.8529, the highest Dice Similarity Coefficient of 0.913, and the highest recall, pre-
cision, and accuracy metrics, confirming its superiority in segmentation tasks on the ISIC 2018
dataset.

Table 1 demonstrates that Att-Next achieves an IoU of 0.8529, surpassing RFAU-CNxt by
0.53%, TransAttUnet by 3.71%, MedNeXt by 3.04%, FAT-Net by 2.73%, and DoubleU-Net by
3.27%. In terms of DSC, Att-Next attains 0.913, which is 0.30% higher than RFAU-CNxt, 1.44%
higher than TransAttUnet, 0.94% higher than MedNeXt, and 0.76% higher than FAT-Net. Re-
garding recall, Att-Next achieves 0.9279, outperforming RFAU-CNxt by 0.29%, TransAttUnet
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Figure 8: Qualitative Comparison of Lesion Segmentation Results on Challenging Images Across Multiple Models on
ISIC 2018. From left to right: (a) Input Image, (b) U-Net, (c) DoubleU-Net, (d) Attention U-Net, (e) TransUNet, (f)
Swin-Unet, (g) Proposed Att-Next and (h) Ground Truth Mask.

Figure 9: Validation IoU Score Comparison on Tthe ISIC
2018

Figure 10: Validation Dice Score Comparison on the ISIC
2018

by 1.10%, MedNeXt by 2.73%, and FAT-Net by 0.39%. For precision, Att-Next attains 0.9169,
which is 0.41% higher than RFAU-CNxt, 3.22% higher than TransAttUnet, 0.67% higher than
MedNeXt, and 2.62% higher than FAT-Net. Furthermore, Att-Next achieves the highest ac-
curacy of 0.9675, which is 0.02% higher than RFAU-CNxt, 0.53% higher than TransAttUnet,
0.73% higher than MedNeXt, and 0.68% higher than FAT-Net.

Regarding computational complexity, Att-Next achieves impressive performance with an IoU
of 0.8529, DSC of 0.913, and Acc. of 0.9675, requiring only 13.466 GFLOPs and 13.876 mil-
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Table 3: Comparison results on the HAM10000 dataset.

Methods IoU DSC Rec. Prec. Acc. FLOPs(G) Params(M)

U-Net (Ronneberger et al., 2015) 0.8607 0.9197 0.9111 0.9310 0.9516 65.56 37.66

Swin-Unet (Cao et al., 2023) 0.8684 0.9282 0.9287 0.9312 0.9608 8.00 27.17

Att-UNet (Oktay et al., 2018) 0.8896 0.9406 0.9287 0.9551 0.9677 66.69 34.88

DoubleU-Net (Jha et al., 2020) 0.8915 0.9418 0.9449 0.9409 0.9679 53.89 29.29

Att-Next (Proposed Model) 0.902 0.9442 0.9435 0.9469 0.9701 13.47 13.88

lion parameters. In comparison, models like RFAU-CNxt (100.41 million parameters, 18.08
GFLOPs), DTrAttUnet (132.51 million parameters, 42.03 GFLOPs), and FAT-Net (28.76 mil-
lion parameters, 22.84 GFLOPs) exhibit much higher computational costs.

Figure 8 presents a qualitative comparison of lesion segmentation performance on challeng-
ing images using different models. Notably, the proposed Att-Next architecture provides more
accurate segmentation of lesion boundaries compared to other models, particularly in cases with
ambiguous or noisy backgrounds, as evident in the examples shown.

Figure 9 and Figure 10 illustrate the validation performance of different models. These fig-
ures show that the proposed topology-aware Att-Next model consistently achieves the highest
IoU and Dice scores across epochs. Table 2 summarizes the quantitative comparison of IoU and
Dice scores achieved in validation.

HAM1000 Dataset: Table 3 shows that Att-Next outperforms four models on the
HAM10000 dataset, achieving a Dice Similarity Coefficient of 0.9442, which is 0.3% higher
than DoubleU-Net and 0.4% higher than Att-UNet. Att-Next also achieves a IoU of 0.902,
which is 1.1% higher than DoubleU-Net and 1.2% higher than Att-UNet. In terms of recall,
Att-Next achieves 0.9435, which is slightly lower than DoubleU-Net (0.9449) but still compet-
itive. For precision, Att-Next attains 0.9469, surpassing DoubleU-Net by 0.7% and U-Net by
1.7%. Additionally, Att-Next reaches the highest accuracy of 0.9701, which is 0.4% higher than
DoubleU-Net and 1.8% higher than U-Net. Overall, Att-Next consistently outperforms the other
models across most evaluation metrics in lesion segmentation tasks on the HAM10000 dataset.

