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ABSTRACT In recent years, with the increasing interest in marine research, the need to collect and
process clear underwater optical images has become crucial. However, underwater images suffer from
the absorption and scattering effects of the environment. In this paper, we propose Hybrid Underwater
Image Enhancement Network (HUWIE-Net), a novel deep learning-based underwater image enhancement
framework consisting of three distinct sections, which include an Image-to-Image Module, a Physics-
Informed Module and a Fusion Module. The training methodology of HUWIE-Net is designed to jointly
optimize both pixel-level-based and physical-channel-based enhancement modules. In this framework, while
Image-to-Image Module is used for color correction in pixel level, Physics-Informed Module is used for
dehazing by exploiting the underwater image formation model which defines the deformations in the
underwater light propagation channel. We also propose to use the joint loss function for both Image-to-
Image Module and Physics-Informed Module to enforce the joint optimization for better underwater image
enhancement performance. The results of experiments conducted with real-world underwater images show
that the proposed model achieves improved performance compared to state-of-the-art methods. The code for
the newly developed HUWIE-Net is available at https://github.com/UIE-Lab/HUWIE-Net.

INDEX TERMS Underwater image enhancement, deep learning, underwater image formation model, dark
channel prior, physics-informed deep network, joint optimization.

I. INTRODUCTION
Interest in underwater world has increased exponentially in
recent years for various reasons, especially marine resource
research, military applications and ecological studies with
advances in robotics and imaging technologies. With this
increasing interest, the need for collecting and processing
clear underwater optical images becomes crucial. However,
underwater images suffer from various disturbing factors,
primarily the absorption and scattering of light [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yougan Chen .

Absorption is the process by which light energy is captured
by the medium it passes through. This phenomenon is
wavelength-dependent, and longer wavelengths such as red
and orange is absorbedmore rapidly than shorter wavelengths
such as blue and green. Wavelength-dependent light absorp-
tion causes issues in underwater imaging, including color
distortion, contrast loss, and brightness reduction. Due to
the increasing absorption at longer wavelengths, captured
images tend to appear bluish or greenish as the water depth
increases. On the other hand, scattering is defined as a
change in the direction of light caused by its interaction
with particles suspended in water. In underwater imaging,
scattering is considered a twofold phenomenon: first, the
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FIGURE 1. The wavelength-dependent attenuation coefficient (pλ) for
pure water [3].

scattering of light from the scene before it reaches the camera;
second, the scattering of light by suspended particles in the
medium, which reaches the camera and produces undesired
effects. Scattering causes contrast loss, a foggy appearance,
blurriness, and a loss of details in images. Alongside these
considerations since the light intensity decreases as the
depth increases, artificial light sources are needed. Although
this artificial light increases the visible distance, it makes
scattering caused by particles suspended in water a more
serious problem [2]. In addition, the problem becomes even
more complicated because the diversity of water types can
also cause differences in their effects on the absorption and
scattering of light [3].

The mentioned disturbing factors cause color distortion,
haze, blurring, and decreased contrast and brightness in
underwater images. To solve these problems in underwater
images, conventional computer vision methods [5], [13],
physics-based methods [7], [8], [9], [10], [12], hybrid
methods [4], [6], and deep learning-based methods [1], [14],
[15], [16], [17], [18], [19], [20] have been developed.

The remaining of the paper is organized as follows.
Section II discusses studies in the literature on underwater
image enhancement. Section III describes underwater image
formation, underwater dark channel prior and proposed
method. Section IV provides details of experimental results,
visual outputs, and metric measurements. The paper is
concluded with Section V.

II. RELATED WORK
Several conventional computer vision based methods and
deep learning based methods are proposed for solving under-
water image enhancement problem. Conventional methods
are generally the application of in-air image enhancement
methods on underwater images. On the other side, as in many
areas, deep learning approaches with higher representation
levels consisting of non-linear modules have become a
milestone in the field of underwater image enhancement.
It can be stated that deep learning-based approaches stand out

due to their improved generalization performance compared
to conventional methods.

