

ZMG 510E Soil Dynamics Fall 2017

Catalog Description: Dynamic soil behavior, wave propagation, vibration principles, liquefaction, ground response analysis, seismic behavior of slopes and embankments

Expected computer skills: Access to the web, Use of Ninova, word/data processing (MS Excel and Word)

Text and Other Required Materials:

- 1. Lecture Notes
- 2. Geotechnical Earthquake Engineering, by S.L.Kramer, Prentice Hall Publishing Inc, 1996
- 3. Textbook: Principles of Soil Dynamics, Braja, M. Das and G. V., Ramana *CL Engineering; International SI edition*, 2011
- 4. Soil Behavior in Earthquake Engineering, K.Ishihara, 1996

Website: refer to the Ninova website for this course

Instructor: Assist. Prof. Dr. E. Ece Bayat, Office 264, Phone: 285 3860, email: ebayat@itu.edu.tr Office hours:

Monday	Tuesday	Wednesday	Thursday	Friday
				13:30-16:30

> also by e-mail

Class Hours: Fridays 09:30-12:30 in Geotechnical Seminar Room

TOPICS COVERED

- 1. Nature of Dynamic Loads
- 2. Fundamentals of Vibration
- 3. Wave Propagation
- 4. Dynamic Soil Properties
- 5. Soil Strength under cyclic loads
- 6. Liquefaction
- 7. Ground Response Analysis
- 8. Seismic Behavior of Slopes and Embankments

COURSE OBJECTIVES

- 1. To give students understanding and problem-solving ability in the topics listed above.
- 2. To help students understand the scientific foundation for soil behavior under dynamic (cyclic and irregular) loading.
- 3. To provide students analytical and numerical tools for the evaluation of soil strength against dynamic loads.

COURSE SCHEDULE

Week	TOPICS	Date	Reading Assignment, p.	Homework
1	Introduction, Nature of Dynamic Loads, Earthquakes	15 /09	Ref.3 1-6	HW
2	Vibration Principles (Undamped and Damped SDOF systems), Vibration attenuation	22 /09	Ref.3 7-40	HW
3	Vibration Principles (Undamped and Damped SDOF systems), Vibration attenuation	29 /09		
4	Wave Propagation	06/10	Ref.2 143-183	
5	Dynamic Soil Behavior and Dynamic Soil Properties Internet Conference Lecture	13/ 10	Ref.2 228-249	
6	Undrained strength of soils under dynamic loads (flow liquefaction, cyclic mobility, level ground liquefaction) Internet Conference Lecture	20/10	Ref.2 348-413 398-454	
7	Liquefaction induced ground deformations Internet Conference Lecture	27 /10	Ref.2 414-420 Ref.4 308-315	HW
8	Fall Break (Internet Conference Lecture)	03 /11		
9	Dynamic Soil Characteristics and Measurement of Dynamic Soil Properties Internet Conference Lecture	10 /11	Ref. 2 191-228 Ref. 3 96-195	HW
10	Dynamic Soil Characteristics and Measurement of Dynamic Soil Properties Internet Conference Lecture	17 /11	Ref. 2 191-228 Ref. 3 96-195	
11	Dynamic Strength of Cohesive and Non- Cohesive Soils under Cyclic Loading Internet Conference Lecture	24 /11	Ref. 3 389-394 96-134	
12	Ground Response Analysis (GRA)	01/12	Ref.2 254-291	HW
13	Site Amplification/Deamplification, Response Spectra	08 /12	Ref.2 323-339	Project
14	GRA Software Programs, Ground Response Analysis Design Guidelines	15/12		
15	Seismic Behavior of Slopes and Embankments	22/12	Ref.3 525-553	

EXAMS AND HOMEWORK

Class Performance Evaluation	Quantity	Contribution to the Overall Grade (%)	
Homework	5	40	
Term Project	1	20	
Final Exam	1	40	
Final Exam Condition	Attendence %70		

Late homework and project are not accepted.

COURSE POLICIES

- University policies on neatness and academic honesty will be adhered to.
- The instructor will start and end class as scheduled.
- It is expected that those in the class will respect one another and contribute to a constructive learning environment.

Internet Conference Lecture –D-Learning

Oct. 06

Ground Motion Modeling and Implications for Earthquake Engineering (Prof. Askan, METU)

Oct. 13

Tsunami Disaster and the 2011 Great East Japan Earthquake (Prof. Suzuki, Tokyo Tech)

Oct. 20 Liquefaction (Prof. Bayat, ITU)

Oct. 28 Slopeland Engineering (Prf. Hung, NCU)

Nov. 03 Steel Structures (Prof. Hsu, NCU)

Nov. 10

Seismic Design of Reinforced Concrete Building Structures (Prof. Sucuoglu, METU)

Nov. 17 Seismic Retrofit of Histrical Building (Prof. Ilki, ITU)

Nov. 24 Remote Sensing (Prof. Matsuoka, Tokyo Tech)