5.2. Generalization Capabilities
We evaluated the generalization capability of our proposed model by training it on two

datasets, ISIC 2018 and HAM10000, and testing it on four datasets: ISIC 2018, HAM10000,
ISIC 2016, and PH2. Tables 4 and 5 present the performance comparison of our method, Att-
Next, with SOTA techniques, including MISSFormer (Huang et al., 2023), DoubleU-Net (Jha
et al., 2020), FAT-Net (Wu et al., 2022), and Att-UNet (Oktay et al., 2018).

Table 4 presents the results of training the Att-Next model on the ISIC 2018 dataset and
testing it on three different datasets: ISIC 2016, HAM10000, and PH2. The results demonstrate
that Att-Next achieves the highest Jaccard, F1 score, and Accuracy on ISIC 2016, outperforming
other models, including DoubleU-Net, which records the best Recall. On the HAM10000 dataset,
Att-Next leads with the highest Jaccard, F1 score, and Recall, while FAT-Net performs best in
Precision. For the PH2 dataset, Att-Next achieves the top Jaccard, F1 score, and Precision,
whereas DoubleU-Net records the highest Recall and Accuracy.

Similarly, Table 5 presents the results of training the Att-Next model on the HAM10000
dataset and testing it on three different datasets: ISIC 2018, ISIC 2016, and PH2. The results
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Table 4: Generalization results of models trained on ISIC 2018 and tested on different datasets.

Model Dataset Jaccard (IoU) F1 (Dice) Recall Precision Acc.

MISSFormer (Huang et al., 2023) ISIC 2016 0.8467 0.9153 0.9216 0.9132 0.9557

HAM 0.8191 0.8980 0.8858 0.9174 0.9455

PH2 0.8081 0.8938 0.9118 0.8803 0.9229

DoubleU-Net (Jha et al., 2020) ISIC 2016 0.8894 0.9412 0.9469 0.9359 0.9684

HAM 0.8302 0.9001 0.9089 0.9103 0.9529

PH2 0.8592 0.9212 0.9921 0.8821 0.9568

FAT-Net (Wu et al., 2022) ISIC 2016 0.8883 0.9408 0.9453 0.9375 0.9674

HAM 0.8155 0.8961 0.8777 0.9218 0.9479

PH2 0.8538 0.9207 0.9926 0.8598 0.9467

Att-Next (Proposed Model) ISIC 2016 0.8909 0.9420 0.9341 0.9511 0.9698

HAM 0.8329 0.9072 0.9105 0.9096 0.9501

PH2 0.8635 0.9263 0.9752 0.8839 0.9483

Table 5: Generalization results of models trained on HAM10000 and tested on different datasets.

Model Dataset Jaccard (IoU) F1 (Dice) Recall Precision Acc.

Att-UNet (Oktay et al., 2018) ISIC 2018 0.8025 0.8883 0.9170 0.8677 0.9534

ISIC 2016 0.8519 0.9194 0.9114 0.9324 0.9583

PH2 0.8506 0.9191 0.9368 0.9044 0.9450

DoubleU-Net (Jha et al., 2020) ISIC 2018 0.7979 0.8855 0.9279 0.8546 0.9545

ISIC 2016 0.8593 0.9238 0.9235 0.9272 0.9588

PH2 0.8426 0.9139 0.9349 0.8960 0.9402

ATT-Next (Proposed Model) ISIC 2018 0.8127 0.8938 0.9335 0.8651 0.9562

ISIC 2016 0.8702 0.9302 0.9206 0.9419 0.9608

PH2 0.8594 0.9240 0.9882 0.8688 0.9509

further highlight the superior generalization capabilities of Att-Next. On ISIC 2018, Att-Next
achieves the highest Jaccard and F1 score, outperforming DoubleU-Net and Att-UNet. For ISIC
2016, Att-Next again records the best Jaccard and F1 score, while DoubleU-Net achieves com-
petitive Recall. On the PH2 dataset, Att-Next achieves the highest Jaccard, F1 score, and Recall,
effectively capturing the diverse and complex lesion characteristics.