A prior-based method for haze removal was adapted for
underwater use by [10] as an underwater version of the
earlier work in [11]. Following this, the Wavelength Com-
pensation and Image Dehazing (WCID) algorithm, which
performs color correction and dehazing, was introduced
in [9]. Subsequently, a contrast-limited adaptive histogram
equalization-based method called mixture Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE-mix) was
proposed in [5]. In [8], a technique was developed that
includes dehazing of blue and green channels along with
color correction for the red channel. Around the same
period, [7] proposed color correction and visibility restoration
algorithms; however, the study noted a limitation where
the global background estimation algorithm required input
images to contain background areas. Further advancements
were seen in [13], where a method was proposed combining
white balance, gamma correction, and sharpening operations
to enhance underwater images. Later, a physics-basedmethod
for estimating transmission maps via light attenuation prior
was introduced in [12]. In [4], an underwater image dehazing
and contrast enhancement algorithm was proposed. It was
noted that the proposed method could not sufficiently
improve colors in low-light conditions, as it only considers
the distance between the object and the camera, ignoring the
distance of object to the water surface. Later, [6] introduced
a hybrid approach that combined a color correction method
with a learning-based dehazing technique.

The development of deep learning-based approaches for
underwater image enhancement began with Underwater
Image Enhancement Network (UIE-Net), a Convolutional
Neural Network (CNN) based model proposed in [18], which
consists of two sub-modules: Color Correction Network
(CC-Net), outputting color correction coefficients, and Haze
Removal Network (HR-Net), enhancing contrast. Building
on these early advances, [16] introduced a Pixel-to-Pixel
CNN model with an encoder-decoder architecture. Simi-
larly, [15] proposed Underwater Image Restoration Network
(UIR-Net), which includes two independent networks:
Transmission Map Network (TM-Net) for estimating the
transmission map and Background Light Network (BL-Net)
for determining background light, both taking the underwater
image formation model as a reference. Subsequently, [19]
introduced Water-Net, a model that processes a raw image
along with three images derived from histogram equalization,
gamma correction, andwhite balance transformations.Water-
Net outputs an enhanced image by performing element-wise
multiplication between the learned confidence maps and
these processed outputs. Further advancements were seen
in [17], where a model incorporating a nuisance classifier,
designed to handle various water types, was proposed
alongside encoder-decoder modules. In [14], a CNN-based
image-to-image deep learning model was introduced, trained
with synthetic data to improve underwater images. Innovation
continuedwith Underwater Image Enhancement Convolution
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FIGURE 2. Top row: real-world underwater images [19], bottom row: the corresponding enhanced images by HUWIE-Net.

Neural Network using 2 Color Space (UIEC^2-Net) [1],
which combines an RGB pixel-level block for denoising
and color correction, an HSV global adjustment block for
brightness and saturation enhancement, and an attention
map block that integrates the effects of the first two.
Recently, [20] presented Zero-UIE, a model that estimates
curve parameters directly without needing reference images;
these parameters, along with background light, are integrated
into the underwater image formation model to produce an
enhanced output image.

In this paper, a deep learning-based underwater image
enhancement method has been proposed. Figure-2 shows
samples of real-world underwater image enhancement using
the proposed HUWIE-Net. Our main contributions can be
summarized as follows.We propose a training framework that
jointly optimizes pixel-level-based and physical-channel-
based underwater image enhancement methods. In this
framework, while Image-to-Image Module (I2IM) is used
for color correction in pixel level, Physics-Informed Module
(PIM) is used for dehazing by exploiting the underwater
image formation model which defines the deformations in the
underwater light propagation channel. In PIM the parameters
of the underwater image formation model are estimated using
the deep network of the PIM and the Underwater Dark
Channel Prior [10]. To the best of our knowledge, PIM is the
first deep learning model that estimates Underwater Image
Formation Model (UIFM) parameters by using Underwater
Dark Channel Prior. We propose to use joint loss function for
both I2IM and PIM to enforce the joint optimization for better
underwater image enhancement performance. HUWIE-Net
is shown to have better generalization performance and
results compared to state-of-the-art methods by experimental
studies.

III. METHODOLOGY
In this section, the Underwater Image Formation Model,
which forms the basis of the PIM, is first explained, followed
by the Underwater Dark Channel Prior. Finally, detailed
information about the proposed model is provided.

A. UNDERWATER IMAGE FORMATION MODEL
Underwater image formation models take into account
the propagation of light in underwater. Developing these
models is challenging because the absorbing and scattering
properties of the transmission medium between the light
source, camera and scene are complex. According to the
Jaffe-McGlamery model [21], [29], which is a widely used
model for underwater image formation, it is stated that the
underwater image can be expressed as the sum of three
components, i.e., the direct component Ed , the forward
scattering component Ef and the backscattering component
Eb. Ed is the light reflected from the scene and reaches the
camera directly. Ef is the light reflected from the scene but
scattered on the way to the camera. Eb is the light that reaches
the camera by reflecting directly from particles suspended in
the water [2], [22]. Due to image deformations dominated
by backscattering [2], [10], [31], [32] and the generally close
distances between the camera and the scene [23], the forward
scattering component can be neglected in the underwater
image formationmodel. Therefore, the total irradiance energy
is expressed as the sum of the direct component and the
backscattering component as given in Equation-1.

ET = Ed + Eb. (1)

The total irradiance energy ET , as given in Equation-1,
depends on Ed and Eb. Ed is the direct component reflected
from the scene and captured by the camera. As the underwater
path length of Ed increases (i.e., as the distance between the
camera and the scene increases) and as the water absorption
and scattering coefficients (aλ and bλ) increase, Ed weakens.
If Ed becomes insufficient for detection by the sensors, the
resulting images are classified as power-limited [21]. On the
other hand, Eb is the backscattering component caused by
light reflected from suspended particles within the water
volume inside the camera’s field of view. Increased scattering
effects raise the energy of Eb, resulting in contrast-limited
images [21].
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FIGURE 3. Visualization of underwater image formation model.

The irradiance E at a distance d from an initial position 0
can be mathematically modeled as [23]:

E(d, λ) = E(0, λ)e−aλde−bλd . (2)

Here, d denotes the path traveled by light, λ represents the
wavelength, and aλ and bλ represent the absorption and
scattering coefficients of the medium, respectively. Based on
Equation-2, the direct component Ed changes with a distance
is expressed as follows:

Ed = Jce−aλd(x)e−bλd(x). (3)

Here, c ∈ {R,G,B}, Jc ∈ R3×H×W represents the clear
image, d(x) is the distance between objects and the camera.

tc = e−aλd(x)e−bλd(x) = e−pλd(x). (4)

Here, tc ∈ R3×H×W represents the transmission map,
attenuation coefficient, pλ (Figure-1), denotes the sum of aλ

and bλ [2], [22]. The backward scattering component Eb are
given below [2]:

Eb = Bc(1 − e−pλd ) = Bc(1 − tc). (5)

Here, Bc ∈ R3×1×1 denotes the background light. The
underwater image formation model can be expressed as
follows (Figure-3) [2], [9], [23]:

Ic = Jctc + Bc(1 − tc) (6)

where Ic ∈ R3×H×W is received image. For restoring the
clear image Jc, the background light and the transmissionmap
should be estimated first.

B. UNDERWATER DARK CHANNEL PRIOR
Dark Channel Prior (DCP) is a statistical approach that is
proposed by accepting as a priori that outdoor images contain
dark channels, that is, the lowest pixel values in the patchs of
image are zero. DCP is based on the analysis of 5000 random
images which results 75 percent of the dark channels have
pixel values of 0 and 90 percent have pixel values below 25 in
[0, 255] image space. Shadows, vividly colored objects with

one or two dominant channels and dark-colored objects in
outdoor images are stated as the main reasons for the low
density of DCP. Dark channel Jdark ∈ R1×H×W of an image
which is stated to tend to be zero, is obtained by performing
minimum pooling filter to minimum channel values of the
image, and is defined as follows [11]:

Jdark (x) = min
y∈�(x)

( min
c∈{R,G,B}

Jc(y)), (7)

where Jc is a channel of image J , x represents image pixel
and �(x) is the image patch centered at x.

Underwater Dark Channel Prior (UDCP), which is devel-
oped by adapting DCP, is based on the fact that underwater
environments have wavelength-dependent absorption prop-
erties. While calculating the dark channel, JUDCP, of the
underwater image, only G and B color channels from RGB
color channels are used. Therefore, JUDCP ∈ R1×H×W is
given as follows [10]:

JUDCP(x) = min
y∈�(x)

( min
c∈{G,B}

J c(y)). (8)

The basic purpose of calculating the dark channel of an image
is to estimate both the transmission map and the background
light, as in [10] and [11]. In our approach, the transmission
map is estimated through the PIM, while the background light
is estimated using the dark channel. For background light
estimation, 0.1% of the pixels with large values of the JUDCP
of the image are selected [10], [11]. The largest values in
the RGB color channels of the corresponding pixels of the
underwater image are assigned as background light for each
channel separately.