Our experimental results confirm that topology-aware Att-Next consistently achieves the best
performance across all datasets in terms of Jaccard (IoU), F1 (Dice) score, and Accuracy, demon-
strating its ability to generalize robustly across different datasets and lesion types.

5.3. Ablation Study

In our experiments, we integrated both a traditional transformer encoder with an MLP and
a modified ConvNeXt architecture incorporating self-attention. Initially, we trained the model
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with both ConvNeXt modules. Subsequently, we introduced the attention mechanism into the
deeper layers, incorporating both the traditional MLP, Convnext and Modified ConvNeXt mod-
ules. We also trained and compared the models under three loss scenarios for each of the different
architectures: the traditional combined loss Dice-BCE, a triple loss that combines Dice-BCE and
Topological loss (Dice-BCE-Topo), and a combined loss focused on BCE and Topological loss
(BCE-Topo).

ISIC2018 Dataset: Table 6 presents the effect of different model structures on segmentation
performance for the ISIC 2018 dataset. The table compares various configurations, including
ConvNeXt and its modifications with attention mechanisms and different loss functions. Metrics
such as IoU, Dice Score, Precision, Recall, and Accuracy are reported for each model structure
and loss combination. The highlighted values indicate the best performance within each model
structure across different evaluation metrics.

In Table 6 a gradual improvement in model performance is observed as the architecture
evolves from the basic ConvNeXt to more complex hybrid structures with attention mechanisms.
Starting with ConvNeXt, the use of BCE-Topo loss yields the best performance, suggesting
that adding topological information enhances segmentation quality. Incorporating Attention-
ConvNeXt enhances the ConvNeXt structure, with BCE-Topo loss consistently delivering the
best results, highlighting the advantage of combining local and global context and topological
consistency. Introducing Modified ConvNeXt blocks and a traditional transformer encoder fur-
ther improves performance, especially with BCE-Topo loss, though some limitations are noted
with Dice-BCE-Topo loss. The highest performance across all metrics is achieved by combin-
ing attention mechanisms with the modified ConvNeXt block, resulting in the most robust and
effective model. This progression demonstrates that increasing architectural complexity through
hybrid and modified structures can enhance segmentation quality.

Figure 11 shows the visual output of model predictions using various architectures with the
BCE-Topo loss function. The ConvNext for all stages provides reasonable segmentation but

Table 6: Effect of Model Architectures and Loss Functions on Skin Lesion Segmentation for the ISIC 2018 Dataset

Model structure Loss Function IoU Dice Prec. Rec. Acc

ConvNexT Dice-BCE 0.8105 0.8928 0.8831 0.9101 0.9624

Dice-BCE-Topo 0.8287 0.9043 0.9081 0.9073 0.9623

BCE-Topo 0.8317 0.9061 0.8999 0.9167 0.9637

M.ConvNexT ; Attention-MLP Dice-BCE 0.8315 0.9022 0.9046 0.9026 0.9542

Dice-BCE-Topo 0.8251 0.8965 0.9000 0.8978 0.9583

BCE-Topo 0.8389 0.9085 0.8941 0.9110 0.9607

ConvNexT ; Attention-ConvNexT Dice-BCE 0.8352 0.9051 0.9135 0.9012 0.9574

Dice-BCE-Topo 0.8326 0.9072 0.9079 0.9125 0.9649

BCE-Topo 0.8385 0.9097 0.9134 0.9127 0.9659

M. ConvNexT ; Attention-M. ConvNexT Dice-BCE 0.8474 0.9164 0.9098 0.9256 0.9656

Dice-BCE-Topo 0.8340 0.9080 0.9078 0.9126 0.9614

BCE-Topo 0.8551 0.9208 0.9279 0.9169 0.9675
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(a) (b) (c) (d) (e) (f) (g)

Figure 11: Skin Lesion Segmentation with Diverse Architectures on ISIC 2018: (a) Input Images, (b) ConvNext for All
Stages, (c) Traditional Transformer Encoder for the Last Two Stages, (d) MLP Replaced with ConvNext in the Last Two
Stages from (c), (e) ConvNext Replaced with Modified ConvNext in the Last Two Stages from (d), (f) Topology-Aware
Att-Next (g) Ground Truth.

tends to over-smooth lesion boundaries, reducing precision. The Traditional Transformer En-
coder for the last two stages captures more global features, improving context but sometimes
causing less accurate boundary details. Replacing the MLP with ConvNext in the last two stages
enhances boundary detection, resulting in more precise segmentation by retaining local feature
details, yet some segmentation errors remain. The best performance is observed when Modi-
fied ConvNext is used for all stages, along with the MLP in the transformer encoder, effectively
balancing local feature extraction with global dependencies. Red arrows indicate areas where
segmentation was successfully captured, while red circles highlight improved consistency in fea-
ture segmentation across lesions. The Att-Next model with topological awareness demonstrates
the most accurate visual segmentation results, producing clearer boundaries and fewer misclas-
sified regions compared to other architectures.

Figure 12 shows the segmentation results of skin lesions on the ISIC 2018 dataset using dif-
ferent loss functions. Among all models, the one trained with BCE-TopoLoss demonstrates the
most precise segmentation, accurately capturing lesion boundaries and minimizing misclassifi-
cations.

HAM10000 Dataset: Table 7 presents the effect of different loss functions on the segmen-
tation performance for the HAM10000 dataset, evaluated using the best-performing model ar-
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Figure 12: Skin Lesion Segmentation with Varied Loss Functions on ISIC 2018 Dataset. (a) Input Images, (b) Model
trained with Dice&TopoLoss, (c) Model trained with Dice&BCE Loss, (d) Model trained with Dice&BCE&TopoLoss,
(e) Model trained with BCE&TopoLoss, (f) Ground Truth

chitecture from the ISIC 2018 dataset. The BCE-Topo loss function consistently achieves the
highest scores across most evaluation metrics, enhancing the model’s ability to accurately cap-
ture the essential features of skin lesions. The inclusion of topological loss along with BCE
seems to aid in achieving more accurate segmentation, as it improves the model’s understanding
of lesion structures. The Dice-BCE-Topo loss function also performs well, particularly in terms
of boundary detection, suggesting that combining Dice loss with topological awareness can en-
hance segmentation consistency. However, it does not outperform the BCE-Topo combination.
The Dice-BCE loss, while effective in providing reasonable segmentation results, shows lower
performance compared to BCE-Topo, highlighting the importance of the topological component
in improving segmentation accuracy and robustness.

Table 7: Impact of Various Loss Functions on Skin Lesion Segmentation Performance for the HAM10000 Dataset

Loss Function IoU Dice Prec. Rec. Acc

Dice-BCE-Topo 0.8867 0.9388 0.9422 0.9383 0.9667

Dice-BCE 0.8702 0.9255 0.9346 0.9183 0.9508

BCE-Topo 0.902 0.9442 0.9435 0.9469 0.9701
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Figure 13: Skin Lesion Segmentation with Varied Loss Functions on HAM 10000 dataset (a) Input Images, (b) Model
trained with Dice&TopoLoss, (c) Model trained with Dice&BCE Loss, (d) Model trained with Dice&BCE&TopoLoss,
(e) Model trained with BCE&TopoLoss, (f) Ground Truth

As depicted in Figure 13, the model trained with BCE-TopoLoss similarly exhibits the best
segmentation results among all evaluated loss functions. The outputs demonstrate superior
boundary accuracy and reduced noise compared to other loss functions, effectively capturing
the diverse and complex patterns.

5.4. Main Findings
Our proposed topology-aware Att-Next model demonstrates improved segmentation accu-

racy and generalization performance across various datasets. On the ISIC 2018 dataset, the Att-
Next model achieved an IoU of 0.8529 and an DSC of 0.913, surpassing existing approaches.
When tested on unseen datasets after training on ISIC 2018, the model exhibited robust perfor-
mance. On ISIC 2016, it achieved an IoU of 0.8909, a Dice score of 0.9420, and an accuracy of
0.9698. On the HAM10000 dataset, it recorded an IoU of 0.8329, a Dice score of 0.9072, and a
recall of 0.9105. Similarly, on the PH2 dataset, the Att-Next model achieved an IoU of 0.8635, a
Dice score of 0.9263, and a precision of 0.8839. On the HAM10000 dataset, it achieved an IoU
of 0.902 and an DSC of 0.9442, consistently outperforming existing methods.