After estimating the transmissionmap tc(x) from themodel
output and the background lightBc, the enhanced image of the
PIM, Ĵc

PIM
(x), can be determined according to Equation-6 as

follows:

Ĵc
PIM

(x) =
Ic(x) − Bc
tc(x) + ϵ

+ Bc. (9)

where ϵ is a small value, i.e., 10−5 added to the denominator
for numerical stability.
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FIGURE 4. An overview of the HUWIE-Net architecture: Image-to-Image Module, Physics-Informed Module, Fusion Module,
BLE: Background Light Estimation, UIFM: Underwater Image Formation Model. Note: None of the convolutional layers in the
model perform weight sharing.

C. PROPOSED MODEL
This section provides detailed information about the proposed
deep learning model. The model, HUWIE-Net, integrates a
pixel-level-based model and a physical-channel-based model
to leverage the strengths of both approaches. HUWIE-Net
includes the I2IM with the task of color correction against
light absorption and the PIMwith the task of dehazing against
light scattering. Two different approaches are integrated into
the CNN model. The I2IM gets the received underwater
image as input and outputs the estimated clear image
with the same size as input image. The PIM gets the
captured underwater image and the estimated background
light and outputs the estimated clear image by exploring
UIFM. I2IM and PIM module outputs are jointly used in
Fusion Module (FM) to estimate the final clear image. The
overall architecture is called as HUWIE-Net and illustrated
in Figure-4.

The details of all convolution layers used in HUWIE-Net
are given in Table-1. These convolutional layers are indepen-
dent of each other, even if they share the same name, with
no weight sharing involved. The absorption coefficients in
the underwater environment depend on the light wavelength.
These varying absorption coefficients lead to the idea of
performing separate normalization to all channels of the

TABLE 1. Parameters of HUWIE-Net convolution layers.

image. After the convolution layers, there is an Inst Norm
(instance normalization) layer that normalizes each channel
separately according to its own statistical data [24]. Following
the Inst Norm layers, the non-linear activation function
Rectified Linear Unit (ReLU) is employed. The core blocks
play a critical role in deep feature extraction and transfor-
mation within the Image-to-Image Module (I2IM), Physics
Informed Module (PIM), and Fusion Module (FM). The
core blocks employed in all three modules are identical with
different weights for eachmodule. These blocks further refine
the features extracted by the previous convolutional layers,
enabling the capture of complex environmental relationships
inherent to underwater images, such as color distortions and
scattering effects. In the I2IM, the core block focuses on
enhancing colors and preserving structural details, while in
the PIM, it leverages physical model to learn the details of
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the transmission map and improve dehazing performance.
In the FM, the core block integrates and combines the features
of the I2IM and PIM. In the I2IM, after the core block the
input image is added to the output of Conv-2 as a residual
connection inspired by [26]. Similar to normalizing the input
image in the range [0, 1], the sigmoid function is used in the
last layer of I2IM to ensure that the output image is also in
this range.

PIM is a module of HUWIE-Net based on UIFM using
UDCP [10]. In PIM, a deep network learns and estimates the
transmission map (tc(x)) of underwater images. To keep the
3-channel transmission map in the range of [0, 1], a sigmoid
activation function is used in the network. The background
light estimated from the dark channel of the input images,
and the transmission map are substituted into Equation-9 to
obtain the enhanced underwater image.

The other module of HUWIE-Net, FM, consists of
convolution, instance normalization, ReLU and sigmoid
activation functions layers. FM generates the final enhanced
image by effectively fusing the I2IM and PIM outputs.
FM input is 9-channels data obtained by concatenating input
image, I2IM and PIM outputs. FM outputs 6-channels of data,
3 of which are the multiplier of the output of I2IM and 3 of
which are the multiplier of the output of PIM. The final
enhanced image is generated by multiplying the outputs of
I2IM and PIM by the multipliers from FM, and then summing
the results.