To further evaluate generalization, we tested it on three unseen datasets: ISIC 2018, ISIC
2016, and PH2, as shown in Table 5. The proposed Att-Next model again demonstrated superior
performance compared to given SOTA approaches. On the ISIC 2018 dataset, Att-Next achieved
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an IoU of 0.8127 and a Dice score of 0.8938. For ISIC 2016, the model attained an IoU of
0.8702 and a Dice score of 0.9302, outperforming the other methods. On the PH2 dataset, Att-
Next achieved the highest IoU of 0.8594 and a Dice score of 0.9240, while also recording the
best recall of 0.9882.

Our model design was compared to various architectural configurations presented in the ab-
lation study. The findings, as illustrated in Figure 11, demonstrate that incorporating modified
ConvNeXt modules with attention mechanisms captures local details and global structures. As
the model architecture evolves, we observe progressively better segmentation outputs, particu-
larly noticeable in the improved delineation of lesion boundaries.

In addition to architectural modifications, we evaluated the model with different loss combi-
nations. While Dice-BCE loss is effective for general segmentation tasks, it exhibits limitations
in handling complex topological structures like skin lesions. It focuses on pixel-wise overlap
and probability alignment, often failing to accurately delineate boundaries or penalize irrele-
vant tumor-like regions. This approach struggles with small or subtle lesion areas due to class
imbalance and lacks the ability to enforce global or local structural consistency.

In contrast, Topo-BCE loss leverages persistent homology to capture the lesion’s topological
features, such as connected components (H0) and loops (H1), ensuring structural integrity. By pe-
nalizing discrepancies in these features using the Wasserstein distance, Topo-BCE loss improves
boundary accuracy, suppresses irrelevant regions, and enhances robustness to noise and artifacts,
making it better suited for tasks requiring precise and topologically accurate segmentation.

5.5. Limitations and Future Recommendations

We employ modified ConvNeXt modules and attention in the deeper layers to mitigate the
heavy computational cost, particularly during matrix multiplication operations in multi-head
self-attention. Future work could explore integrating attention into the initial layers or fusion
modules.

While our proposed topology-aware Att-Next model achieves robust segmentation perfor-
mance, we observe that the computational cost associated with training using topological loss
remains a challenge. The complexity of computing topological features from a cubical filtration
is typically O(nw), where n is the input size and w is the matrix multiplication exponent, cur-
rently estimated to be approximately 2.376. This limitation highlights the need for more efficient
methods to compute these topological features (Wagner et al.).

We also observed that combining Dice and Topological loss can lead to gradient explosion,
necessitating careful tuning of the loss coefficients to ensure stable training. This combination
remains an open area for further research, as it requires addressing gradient instability and iden-
tifying optimal loss coefficient strategies for improved performance.

6. Conclusions

In this work, we introduced a novel hybrid model, topology-aware Att-Next, which combines
ConvNeXt and Transformer architectures to address key challenges in lesion segmentation. Our
model was trained on the ISIC 2018 and HAM10000 datasets, and its effectiveness was validated
on four public datasets: ISIC 2018, HAM10000, ISIC 2016, and PH2.

To enhance feature extraction, the ConvNeXt modules were modified by reducing the kernel
size and increasing the number of normalization layers and activation functions. These modifica-
tions enable the model to capture finer local details and improve training stability. Additionally,
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the MLP in the Transformer encoder was replaced with a modified ConvNeXt module, allowing
the model to better capture local spatial relationships and improve overall performance.

The integration of topological loss in our model represents a key contribution to skin lesion
segmentation. This approach enables the model to capture the underlying topological structure
of the data, enhancing its capacity to extract critical topological information. Ablation studies
underscore the significant impact of this design choice on model performance, particularly in
improving segmentation precision by effectively removing irrelevant tumor regions.

By incorporating topological loss, Att-Next demonstrates superior performance compared to
several recently published models, as shown in Tables 1 and 3. The model achieves the highest
DSC and IoU values among all compared methods, particularly excelling in handling imbalanced
and noisy datasets.

Overall, our findings demonstrate that the topology-aware Att-Next is a highly effective so-
lution for lesion segmentation. These results offer promising insights for future advancements in
medical image analysis.
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