HUWIE-Net is trained using a total loss function of lL1 and
lSSIM , which are obtained from the output images of network
and the reference images from the dataset. The total loss is
given below:

lT = lL1 + lSSIM . (10)

lL1 is defined as the mean of the sum of the absolute
differences between the pixel values of the reference image,
J (x), and the output image, Ĵ (x),

lL1 =
1
n

n∑
i=1

|J (x) − Ĵ (x)|, (11)

n is the number of pixels of the images. lSSIM is defined as
follows:

lSSIM = 1 − S, (12)

where Structural Similarity Index Measure (SSIM), denoted
as S, is obtained by multiplying the luminance term, the
contrast term and the structural terms as a measure of the
textural and structural similarity between the reference image
and the output image. The formula for SSIM, is given
below [28]:

S(J , Ĵ ) =
(2µJµĴ + C1)(2σJ Ĵ + C2)

(µ2
J + µ2

Ĵ
+ C1)(σ 2

J + σ 2
Ĵ

+ C2)
, (13)

where µJ and µĴ are the mean values of the patches of
reference and output images, σJ and σĴ are their standard
deviations, σJ Ĵ is their covariance,C1 = 0.12, andC2 = 0.32.

TABLE 2. Implementation details of HUWIE-Net.

TABLE 3. Mean and variance of MSE for the outputs of the methods on
real-world underwater images.

lSSIM is one of thewidely used loss function, though it is not as
commonly employed as lL1 [1], [14], [27]. The SSIM value is
in the range of [0, 1], and a value of 1means that the reference
image and the output image are exactly the same.

IV. EXPERIMENTAL RESULTS
In this section, the performance results of the proposed
HUWIE-Net model are presented. HUWIE-Net is compared
with traditional and state-of-the-art methods using both
qualitative and quantitative evaluations. In this context, visual
outputs and metric calculations are provided for all meth-
ods. Histogram Equalization (HE), White Balance (WB),
Underwater Dark Channel Prior (UDCP) [10], Underwater
Light Attenuation Prior (ULAP) [12], Underwater Image
Enhancement Convolution Neural Network (UWCNN) [14],
Underwater Image Enhancement Convolution Neural Net-
work using 2 Color Space (UIEC^2-Net) [1] and the proposed
HUWIE-Net are the underwater image enhancement methods
compared. Real-world underwater images from Underwater

TABLE 4. Mean and variance of SSIM for the outputs of the methods on
real-world underwater images.
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FIGURE 5. Box plot of 1MSE for method outputs on real-world underwater images. Green arrow indicates the mean value and orange line
represents the median. Higher values and a narrower distribution for 1MSE indicate better performance.

TABLE 5. Box plot data of 1MSE: Q1 (First Quartile), Median, Q3 (Third
Quartile), LW (Lower Whisker), UW (Upper Whisker).

Image Enhancement Benchmark (UIEB) dataset [19] are
used for training and testing. The images from UIEB
dataset, which consist of various scenes such as coral,
fish, diving, marine life, rocks, wreckage, and sculptures,
can be categorized as bluish, greenish, shallow, and low-
illuminated images. It can be argued that this dataset, derived
from images captured across various scenes and conditions,
provides a certain degree of generalization. Therefore, tests
performed with this dataset provide information about the
generalization performance of the models. In order to create
a fair comparison environment, deep learning-based models
are trained using exactly the same training data instead
of pre-trained models. 800 images randomly selected from
890 images in the UIEB dataset are used for training, and the
remaining 90 images are used for testing. Publicly available
codes were useful when developing our code [14],1 [1].2

Implementation details are given in Table-2.

1https://li-chongyi.github.io/proj_underwater_image_synthesis.html
2https://github.com/BIGWangYuDong/UWEnhancement

TABLE 6. Box plot data of 1SSIM: Q1 (First Quartile), Median, Q3 (Third
Quartile), LW (Lower Whisker), UW (Upper Whisker).

A. EVALUATION ON REAL-WORLD UNDERWATER IMAGES
To evaluate the level of enhancement, commonly used
metrics are calculated using the outputs of underwater image
enhancement methods and reference images: Mean Squared
Error (MSE) and Structural Similarity Index (SSIM) [27].
A low MSE value indicates that the pixel values of the
reference image and the output image are close to each other.
SSIM, which is in the range of [0, 1] and higher values
indicate higher levels of similarity, is a measure of the textural
and structural similarity between the reference image and the
output image.

The MSE and SSIM of test images are calculated using
corresponding reference images. Similarly, after enhance-
ment, metrics of model outputs are calculated and means
and standard deviations of the metrics are given in Table-3
and Table-4. In the tables, the result of the method showing
better performance is red colored, while the results of
the second ranked method are blue colored. According to
the µMSE , it can be interpreted that the proposed model
enhances underwater images with pixel values closest to
the reference image. Based on these values, it is observed
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FIGURE 6. Box plot of 1SSIM for method outputs on real-world underwater images. Green arrow indicates the mean value and orange line
represents the median. Lower values and a narrower distribution for 1SSIM indicate better performance.

FIGURE 7. Sample outputs of the methods on bluish images, in order: raw, HE, WB, UDCP [10], ULAP [12], UWCNN [14], UIEC^2-Net [1],
HUWIE-Net, and reference.

that HUWIE-Net enhances images with pixel values closer
to the reference images on average. The σMSE given in
the table provides information about the stability of the
models. HUWIE-Net with the smallest σMSE has better
stability performance. When evaluated according to SSIM
in Table-4, the µSSIM of HUWIE-Net indicates that the
output images of the model have more textural and
structural similarity with the reference images. Similarly,
HUWIE-Net stands out in terms of textural and structural
similarity to the reference image. In terms of the SSIM,
HUWIE-Net also demonstrates better stability performance.
UIEC^2-Net achieves the second-best performance in both
metrics.

It can be said that existing underwater image enhancement
methods focus on improving low-quality images but do not
address preserving the quality of images taken under good
conditions or those that are already optimal and cannot be
further improved. Although the average metric results of the
methods are shared, the quality of some input images is
degraded. The distribution of metric values of the method
outputs can provide this information. The mean squared error
calculated using the raw image (Ii) and the corresponding
reference image (Ji) is defined as MSEIi , while the mean
squared error calculated using the enhanced image (Ĵi) and
the corresponding reference image is defined as MSEĴi . The
difference betweenMSEIi andMSEĴi is expressed as1MSEi.
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FIGURE 8. Sample outputs of the methods on greenish images, in order: raw, HE, WB, UDCP [10], ULAP [12], UWCNN [14], UIEC^2-Net [1],
HUWIE-Net, and reference.

FIGURE 9. Sample outputs of the methods on shallow-water images, in order: raw, HE, WB, UDCP [10], ULAP [12], UWCNN [14], UIEC^2-Net [1],
HUWIE-Net, and reference.

FIGURE 10. Sample outputs of the methods on low-illuminated images, in order: raw, HE, WB, UDCP [10], ULAP [12], UWCNN [14],
UIEC^2-Net [1], HUWIE-Net, and reference.
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FIGURE 11. Sample outputs of the methods for ablation study, in order: raw,
I2IM, PIM, HUWIE-Net, and reference.

The 1MSEi values are calculated for each test images,
as shown below:

1MSEi = MSEIi − MSEĴi (14)

Here, i denotes the index of the test image. 1MSE arrays,
consisting of 1MSEi values, are created for each method,
i.e., 1MSEUIEC^2−Net , 1MSEHUWIE−Net . Figure-5 presents
a box plot showing the distribution of the 1MSE arrays.
The statistical data for this box plot are provided in Table-5.
Higher 1MSE values and a narrower distribution indicate

better performance. A box plot is a chart that visualizes the
distribution of data by highlighting five summary statistics:
the lower whisker, first quartile, median, third quartile, and
upper whisker [33]. This plot serves as a useful tool for
comparing the methods. Since the medians of the 1MSE for
HE, UDCP, and ULAP are below 0, it indicates that while
these methods improve some test images, they degrade the
quality of the majority. Among the conventional methods,
WB demonstrates more effective compared to the others.
Deep learning-based methods improve the quality of the
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majority of test images. Figure-5 highlights the generalization
problem as one of the key challenges faced by underwater
image enhancement methods. HUWIE-Net shows a higher
median (686.1 vs 623.9) compared to UIEC^2-Net indicating
better average performance. The range between LW and
UW for HUWIE-Net (−415.6 to 2966.8) is narrower than
that of UIEC^2-Net (-874.5 to 3050.3), indicating better
stability in performance. The 1SSIM box plot, which is
presented in Figure-6, shows similar results to the 1MSE
box plot. The values of this box plot are provided in Table-6.
Lower values of 1SSIM and a narrower distribution indicate
better performance. Although HUWIE-Net and UIEC^2-Net
show competitive results in average performance, the range
between LW (-0.3809) and UW (0.0986) for HUWIE-Net
is narrower than that of UIEC^2-Net (−0.3726 to 0.1226),
indicating that HUWIE-Net is more stable. Other methods,
particularly UDCP, WB, and HE, show significantly weaker
performance in preserving structural and textural similarity.

To compare the outputs of the methods, test images
are categorized as bluish (Figure-7), greenish (Figure-8),
shallow water (Figure-9), and low-illumination underwater
images (Figure-10), following the approach used in other
studies in the literature. These figures present samples of
the input images and the corresponding outputs of the
methods. The second image in Figure-7 and the third image
in Figure-9 illustrate examples of HE over-enhancing the
red channel, which has the largest absorption coefficient,
while the third image in Figure-8 is an example of contrast
improvement. WB, a color correction approach that adjusts
the average of each color channel relative to a reference,
is effective for images with a dominant color channel such
as greenish or bluish, but suffers from poor generalization
performance. ULAP is considered to be scene-dependent
because it improves color quality in some images while
degrading it in others. UDCP generally performs poorly.
Although UWCNN removes haze from the images, the
contrast remains low, as shown in the images in Figure-8.
While UIEC^2-Net shows good performance, some color
artifacts are present in certain areas, such as the third
image in Figure-8 (reddish tone in rocks) and the third
image in Figure-9. The enhanced images of HUWIE-Net,
which demonstrates better performance in color correction,
dehazing, and generalization, are presented in the figures.

TABLE 7. Ablation study: mean and variance of MSE and SSIM for the
outputs of the methods on real-world underwater images.

B. ABLATION STUDY
Ablation study is performed by training and testing I2IM
and PIM modules separately. According to the MSE
and SSIM values in Table-7, HUWIE-Net shows better
performance, followed by I2IM and PIM. The color

correction performance of I2IM and the dehazing perfor-
mance of PIM can be observed from Figure-11. Although
modules using similar deep network structures improve
image quality, the significantly better results obtained with
I2IM compared to PIM are considered as a clear evidence of
the limitations of the underwater image formation model [2],
[9], [23]. It can be observed that fusing I2IM with PIM
results in improved color tones at certain points. This
demonstrates the effectiveness of joint optimization com-
pared to optimizing I2IM and PIM separately, as highlighted
in Figure-11. At the point marked in the second and the
fifth image in Figure-11, PIM effectively improves the
over-brightness problem of I2IM. It is even possible to
say that the HUWIE-Net outputs are more natural than the
reference image. Ablation studies show that both PIM and
I2IM independently enhance raw images. Together with these
two modules, the FM module forms HUWIE-Net, which
provides better results.

C. FUTURE WORK
Future work could focus on improving PIM’s performance
metrics, particularly in generating higher-contrast images.
Since the colors in PIM outputs are relatively dull, incorpo-
rating a loss function based on the transmission map output of
PIM could be beneficial. Additionally, the development of a
more advanced underwater image formationmodel, including
an investigation into the effects of neglecting Ef , could be
explored. Expanding the dataset may also be considered as
part of future research.

V. CONCLUSION
In this paper, we have proposed the HUWIE-Net underwater
image enhancement framework. This model is designed to
jointly optimize both pixel-level-based and physical-channel-
based enhancement methods. In this framework, the Image-
to-Image Module is employed for the purpose of pixel-level
color correction of degraded underwater images, while the
Physics-InformedModule is employed for dehazing based on
the underwater image formation model. A joint loss function
is used to both modules to enforce joint optimization, leading
to improved underwater image enhancement performance.
Using both qualitative and quantitative evaluations, HUWIE-
Net is compared with both traditional and state-of-the-art
methods. Experiments with real-world underwater images
demonstrate the effectiveness of our method through both
qualitative and quantitative evaluations. Additionally, the
distributions of the enhancement levels for each method are
presented using box plots. According to these plots, the
proposed method demonstrates better stability performance.
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